a) Síla v rovině. Obr. 1.

Rozměr: px
Začít zobrazení ze stránky:

Download "a) Síla v rovině. Obr. 1."

Transkript

1 TECHNICKÁ MECHANIKA I. - STATIKA 1. Základní pojmy 1.1. Prostor V technické mechanice znamená prostor soubor všech míst v nichž může být umístěno těleso. V našich úvahách vystačíme s Newtonovou definicí prostoru, kde platí zákon setrvačnosti Síla Účinkem síly se tělesa deformují nebo pohybují. Jednotkou síly je Newton (N). Je to síla, která udílí tělesu s hmotností 1 kg zrychlení 1 ms -2. Síla je vektor, tj. veličina určená velikostí, směrem a působištěm. Při zavedení pojmu dokonale tuhéhé tělesa ztrácí působiště síly svůj smysl. V tomto případě se síla může po nositelce libovolně posouvat. Tuto sílu nazýváme vázaným vektorem na přímku Rozdělení sil Síly s kterými budeme pracovat v mechanice rozdělujeme do čtyř skupin: a) Objemové, hmotnostní síly. Jsou to síly prostorově rozložené, které přísluší hmotnostním nebo objemovým elementům. b) Plošné, povrchové síly. Tyto síly vznikají přim dotyku těles, kapalin a těles, nebo plynů a těles. c) Délkové síly. Délkové síly se zavádějí u těles jejichž délkový rozměr převládá ( lana, řetězy, dráty ). Zavádíme tedy délkové zatížení definované výrazem df q = ( N.m -1 ). dl d) Osamělé síly. Jsou to síly, které přísluší bodu. Všechny dříve jmenované síly můžeme za určitých předpokladů nahradit osamělými silami. To lze realizovat tehdy, když nahrazujeme pro zjednodušení výpočtu např. objemové síly osamělou silou - tíhou, která působí v těžišti Určení síly Budeme se zabývat počtem parametrů ( algebraických veličin ) které jsou nutné, aby síla byla jednoznačně určena, nebo zadána. Bude-li síla v rovině určena dvěma nebo třemi parametry, bude třeba k jejímu určení dvou nebo tří algebraických rovnic.

2 a) Síla v rovině. Obr. 1. K určení síly v rovině ( obr.1 ) je třeba znát tři parametry: Souřadnici x A, úhel α a velikost síly. Síla v rovině je tedy tříparametrová veličina. Při početním řešení síly v rovině bude zapotřebí tří algebraických rovnic. b) Síla v prostoru. Obr.2 Síla v prostoru je pětiparametrová veličina. Podle obr.2 je tedy určena souřadnicemi x A, y A, dvěma úhly α, β a velikostí. Pro stanovení neznámé síly v prostoru potřebujeme pět algebraických rovnic.

3 1.5 Posouvání síly po nositelce Obr.3. Ve statice můžeme každou sílu po její nositelce posouvat, aniž se pro její působení na těleso něco změní. Do působiště P 1 ( obr.3 ) připojíme dvě síly F r stejně veliké jako původní síla v působišti P. Jedna síla má stejný smysl, druhá smysl opačný. Protisměrné síly se ruší a zbývá posunutá síla F r v novém působišti P Silové dvojice Obr.4. Dvě stejně velké síly F r, které jsou opačných smyslů a leží na rovnoběžných nositelkách, tvoří silovou dvojici. Silová dvojice leží v jedné rovině a nelze ji redukovat na osamělou sílu. Silová dvojice je vektorová veličina a má na těleso otáčivý účinek. Moment silové dvojice je M = F r ( N.m ). 1.7 Dokonale tuhé těleso Dokonale tuhé těleso se pod účinkem sil a silových dvojic v žádném případě nedeformuje. Dokonale tuhé těleso si představujeme tak, že je složeno z hmotných bodů,

