TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec

Rozměr: px
Začít zobrazení ze stránky:

Download "TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec"

Transkript

1 TECHNICKÁ UNIVERITA V LIBERCI Ktedr fyziky Studentká 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ KOUŠKU FYIKY Akdemický rok: 06/07 Útv zdrvotnickýc tudií Studijní obor: Biomedicínká tecnik drvotnický zácrnář Témtické okruy Kinemtik motnéo bodu Poyb římočrý rovnoměrný římočrý rovnoměrně zryclený rovnoměrně zomlený Pojmy ryclot zryclení drá růměrná ryclot jejic jednotky Volný ád vr vilý vr šikmý rmonický oyb Rovnoměrný oyb o kružnici rovnoměrně zryclený re zomlený oyb o kružnici Pojmy: úlová drá úlová ryclot úlové zryclení eriod kruovéo oybu frekvence růměrná úlová ryclot jejic jednotky Vzt mezi obvodovou úlovou ryclotí ryclení celkové tečné normálové Dynmik motnéo bodu Hybnot íl zákldní íly v mecnice: rekce okolníc těle íly tření vztlková íl odor rotředí tíová íl eltická íl Výledná íl Newtonovy zákony Poybové rovnice: rozbor il etvení řešení oybovýc rovnic kontntními ilmi 3 Práce výkon energie Práce íly výkon íly účinnot Mecnická energie outvy motnýc bodů: kinetická energie otenciální energie tíová eltická ákony zcování ákon zcování mecnické energie odmínk jeo ltnoti ákon zcování ybnoti ytému motnýc bodů 5 Mecnik klin lynů Pclův zákon Sttický tlk v tekutině Arcimedův zákon Utálené roudění Rovnice kontinuity Tlková energie Bernoulliov rovnice

2 6 Grvitční ole Newtonův grvitční zákon Grvitční ole emě První druá komická ryclot 7 Nuk o tele Telot její měření Termodynmická tunice Vnitřní energie Telo Teelná kcit měrná teelná kcit měrné kuenké telo Klorimetrická rovnice Stvová rovnice ideálnío lynu Práce lynu 8 Obvody tejnoměrnéo roudu Omův zákon Jednoducý obvod Elektromotorické nětí Práce výkon elektrickéo roudu 9 Geometrická otik ákony odrzu lomu větl Tenká čočk férické zrcdlo obrzovcí rovnice Příčné zvětšení Tyové říkldy úlo řijímcío tetu Určete růměrnou ryclot vozidl jedoucío o vodorovné římé vozovce když rvní čtvrtinu vé dráy rojelo kontntní ryclotí velikoti 0 m - zbývjící čát vé dráy kontntní ryclotí velikoti 0 m - Řešení: v = 0 m - v = 0 m - =? Celková dob jízdy: t = t + t ( kde t v t 3 v Podle definice je růměrná ryclot rovn ( t Užitím vztů ( (3 ( ze ( dotáváme v v 3 3v v v v ( (3

3 Průměrná ryclot vozidl je 6 m - m - = 6 m - Míček byl vržen vile dolů n zem z výšky m očáteční ryclotí velikoti 0 m - Jk vyoko vykočil jetliže e odrzil od země tejně velkou ryclotí jkou dodl? Odor rotředí znedbejte (g = 0 m - Řešení: = m g = 0 m - v 0 = 0 m - =? ředokldu že znedbáme odor rotředí ři oybu míčku v tíovém oli ztráty ři odrzu ltí zákon zcování mecnické energie Srovnáme-li očátek vru měrem dolů okmžik kdy održený míček vytouí do mximální výšky má nulovou ryclot dotneme rovnici: m g mv 0 m g v0 g ( odtud 0 0 Po odrzu od země vykočil míček do výše 6 m m = 6 m 3 Pneumtik utomobilu byl nuštěn n tlk 05 MP ři telotě 7 C Jký bude tlk vzducu neumtice ři telotě 77 C z ředokldu že e objem neumtiky nezměnil? Řešení: = 05 MP = 50 P t = 7 C T = 90 K t = 77 C T = 350 K =? Předokládáme že vzduc z těcto telot lze ovžovt z ideální lyn ve kterém došlo k izocorické změně (objem lynu byl kontntní Podle tvové rovnice ltí: V V odtud T T T T P = 307 P 03 MP 90 Tlk vzducu neumtice ři telotě 77 C bude 03 MP