4 které jsou spojeny nehmotnými tyčemi. Důležitá jsou místa dotyku těles. Skutečná tělesa se dotýkají v plochách. Protože ve statice budeme pracovat s osamělými silami, bude nutné nahradit skutečný dotyk v plochách ideálním dotykem v bodech ( obr. 5 ). Obr Uložení tělesa, vazby Povrchové síly, které působí v místech uložení, nahrazujeme ideálními vazbami za předpokladu, že se tělesa dotýkají v bodech. Některá tělesa jsou uložena tak, že ze statických podmínek nelze stanovit síly v úložných bodech. Ke statickým podmínkám rovnováhy pak nutno připojit ještě podmínky kinematické nebo deformační. Jsou to úlohy staticky neurčité Vazby bodu Vazbou bodu rozumíme obecně nějakou podmínku, která omezuje jeho pohyb. Rozlišujeme: a) Volný bod, který není vázán žádnou podmínkou a jeho polohu v prostoru určují tři nezávislé souřadnice. b) Vázaný bod, jehož pohyb ovlivňuje nějaká podmínka. Tuto podmínku nazýváme obecně vazbou Stupeň volnosti Stupeň volnosti bodu je pojem doplňující vazbu bodu. Je vyjádřen počtem nezávislých parametrů ( souřadnic ), které určují polohu bodu. Bod v prostoru má tři stupně volnosti. Jeho poloha je určena třemi nezávislými souřadnicemi ( x, y, z ). Bod na ploše ( příkladně v rovině ) má dva stupně volnosti. Jeho poloha je jednoznačně určena dvěma souřadnicemi. Bod na křivce ( kružnici, přímce ) má jeden stupeň volnosti. Při stanovení jeho polohy stačí jedna souřadnice.

5 1.9 Podpory Všechny druhy uložení, které se vyskytují ve statice nahrazujeme podporami. Rozeznáváme tři druhy podpor ( obr.6. ) : a) Plošná podpora. b) Křivková podpora. c) Bodová podpora. Obr.6. Plošná podpora je charakterisována tím, že udává směr reakce ( nositelku reakce ) - obr.7. Obr.7. Pro stanovení reakce stačí určit její velikost. Reakce v plošné podpoře je tedy veličina jednoparametrová. K jejímu určení stačí jedna algebraická rovnice.

6 Křivková podpora udává rovinu, ve které leží reakce a bod, kterým reakce prochází - obr.8. Obr.8. Pro její stanovení je nutné určit směr nositelky v rovině a velikost reakce. Je to veličina dvouparametrová. K jejímu určení je třeba dvou algebraických rovnic. Bodová podpora určuje bod, kterým nositelka reakce prochází - obr.9. Obr.9. Pro stanovení reakce je nutné určit její nositelku a velikost. K určení nositelky v rovině je nutné stanovit dva parametry. Reakce bodové podpory je veličina tříparametrová.

7 1.10 Princip akce a reakce Princip akce a reakce vyjadřuje vzájemné silové působení mezi tělesy. Působí-li těleso 1 na těleso 2 v místě dotyku silou F 12 ( obr. 10. ), působí ve stejném místě ( bod A ) těleso 2 na těleso 1 stejně velikou silou, ale opačného smyslu. Platí: F 12 = - F 21. Směr sil F 12 a F 21 platí pro dokonale tuhá tělesa. Obr. 10. Princip akce a reakce platí i pro silové dvojice - obr.11. Obr. 11.

8 Zákon akce a reakce platí i pro tělesa, která se nedotýkají - obr.12. Princip platí v každém okamžiku, tedy jsou-li tělesa v klidu nebo se pohybují. 2. Řešení úloh statiky Obr. 12. Úlohy statiky se řeší početně, graficky nebo i grafickopočetně. Počtářské řešení umožňuje při obecném řešení získat i funkční závislosti. Grafická řešení bývají obvykle jednodušší, rychlejší, zatížená menším počtem chyb. Pro kontrolu řešení obvykle kombinujeme metodu grafickou i početní. 2.1 Metoda uvolňování Uvolněním tělesa, bodu nebo soustavy těles, rozumíme nahrazení účinků okolních těles na uvolněné těleso, bod nebo soustavu těles, silami a silovými dvojicemi. Tvar sil a silových dvojic, které získáme při uvolňování, je závislý na druhu vazeb. Každá silová soustava má obecně jen určitý počet podmínek rovnováhy, které musí souhlasit s počtem neznámých hledaných veličin. Při uvolňování určujeme na základě způsobu uložení tělesa ( druhu a počtu podpor ), je-li úloha staticky určitá nebo neurčitá. Až na malé vyjímky se setkáváme při uvolnění pouze s podporami plošnými, křivkovými a bodovými. Ke stanovení statické určitosti je nutné vědět, kolik která z podpor představuje neznámých algebraických veličin.