4 Jký odor měl toná irál vřiče když bylo uvedeno do vru 06 litru vody ůvodní teloty 0 C z 7 minut? Vřič byl řiojen n íťové nětí 30 V měl v dném řídě účinnot 60% (očáteční utot vody = 0 3 kgm -3 měrná teelná kcit vody c = 00 Jkg K - Řešení: V = 06 l = 60 - m 3 t = 0 C t = 00 C = 7 min = 0 U = 30 V = 0 3 kgm -3 c = 00 Jkg - K - = 06 R =? Účinnot vřiče je definován jko odíl teelné energie dodné vřičem vodě ku elektrické energii vřičem otřebovné tj kde Q W Q = m c (t t = V c (t t ( ( U W U I R Dozením ( (3 do ( dotneme V c ( t t U R odkud R U V c( t t (3 R 60 Toná irál vřiče má odor ( 000 = 588 R 59 5 Předmět říčné velikoti cm je umítěn 36 cm od tředu tenké ojky jejíž oniková vzdálenot je 0 cm Určete vzdálenot obrzu od čočky říčné zvětšení říčnou velikot vznikléo obrzu Řešení: y = cm = 0 - m = 36 cm = m f = 0 cm = 00 - m =? =? y =? Obrzovou vzdálenot určíme ze zobrzovcí rovnice tenké čočky: odtud f f ( Příčné zvětšení lze vyjádřit vztem: ( f

5 5 Po dození ( do ( zíkáme vzt ro výočet říčnéo zvětšení f f Příčná velikot obrzu lyne z definice říčnéo zvětšení y y z čeož y = y ( Užitím (3 ve vztu ( dotneme Číelně: ( ( y ( f y y f 5 m = 50 - m m = 50 - m = 5 cm 5 y = 5 cm Vzdálenot obrzu od čočky je 5 cm velikot obrzu je 5 cm Obrz je řevrácený zvětšený říčné zvětšení je - 5/ (3 Dooručená litertur ŠANTAVÝ I TROJÁNEK A Fyzik - řírv k řijímcím zkouškám n vyoké školy Vydání Pr: Prometeu 000 ISBN LEPIL O kol Fyzik - Sbírk úlo z fyziky ro třední školy + CD Dotik 3 vydání Pr: Prometeu 03 ISBN SVOBODA E kol Přeled tředoškolké fyziky 5 řercovné vydání Pr: Prometeu 0 ISBN TARÁBEK P ČERVINKOVÁ P kol Odmturuj z fyziky Dotik vydání Brno: Didkti 006 ISBN BARTUŠKA K Sbírk řešenýc úlo z fyziky ro třední školy I II III IV Dotik vydání Pr: Prometeu BURIANOVÁ L kol Mecnik Příkldy 3 vydání Liberec: TUL 05 ISBN

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Hálkova 6, Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Hálkova 6, Liberec TECHNICKÁ UNIVERITA V LIBERCI Ktedr fyziky, Hálkov 6, 46 7 Liberec htt://www.f.tul.cz/kfy/bs_uf_r.html POŽADAVKY PRO PŘIJÍMACÍ KOUŠKY FYIKY Akdemický rok: 008/009 fkult edgogická Témtické okruhy. Kinemtik

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, 461 17 Liberec TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentká, 6 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOUŠKY Z FYZIKY Akademický rok: 0/0 Fakulta mechatroniky Studijní obor: Nanomateriály Tématické okruhy. Kinematika

Více

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec

TECHNICKÁ UNIVERZITA V LIBERCI Katedra fyziky, Studentská 2, Liberec TECHNICKÁ NIVERZITA V LIBERCI Katedrzik, Studentká, 46 7 Liberec POŽADAVKY PRO PŘIJÍMACÍ ZKOŠKY Z FYZIKY Akademický rok: 03/04 Útav zdravotnických tudií Studijní obor: Biomedicínká technika Tématické okruh

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

NEKONEČNÉ GEOMETRICKÉ ŘADY

NEKONEČNÉ GEOMETRICKÉ ŘADY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol NEKONEČNÉ GEOMETRICKÉ

Více

ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU

ROVNICE A NEROVNICE S ABSOLUTNÍ HODNOTOU Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrční číslo projektu: CZ..07/..00/.098 IV- Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol ROVNICE A NEROVNICE