9 3. Rovinné soustavy těles 3.1 Obecné závislosti Rovinnou soustavu sil tvoří síly ležící v jedné rovině. Silové soustavy jsou složeny ze sil a silových dvojic. Nahrazování silových soustav je výběr vhodné konfigurace - tvaru soustavy se stejnými statickými účinky. Náhradní soustava má nutně stejné statické účinky, má jednodušší tvar, nebo lépe vyhovuje dané úloze. Skládání a rozkládání sil - několik sil můžeme nahradit jedinou silou, nebo naopak jedinou sílu můžeme nahradit několika silami. Do rozkládání sil můžeme zahrnout i překládání síly na rovnoběžnou nositelku, tj. nahrazení síly silou a silovou dvojicí. Rovnováha silové soustavy - o rovnováze silové soustavy mluvíme tehdy, jestliže se účinky všech prvků soustavy navzájem ruší. Pro rovnováhu jakékoli silové soustavy, která je určena silami a momenty F r, M r, platí: F r = 0 r, M r = 0 r. Dále se budeme zabývat podmínkami rovnováhy a nahrazováním silových soustav, které rozdělíme do následujících skupin: 1. Síly na společné nositelce. 2. Síly, jejichž nositelky procházejí společným bodem - rovinná centrální soustava sil. 3. Obecná rovinná soustava sil - síly leží v jedné rovině. 3.2 Síly na společné nositelce Nahrazení Se silami ležícími na společné nositelce můžeme pracovat jako se skalárními veličinami - obr. 13. Obr. 13. Nahrazujeme tři síly F 1, F 2, F 3, které leží na společné nositelce. Pro výslednou sílu platí: F = F F2 F3

10 Obsahuje-li soustava n sil platí: n F = F i. 1 Síly na společné nositelce můžeme nahradit jedinou výslednicí, která má stejný směr jako nahrazované síly. Její velikost je určena algebraickým součtem jednotlivých sil soustavy Podmínky rovnováhy Pro rovnováhu sil, které leží na společné nositelce platí, že výslednice F se rovná nule. Tedy ale také F = 0, n Fi = 0. 1 Tuto rovnici nazýváme podmínkou rovnováhy pro silové soustavy, které leží na společné nositelce. 3.3 Dvě síly různých směrů Nahrazení a) Grafické Dvě síly různých směrů ( obr. 14 ), které leží v jedné rovině nahradíme jedinou silou na základě věty: Výslednice dvou různoběžných sil je určena chybějící stranou trojúhelníka sestrojeného z daných sil a leží v průsečíku těchto sil. Obr. 14. Poloha nositelky je určena průsečíkem nositelek nahrazovaných sil. Tento úkon nazveme vektorovým součtem a zapíšeme jej ve tvaru r r F1 + F2 r = F.

11 Při stanovení výslednice nezáleží na pořadí sil ve vektorovém součtu ( zákon komutativní ). b) Početní Soustavu sil umístíme do pravoúhlého souřadnicového systému - obr. 15. Obr. 15. Síly A a B nahradíme složkami A x, A y, B x, B y pro které platí: A x = A.cos α, = A.sin α, B x = B. cos β, = B. sinβ A y B y Složky ve směru jednotlivých os sečteme: F = A B, F = A B. x x + x y y + Konečně síly F x a F y nahradíme výslednicí, pro jejíž velikost platí: y F = F 2 + x F 2 y. Úhel který svírá výslednice s osou x určíme ze vztahu Fy χ = arctg. F Rovnováha Pro rovnováhu dvou sil, které jsou v rovnováze, musí platit, že jejich výslednice je rovna nule F r = 0. r x