Více

PROCESY V TECHNICE BUDOV cvičení 11,12

PROCESY V TECHNICE BUDOV cvičení 11,12 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV cvičení 11,12 Hana Charvátová, Dagmar Janáčová Zlín 201 Tento tudijní materiál vznikl za finanční odory Evrokého

Více

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí:

a + 1 a = φ 1 + φ 2 ; a je konvenční zraková vzdálenost. Po dosazení zobrazovací rovnice bez brýlí do zobrazovací rovnice s brýlemi platí: OKO ) Člověk vidí nejlépe, když předměty pozoruje ze vzdálenosti 2,5 cm. Jkého druhu je vd jeho ok jké čočky do brýlí mu doporučíte? Odpověď zdůvodněte výpočtem. = 2,5 cm = 0,25 m φ =? (D) Normální oko

Více

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm

12/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) = 2.10 3 m. 14/40 Harmonické vlnění o frekvenci 500 Hz a amplitudě výchylky 0,25 mm Vlnění a akustika 1/40 Zdroj kmitů budí počátek bodové řady podle vztahu u(o, t) =.10 3 m, 5π s 1 t. Napište rovnici vlnění, které se šíří bodovou řadou v kladném smyslu osy x rychlostí 300 m.s 1. c =

Více

8. ELEKTRICKÉ STROJE TOČIVÉ. Asynchronní motory

8. ELEKTRICKÉ STROJE TOČIVÉ. Asynchronní motory 8. ELEKTRICKÉ STROJE TOČIVÉ Asynchronní motory Řešené říklady Příklad 8.1 fázový asynchronní motor s kotvou nakrátko má tyto údaje: jmenovitý výkon P 1,5 kw jmenovité naájecí naětí: 1 400/0 V jmenovitý

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

Jednoduché optické přístroje

Jednoduché optické přístroje H Jednoduché optické přítroje Úkol :. Setrojte jednoduchý dalekohled a určete jeho zvětšení. Setrojte dalekohled e vzpřímeným obrazem 3. Setrojte mikrokop a určete jeho zvětšení Potup :. Setrojení dalekohledu

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA

TÉMA: Molekulová fyzika a tepelné děje v plynech VNITŘNÍ ENERGIE TĚLESA U.. vnitřní energie tělesa ( termodynamické soustavy) je celková kinetická energie neuspořádaně se pohybujících částic tělesa ( molekul, atomů, iontů) a celková potenciální energie vzájemné polohy těchto

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Datum vytvoření: 20. 3. 2014

Více

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6.

FYZIKA 1. ROČNÍK. Tématický plán. Hodiny: Září 7 Říjen 8 Listopad 8 Prosinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6. Tématický plán Hodiny: Září 7 Říjen 8 Litopad 8 Proinec 6 Leden 8 Únor 6 Březen 8 Duben 8 Květen 8 Červen 6 Σ = 73 h Hodiny Termín Úvod Kinematika 8 + 1 ½ říjen Dynamika 8 + 1 konec litopadu Energie 5

Více

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C)

KVADRATICKÉ ROVNICE A NEROVNICE (včetně řešení v C) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KVADRATICKÉ

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když

Více

É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.

V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok. 8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S

Více

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2

Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D = s v 2 Řešení úloh 1. kola 51. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů 1.a) Dobaprvníjízdynaprvníčtvrtinětratije 1 4 1 4 48 t 1 = = h= 1 v 1 60 60 h=1min anazbývajícíčátitrati t = 4 v = 4

Více

3. Dynamika. Obecné odvození: a ~ F a ~ m. Zrychlení je přímo úměrné F a nepřímo úměrné m. 3. 2. 1 Výpočet síly a stanovení jednotky newton. F = m.

3. Dynamika. Obecné odvození: a ~ F a ~ m. Zrychlení je přímo úměrné F a nepřímo úměrné m. 3. 2. 1 Výpočet síly a stanovení jednotky newton. F = m. 3. Dynamika Zabývá se říčinou ohybu (jak vzniká a jak se udržuje). Vše se odehrávalo na základě řesných okusů, vše shrnul Isac Newton v díle Matematické základy fyziky. Z díla vylývají 3 ohybové zákony.

Více

Sada 2 - MS Office, Excel

Sada 2 - MS Office, Excel S třední škol stvební Jihlv Sd 2 - MS Office, Excel 11. Excel 2007. Mtice, determinnty, soustvy lineárních rovnic Digitální učební mteriál projektu: SŠS Jihlv šblony registrční číslo projektu:cz.1.09/1.5.00/34.0284

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ

KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ

Více

PROCESY V TECHNICE BUDOV 3

PROCESY V TECHNICE BUDOV 3 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského

Více

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2

i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2 i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon: 28-2 U měi hexan() + hetan(2) ři

Více

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem

Měření napjatosti na povrchu tělesa Tenkostěnná trubka zatížená krutem a vnitřním přetlakem 4. lekce Měření npjosi n povrcu ěles Tenkosěnná rubk zížená kruem vniřním přelkem Obs: 4.1 Úvod 4. Kru enkosěnné válcové rubk 4.3 Tenkosěnná lková válcová nádob 3 4.4 Dvouosá npjos Morov kružnice 4 4.5

Více

PROCESNÍ INŽENÝRSTVÍ cvičení 4

PROCESNÍ INŽENÝRSTVÍ cvičení 4 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 4 Hana Charvátová, Dagmar Janáčová Zlín 01 Tento studijní materiál vznikl za finanční podpory Evropského sociálního

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma odiny Předmět očník /y/ CZ.1.07/1.5.00/34.0394 Y_32_INOACE_EM_1.02_měření odporu Střední odborná škola a Střední odborné učiliště, Hustopeče,

Více

Maturitní okruhy Fyzika 2015-2016

Maturitní okruhy Fyzika 2015-2016 Maturitní okruhy Fyzika 2015-2016 Mgr. Ladislav Zemánek 1. Fyzikální veličiny a jejich jednotky. Měření fyzikálních veličin. Zpracování výsledků měření. - fyzikální veličiny a jejich jednotky - mezinárodní

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN Identifikátor teriálu: ICT 0 Reitrční čílo rojektu CZ..07/.5.00/.0796 Náze rojektu zdělááe ro žiot Náze říjee odory OU lynárenké Prduie náze teriálu DUM Menik - Hydroenik - Hydrodyniké ýočty Anote Autor

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Datum vytvoření:

Více

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN

MIČKAL, Karel. Technická mechanika II: pro střední odborná učiliště. Vyd. 3., nezm. Praha: Informatorium, 1998c1990, 118 s. ISBN Identifikátor teriálu: ICT 0 Reitrční čílo rojektu Náze rojektu Náze říjee odory náze teriálu DUM Anote Autor Jzyk Očekáný ýtu Klíčoá lo Dru učenío teriálu Dru interktiity Cíloá kuin tueň ty zděláání Tyiká

Více

5.1. Úvod. [s] T = 5. Mení hydraulického rázu

5.1. Úvod. [s] T = 5. Mení hydraulického rázu 5. Mení hydrulického rázu 5. Mení hydrulického rázu 5.1. Úvod Pi neutáleném proudní kpliny v potrubí odpovídjí všem zmnám prtoku i zmny tlku. Zmny tlku vyvolné hydrulickým rázem mohou dohovt znných hodnot

Více

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6

VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní

Více

Laboratorní práce č. 3: Měření indukčnosti cívky pomocí střídavého proudu

Laboratorní práce č. 3: Měření indukčnosti cívky pomocí střídavého proudu Přírodní vědy moderně a interaktivně FYZIKA 5. ročník šestiletého a 3. ročník čtyřletého studia aboratorní práce č. 3: Měření indukčnosti cívky pomocí střídavého proudu ymnázium Přírodní vědy moderně

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE

EXPONENCIÁLNÍ A LOGARITMICKÁ FUNKCE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ

Více

Ž é é ť Ů ž š é Ž Ú Ú ť ď Ň Ě ž Ž Ú Ú ó é Ž é ó Ž ó š š Á é é é ž ó Ž Á ó ó É š š Ž ť Ú Ě Á ó ž ž é é é ž é ž š ť Ú Ž ť Ťť Ů Ú ť ď ď š š š Ž Ú Ú Ť ó š ó ó ó ó ó Ú Ť ó Ť ó Ž Ú Ě Ó ó Ú é ó ť Ý ů é Ž Ž Ý

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škol Vyšší odborná škol technická rno, Sokolská Šblon: Název: Tém: Autor: Inovce zkvlitnění výuky prostřednictvím ICT Součásti točivého přímočrého pohybu otoučové brzdy Ing. gdlen Svobodová