12 Rovnováha dvou sil může nastat jen tehdy, leží-li síly na společné nositelce, jsou stejných velikostí, opačných smyslů. Minimálně tři různoběžné síly ležící v jedné rovině jsou v rovnováze, jedině tehdy, když procházejí jedním bodem. 3.4 Rovinná centrální soustava sil Nahrazení a) Grafické Centrální rovinnou soustavu, zobrazenou na obr.16., nahradíme výslednicí F 1,2,3,4. Obr.16. Nejprve posuneme síly do společného průsečíku ( centrum soustavy ). Síly F 1 a F 2 nahradíme výslednicí F 1,2. Tuto výslednici složíme se silou F 3 a získáme výslednici F 1,2,3, která složena se silou F 4 dává výslednici F 1,2,3,4, nahrazující původní soustavu sil. Výslednici získáme jednoduše, zakreslujeme-li za sebou jednotlivé síly soustavy v libovolném pořádku. Grafické řešení vyjádříme vektorovou rovnicí r r r r r F = F. 1 + F2 + F3 + F4 b) Početní Početní řešení naznačíme pro přehlednost pouze pro n-tou sílu F n. Nejprve zvolíme pravoúhlý souřadnícový systém tak, aby počátek byl totožný s centrem soustavy. Všchny síly soustavy nahradíme složkami, pro které platí dle obr. 17.

15 s. Analytická geometrie lineárních útvarů

15 s. Analytická geometrie lineárních útvarů 5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý

Více

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.

{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. 9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme

Více

Mechanika tuhého tělesa. Dynamika + statika

Mechanika tuhého tělesa. Dynamika + statika Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která

Více

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.

Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I. Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází

Více

Pomůcka pro demonstraci momentu setrvačnosti

Pomůcka pro demonstraci momentu setrvačnosti Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde

Více

3.2.4 Podobnost trojúhelníků II

3.2.4 Podobnost trojúhelníků II 3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).

Více

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.

1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r. Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr

Více

Technická mechanika - Statika

Technická mechanika - Statika Technická mechanika - Statika Elektronická učebnice Ing. Jaromír Petr Tento materiál byl vytvořen v rámci projektu CZ.1.07/1.1.07/03.0027 Tvorba elektronických učebnic O B S A H 1 Statika tuhých těles...

Více

4.6.6 Složený sériový RLC obvod střídavého proudu

4.6.6 Složený sériový RLC obvod střídavého proudu 4.6.6 Složený sériový LC obvod střídavého proudu Předpoklady: 41, 4605 Minulá hodina: odpor i induktance omezují proud ve střídavém obvodu, nemůžeme je však sčítat normálně, ale musíme použít Pythagorovu

Více

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113

STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113 STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu

Více

Síla je vektorová veličina

Síla je vektorová veličina Dynamika vyšetřuje příčiny pohybu, resp. změny pohybového stavu těles Za příčinu je označována síla od toho název (Dynamis řecky síla) Aristoteles (3. stol. př.n.l), Galilei (16.-17. stol) klasická* dynamika

Více

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA I STATIKA STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA I STATIKA Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

4. Statika hmotných objekt 4.1 Stupn volnosti

4. Statika hmotných objekt 4.1 Stupn volnosti 4. Statika hmotných objektů 4.1 Stupně volnosti konstrukci (jako celek nebo jejíčásti) idealizujme jako hmotné body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural Engineering

Více

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}

4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]} 1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:

Více

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou

2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou .8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)

Více

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm

b) Po etní ešení Všechny síly soustavy tedy p eložíme do po átku a p ipojíme p íslušné dvojice sil Všechny síly soustavy nahradíme složkami ve sm b) Početní řešení Na rozdíl od grafického řešení určíme při početním řešení bod, kterým nositelka výslednice bude procházet. Mějme soustavu sil, která obsahuje n - sil a i - silových dvojic obr.36. Obr.36.

Více

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21.

Více

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2

Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2 Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel

Více

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17. Obr.17. F F 1x = F.cos α1,..., Fnx = F. cos 1y = F.sin α1,..., Fny = F. sin α α n n. Původní soustava je nyní nahrazena děma soustavami sil ve směru osy x a ve směru osy y. Tutu soustavu nahradíme dvěma

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,

INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve

Více

M - Rovnice - lineární a s absolutní hodnotou

M - Rovnice - lineární a s absolutní hodnotou Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme

Více

Matematika 9. ročník

Matematika 9. ročník Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: PFFNINW) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy

Více

Kvadratické rovnice pro studijní obory

Kvadratické rovnice pro studijní obory Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_16 ŠVP Podnikání RVP 64-41-L/51

Více

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.

(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f. I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n

Více

2.4.11 Nerovnice s absolutní hodnotou

2.4.11 Nerovnice s absolutní hodnotou .. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na

Více

9.2.5 Sčítání pravděpodobností I

9.2.5 Sčítání pravděpodobností I 9.2.5 Sčítání pravděpodobností I Předpoklady: 9203 Pedagogická poznámka: Následující problém sice zadávám jako příklad, ale minimálně na začátku s žáky počítám na tabuli. I kvůli tomu, aby jejich úprava

Více

Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá

Různostranné obecné Rovnoramenné Rovnostranné. třetí, základna, je různá Trojúhelník Trojúhelník - AB určují tři body A, B,, které neleží na jedné přímce. Trojúhelník je rovněž možno považovat za průnik tří polorovin nebo tří konvexních úhlů. γ, γ, γ Body A, B,, se nazývají

Více

1.3.1 Kruhový pohyb. Předpoklady: 1105

1.3.1 Kruhový pohyb. Předpoklady: 1105 .. Kruhový pohyb Předpoklady: 05 Předměty kolem nás se pohybují různými způsoby. Nejde pouze o přímočaré nebo křivočaré posuvné pohyby. Velmi často se předměty otáčí (a některé se přitom pohybují zároveň

Více

Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců.

Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců. Přednáška 6 Inovace výuky předmětu Robotika v lékařství Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců. Kinematickým zákonem řízení rozumíme předpis, který na základě direktiv

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic 1 Soustavy lineárních rovnic Příklad: Uvažujme jednoduchý příklad soustavy dvou lineárních rovnic o dvou neznámých x, y: x + 2y = 5 4x + y = 6 Ze střední školy známe několik metod, jak takové soustavy

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )

Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 ) . Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového

Více

Soustavy lineárních rovnic

Soustavy lineárních rovnic Soustavy lineárních rovnic Buď (T, +, ) těleso. Pak soustava rovnic a 11 x 1 + a 12 x 2 + + a 1n x n = b 1, a 21 x 1 + a 22 x 2 + + a 2n x n = b 2,................................... a m1 x 1 + a m2 x

Více

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH

NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami

Více

Lineární algebra. Vektorové prostory

Lineární algebra. Vektorové prostory Lineární algebra Vektorové prostory Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo projektu:

Více

Optika. VIII - Seminář

Optika. VIII - Seminář Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení

Více

Geometrické vektory. Martina Šimůnková. Katedra aplikované matematiky. 9. března 2008

Geometrické vektory. Martina Šimůnková. Katedra aplikované matematiky. 9. března 2008 Geometrické vektory Martina Šimůnková Katedra aplikované matematiky 9. března 2008 Martina Šimůnková (KAP) Geometrické vektory 9. března 2008 1/ 27 Definice geometrického vektoru 1 Definice geometrického

Více

3. Souřadnicové výpočty

3. Souřadnicové výpočty 3. Souřadncové výpočty 3.1 Délka. 3.2 Směrník. 3.3 Polární metoda. 3.4 Protínání vpřed z úhlů. 3.5 Protínání vpřed z délek. 3.6 Polygonové pořady. 3.7 Protínání zpět. 3.8 Transformace souřadnc. 3.9 Volné

Více

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t

Obr.94. Tečná reakce T r musí být menší nebo rovna třecí síle F t 7.3 Odpory při valení Valení je definováno tak, že dotykové body valícího se tělesa a podložky jsou v relativním klidu. Je zaručeno příkladně tak, že těleso omotáme dvěma vlákny, která jsou upevněna na

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková

2.1. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné x je taková .. Funkce a jejich graf.. Pojem funkce a její vlastnosti. Reálná funkce f jedné reálné proměnné je taková binární relace z množin R do množin R, že pro každé R eistuje nejvýše jedno R, pro které [, ] f.

Více

Kvadratické rovnice pro učební obory

Kvadratické rovnice pro učební obory Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické

Více

MECHANIKA TUHÉHO TĚLESA POJEM TUHÉ TĚLESO POHYBY TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA POJEM TUHÉ TĚLESO POHYBY TUHÉHO TĚLESA Předmět: Ročník: Vytvořil: Datum: YZIKA PRVNÍ MGR. JÜTTNEROVÁ 29. 0. 202 Název zpracovaného celku: MECHANIKA TUHÉHO TĚLESA POJEM TUHÉ TĚLESO Budeme uvažovat takové pohyby tělesa, při nichž nelze zanedbat