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.7/1.5./34.82 Zkvalitnění výuky prostřednitvím ICT III/2 Inovae a zkvalitnění výuky prostřednitvím ICT

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty

Větvené mazací systémy a jejich proudové poměry tribologicko-hydraulické aspekty OBHAJOBA DISETAČNÍ PÁCE Větvené mzcí systémy jejich proudové poměry triologicko-hydrulické spekty PhD student: Ing. Antonín Dvořák Školitel: Doc. NDr. Ing. Josef Nevrlý, CSc. Ústv konstruování VUT- BNO

Více

4.1.5 Práce v elektrickém poli, napětí

4.1.5 Práce v elektrickém poli, napětí 4.1.5 Práce v elektrickém poli, napětí Předpoklady: 4102, 4104, mechanická práce Př. 1: Spočítej ílu, která půobí náboj o velikoti 2 10 5 C, který e nachází v elektrickém poli o intenzitě 2500 N C 1. Nejjednodušší

Více

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí

1.3. Cíle vzdělávání v oblasti citů, postojů, hodnot a preferencí 1. Pojetí vyučovacího předmětu 1.1. Obecný cíl vyučovacího předmětu Obecným cílem je zprostředkovat základní fyzikální poznatky potřebné v odborném i dalším vzdělání a praktickém životě a také naučit žáky

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Funkce více proměnných

Funkce více proměnných Funkce více proměnných Funkce více proměnných Euklidův prostor Body, souřadnice, vzdálenost bodů Množina bodů, které mají od bodu A stejnou vzdálenost Uzavřený interval, otevřený interval Okolí bodu

Více

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody

Obsah. Perspektivy krajinného managementu - inovace krajinářských discipĺın. Jakob Steiner švýcarský matematik - geometr. vzorce, integrační metody Moment setrvčnosti průřezů - použití určitýc integrálů v ecnické mecnice Dn Říová, Pvl Kotásková Mendelu Brno Perspektiv krjinnéo mngementu - inovce krjinářskýc discipĺın reg.č. CZ..7/../5.8 Os Moment

Více

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba

Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 8. ročník M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro ZŠ a VG 7/2 (Prometheus) M.Macháček : Fyzika 8/1

Více

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1

ρ = 1000 kg.m -3 p? Potrubí považujte za tuhé, V =? m 3 δ =? MPa -1 a =? m.s ZADÁNÍ Č.1 ZADÁNÍ Č. Potrubí růměru a élky l je nalněno voou ři atmosférickém tlaku. Jak velký objem V je nutno vtlačit o otrubí ři tlakové zkoušce, aby se tlak zvýšil o? Potrubí ovažujte za tué, měrná motnost voy

Více

1.2.2 Síly II. Předpoklady: 1201

1.2.2 Síly II. Předpoklady: 1201 1.. Síly II Předoklady: 101 Oakování z minulé hodiny: Pohyb a jeho změny zůobují íly. Pro každou ravou ílu můžeme najít: ůvodce (těleo, které ji zůobuje), cíl (těleo, na které íla ůobí), artnerkou ílu

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem.

Pohyb a klid těles. Průměrnou rychlost pohybu tělesa určíme, když celkovou dráhu dělíme celkovým časem. Pohyb a klid těles Pohyb chápeme jako změnu polohy určitého tělesa vzhledem k jinému tělesu v závislosti na čase. Dráhu tohoto pohybu označujeme jako trajektorii. Délku trajektorie nazýváme dráha, označuje

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

1 1 3 ; = [ 1;2]

1 1 3 ; = [ 1;2] Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v

Více

Výukový materiál zpracovaný v rámci projektu EU peníze školám

Výukový materiál zpracovaný v rámci projektu EU peníze školám Výukový materiál zpracovaný v rámci projektu EU peníze školám Registrační číslo projektu: Šablona: Název materiálu: Autor: CZ..07/.4.00/.356 III/ Inovace a zkvalitnění výuky prostřednictvím ICT VY_3_INOVACE_0/07_Délka

Více

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83

7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83 Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8

Více

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217

KINEMATIKA. 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda. Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 KINEMATIKA 17. ROVNOMĚRNÝ POHYB PO KRUŽNICI II. Frekvence, perioda Mgr. Jana Oslancová VY_32_INOVACE_F1r0217 OPAKOVÁNÍ Otázka 1: Uveď příklady takových hmotných bodů, které vykonávají rovnoměrný pohyb