Více

1.1.1 Kvadratické rovnice (dosazení do vzorce) I

1.1.1 Kvadratické rovnice (dosazení do vzorce) I .. Kvadratické rovnice (dosazení do vzorce) I Předpoklady: základní početní operace Rovnicí se nazývá vztah rovnosti mezi dvěma výrazy obsahujícími jednu nebo více neznámých. V této kapitole se budeme

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Orientovaná úseka. Vektory. Souadnice vektor

Orientovaná úseka. Vektory. Souadnice vektor Vektory, operace s vektory Ž3 Orientovaná úseka Mjme dvojici bod A, B (na pímce, v rovin nebo prostoru), které spojíme a vznikne tak úseka. Pokud budeme rozlišovat, zda je spojíme od A k B nebo od B k

Více

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE

UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

1.0 ZÁKLADNÍ JEDNOTKY SOUSTAVY SI

1.0 ZÁKLADNÍ JEDNOTKY SOUSTAVY SI -1- ÚVOD Technická mechanika je předmět, s nímž se někteří žáci, pro které je učebnice určena, setkávají poprvé. Přívlastek "technická" vyjadřuje její vyčlenění z obecnější, tzv. "klasické mechaniky".

Více

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B

2.3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B .3. POLARIZACE VLN, POLARIZAČNÍ KOEFICIENTY A POMĚR E/B V řadě případů je užitečné znát polarizaci vlny a poměry mezi jednotlivými složkami vektoru elektrické intenzity E takzvané polarizační koeficienty,

Více

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny

17 t. Analytická geometrie přímky rovnice přímky, vzájemná poloha přímek, odchylka přímek, průsečík přímek, vzdálenost přímky od roviny 7 t Aaltická geometrie přímk rovice přímk, vzájemá poloha přímek, odchlka přímek, průsečík přímek, vzdáleost přímk od rovi Parametrické vjádřeí přímk v roviě Přímka je jedozačě určea dvěma růzými bod.

Více

Tvorba trendové funkce a extrapolace pro roční časové řady

Tvorba trendové funkce a extrapolace pro roční časové řady Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B

65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 65. ročník matematické olympiády Řešení úloh klauzurní části školního kola kategorie B 1. Nejprve zjistíme, jak lze zapsat číslo 14 jako součet čtyř z daných čísel. Protože 4 + 3 3 < 14 < 4 4, musí takový

Více

Střední škola automobilní Ústí nad Orlicí

Střední škola automobilní Ústí nad Orlicí Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,

Více

1. Stejnosměrný proud základní pojmy

1. Stejnosměrný proud základní pojmy 1. Stejnosměrný proud základní pojmy Stejnosměrný elektrický proud je takový proud, který v čase nemění svoji velikost a smysl. 1.1. Mezinárodní soustava jednotek Fyzikální veličina je stanovena s fyzikálního

Více

6. Statika rovnováha vázaného tělesa

6. Statika rovnováha vázaného tělesa 6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly

Více

PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ

PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ FAKTUŘE 2012 Výrazná změna, která nás v letošním roce potkala je změna sazby DPH. NASTAVENÍ SAZEB DPH Nastavení jednotlivých sazeb DPH provedete v menu

Více

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit

Více

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI

Domácí úkol DU01_2p MAT 4AE, 4AC, 4AI Příklad 1: Domácí úkol DU01_p MAT 4AE, 4AC, 4AI Osm spolužáků (Adam, Bára, Cyril, Dan, Eva, Filip, Gábina a Hana) se má seřadit za sebou tak, aby Eva byly první a Dan předposlední. Příklad : V dodávce

Více

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k + 1 2 x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1

Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k + 1 2 x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1 Řešení 3 série Řešení S-I-3-1 Než se pustíme o řešení úlohy s n x n čtvercovými poli, zkusme ohalit princip na šachovnici s konkrétním počtem polí Na šachovnici 1 x 1 je pouze 1 čtverec Na šachovnici 2

Více

a : b : c = sin α : sin β : sin γ

a : b : c = sin α : sin β : sin γ 12 Řešení becnéh trjúhelníku, věta sinvá a ksinvá Sinvá věta - platí v becném trjúhelníku (nemusí být pravúhlý) a : b : c sin α : sin β : sin γ Pměr délek stran je rven pměru sinů prtilehlých vnitřních

Více

Maturitní okruhy z matematiky školní rok 2007/2008

Maturitní okruhy z matematiky školní rok 2007/2008 Maturitní okruhy z matematiky školní rok 2007/2008 1. ALGEBRAICKÉ VÝRAZY 2 2 2 3 3 3 a ± b ; a b ; a ± b ; a ± b 1.1. rozklad výrazů na součin: vytýkání, užití vzorců: ( ) ( ) 1.2. určování definičního

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny

Více

2.7.2 Mocninné funkce se záporným celým mocnitelem

2.7.2 Mocninné funkce se záporným celým mocnitelem .7. Mocninné funkce se záporným celým mocnitelem Předpoklady: 70 Mocninné funkce se záporným celým mocnitelem: znamená? 3 y = = = = 3 y y y 3 = ; = ; = ;.... Co to Pedagogická poznámka: Nechávám studenty,

Více

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3

ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT 2-3 ELEKTROTECHNICKÁ MĚŘENÍ PRACOVNÍ SEŠIT - Název úlohy: Měření vlastností regulačních prvků Listů: List: Zadání: Pro daný regulační prvek zapojený jako dělič napětí změřte a stanovte: a, Minimálně regulační

Více

2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město

2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2. Střední odborná škola a Gymnázium Staré Město 2.STATIKA V ROVINĚ 2.1 SÍLA, JEJÍ URČENÍ A ÚČINKY 2 Název školy Střední odborná škola a Gymnázium Staré Město Číslo projektu CZ.1.07/1.5.00/34.1007 Autor Ing. Zuzana Kučerová Název šablony III/2 Inovace

Více

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o.

E-ZAK. metody hodnocení nabídek. verze dokumentu: 1.1. 2011 QCM, s.r.o. E-ZAK metody hodnocení nabídek verze dokumentu: 1.1 2011 QCM, s.r.o. Obsah Úvod... 3 Základní hodnotící kritérium... 3 Dílčí hodnotící kritéria... 3 Metody porovnání nabídek... 3 Indexace na nejlepší hodnotu...4

Více

Obsah. Téma: Vzájemné působení těles, síla a její měření...3. Téma: Účinky síly, znázornění síly a skládání sil...6. Téma: Těžiště tělesa...

Obsah. Téma: Vzájemné působení těles, síla a její měření...3. Téma: Účinky síly, znázornění síly a skládání sil...6. Téma: Těžiště tělesa... Téma: Síla Autorka: Marta Gulová Ostrava 2006 Obsah Téma: Vzájemné působení těles, síla a její měření...3 Téma: Účinky síly, znázornění síly a skládání sil...6 Téma: Těžiště tělesa...10 Téma: Gravitační

Více

ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ

ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 10. ČERVNA 2012 Název zpracovaného celku: ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ PŮSOBIŠTĚ ROVINNÁ SOUSTAVA SIL NEMAJÍCÍ SPOLEČNÉ

Více

Analytická geometrie (3. - 4. lekce)

Analytická geometrie (3. - 4. lekce) Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky

Více

Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA

Radka Hamříková VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA SBÍRKA ÚLOH Z MATEMATIKY Radka Hamříková Vtvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.0..0/..5./006 Studijní opor s převažujícími

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

Novinky v Maple T.A. 10

Novinky v Maple T.A. 10 Novinky v Maple T.A. 10 Maple T.A. 10 je nová verze aplikace Maple T.A., jejíž nová funkcionalita je zejména založena na požadavcích uživatelů z řad studentů, instruktorů, administrátorů. Došlo k rozšíření

Více

Jan Paseka. Masarykova Univerzita Brno. 3. SOUSTAVY LINEÁRNÍCH ROVNIC p.1/57

Jan Paseka. Masarykova Univerzita Brno. 3. SOUSTAVY LINEÁRNÍCH ROVNIC p.1/57 3. SOUSTAVY LINEÁRNÍCH ROVNIC Jan Paseka Masarykova Univerzita Brno 3. SOUSTAVY LINEÁRNÍCH ROVNIC p.1/57 Abstrakt přednášky Abstrakt V této kapitole se seznámíme se soustavami lineárních rovnic nad obecným

Více

PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU

PŘÍLOHA č. 2B PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU PŘÍLOHA č. 2B PRAVIDEL PRO ŽADATELE A PŘÍJEMCE PŘÍRUČKA IS KP14+ PRO OPTP - ŽÁDOST O ZMĚNU OPERAČNÍ PROGRAM TECHNICKÁ POMOC Vydání 1/7, platnost a účinnost od 04. 04. 2016 Obsah 1 Změny v projektu... 3

Více

Základní chemické pojmy a zákony

Základní chemické pojmy a zákony Základní chemické pojmy a zákony LRR/ZCHV Základy chemických výpočtů Jiří Pospíšil Relativní atomová (molekulová) hmotnost A r (M r ) M r číslo udávající, kolikrát je hmotnost daného atomu (molekuly) větší

Více

PROCESY V TECHNICE BUDOV 3

PROCESY V TECHNICE BUDOV 3 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy

Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně

Více

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny

KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)

Více

2.5 Rovnováha rovinné soustavy sil

2.5 Rovnováha rovinné soustavy sil Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 2.5 Rovnováha rovinné soustavy sil Rovnováha sil je stav, kdy na těleso působí více sil, ale jejich výslednice

Více

Každý jednotlivý záznam datového souboru (tzn. řádek) musí být ukončen koncovým znakem záznamu CR + LF.

Každý jednotlivý záznam datového souboru (tzn. řádek) musí být ukončen koncovým znakem záznamu CR + LF. Stránka 1 z 6 ABO formát Technický popis struktury formátu souboru pro načtení tuzemských platebních příkazů k úhradě v CZK do internetového bankovnictví. Přípona souboru je vždy *.KPC Soubor musí obsahovat

Více

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715

( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715 .7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o.

Svobodná chebská škola, základní škola a gymnázium s.r.o. METODICKÝ LIST DA41 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Poměry III. postupný poměr Astaloš Dušan Matematika sedmý frontální, fixační samostatná práce upevnění znalostí

Více

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30

Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE. Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 Semestrální práce NÁVRH ÚZKOPÁSMOVÉHO ZESILOVAČE Daniel Tureček zadání číslo 18 cvičení: sudý týden 14:30 1. Ověření stability tranzistoru Při návrhu úzkopásmového zesilovače s tranzistorem je potřeba

Více

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran

Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran Kótování oblouků, děr, koulí, kuželů, jehlanů, sklonu a sražených hran 1. Kótování oblouků veškeré oblouky kružnic se kótují poloměrem a jedním z těchto rozměrů: - středovým úhlem - délkou tětivy - délkou

Více

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501

( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501 ..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného

Více

IDEA StatiCa novinky

IDEA StatiCa novinky strana 1/8 verze 5.1 strana 2/8 IDEA StatiCa Steel... 3 IDEA StatiCa Connection... 3 Spoje pomocí šroubovaných příložných plechů (příložky)... 3 Přípoje uzavřených profilů kruhové i obdélníkové... 3 Tenkostěnné

Více

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše.

1 Typografie. 1.1 Rozpal verzálek. Typografie je organizace písma v ploše. 1 Typografie Typografie je organizace písma v ploše. 1.1 Rozpal verzálek vzájemné vyrovnání mezer mezi písmeny tak, aby vzdálenosti mezi písmeny byly opticky stejné, aby bylo slovo, řádek a celý text opticky

Více

Lineární funkce, rovnice a nerovnice

Lineární funkce, rovnice a nerovnice Operační program Vzdělávání pro konkurenceschopnost III/2 ICT INOVACE Matematika 1. ročník Lineární funkce, rovnice a nerovnice Datum vytvoření: říjen 2012 Třída: 1. A, 2. C Autor: PaedDr. Jan Wild Klíčová

Více

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií

Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován

Více

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ

Střední škola obchodu, řemesel a služeb Žamberk. Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Střední škola obchodu, řemesel a služeb Žamberk Výukový materiál zpracovaný v rámci projektu EU Peníze SŠ Registrační číslo projektu: CZ.1.07/1.5.00/34.0130 Šablona: III/2 Ověřeno ve výuce dne: 7.10.2013

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena

MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena MODEL MECHANISMU STĚRAČE SE TŘENÍM Inženýrská mechanika a mechatronika Martin Havlena Osnova 2/17 Obsah prezentace Cíle práce Požadavky společnosti PAL International s.r.o. Souprava stěrače čelního skla

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více