Více

ZDROJE TEPLA - KOTELNY

ZDROJE TEPLA - KOTELNY ZDROJE TEPLA - KOTELNY PŘEDNÁŠKA Č.. 10 SLOŽENÍ PALIV 1 NA FOSILNÍ PALIVA: evná, lynná, kaalná NA FYTOMASU: dřevo, rostliny, brikety, eletky SPALOVÁNÍ: chemická reakce k získání tela SPALNÉ SLOŽKY PALIV:

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STACIONÁRNÍ MAGNETICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D15_Z_OPAK_E_Stacionarni_magneticke_pole_T Člověk a příroda Fyzika Stacionární

Více

Clemův motor vs. zákon zachování energie

Clemův motor vs. zákon zachování energie Clemův motor vs. zákon zachování energie (c) Ing. Ladislav Kopecký, 2009 V učebnicích fyziky se traduje, že energii nelze ani získat z ničeho, ani ji zničit, pouze ji lze přeměnit na jiný druh. Z této

Více

Laboratorní práce č. 4: Měření kapacity kondenzátorů pomocí střídavého proudu

Laboratorní práce č. 4: Měření kapacity kondenzátorů pomocí střídavého proudu Přírodní vědy moderně a interaktivně FYZIKA. ročník šestiletého a. ročník čtyřletého studia G Gymnázium Hranice Laboratorní práce č. : Měření kapacity kondenzátorů pomocí střídavého proudu Přírodní vědy

Více

Laboratorní práce č. 3: Kmitání mechanického oscilátoru

Laboratorní práce č. 3: Kmitání mechanického oscilátoru Přírodní vědy oderně a interaktivně FYZIKA 4. ročník šetiletého a. ročník čtyřletého tudia Laboratorní práce č. : Kitání echanického ocilátoru G Gynáziu Hranice Přírodní vědy oderně a interaktivně FYZIKA

Více

Mechanika tuhého tělesa. Dynamika + statika

Mechanika tuhého tělesa. Dynamika + statika Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která

Více

FYZIKA I. Složené pohyby (vrh šikmý)

FYZIKA I. Složené pohyby (vrh šikmý) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar

Více

Studijní materiál KA 1

Studijní materiál KA 1 Z.1.07/1.1.14/01.0032 2012 2014 Studijní materiál KA 1 Předmět: Fyzika Ročník: 3. ročník Téma vyučovací hodiny: Řešení obvodů s kondenzátory Vypracoval: Mgr. Luboš Vejvoda Téma čivo je zaměřeno na vysvětlení

Více

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz

Proudění viskózní tekutiny. Renata Holubova renata.holubova@upol.cz Název Tematický celek Jméno a e-mailová adresa autora Cíle Obsah Pomůcky Poznámky Proudění viskózní tekutiny Mechanika kapalin Renata Holubova renata.holubova@upol.cz Popis základních zákonitostí v mechanice

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice

Více

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT

CZ.1.07/1.5.00/34.0880 Digitální učební materiály www.skolalipa.cz. III/ 2- Inovace a zkvalitnění výuky prostřednictvím ICT Název školy: Číslo a název projektu: Číslo a název šablony klíčové aktivity: STŘEDNÍ ODBORNÁ ŠKOLA a STŘEDNÍ ODBORNÉ UČILIŠTĚ, Česká Lípa, 8. října 707, příspěvková organizace CZ.1.07/1.5.00/34.0880 Digitální

Více

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm *

3. V případě dvou na sebe kolmých posunutí o velikostech 3 cm a 4 cm obdržíme výsledné posunutí o velikosti a) 8 cm b) 7 cm c) 6 cm d) 5 cm * Fyzika 1 2009 Otázky za 2 body 1. Mezi tavové veličiny patří a) teplo b) teplota * c) práce d) univerzální plynová kontanta 2. Krychle má hranu o délce 2 mm. Jaký je její objem v krychlových metrech? a)

Více

MATEMATIKA vyšší úroveň obtížnosti

MATEMATIKA vyšší úroveň obtížnosti MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAIVD11C0T01 ILUSTRAČNÍ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Exponenciální funkce, rovnice a nerovnice

Exponenciální funkce, rovnice a nerovnice Eonenciální unkce, rovnice a nerovnice Mamut s korovou omáčkou (Eonenciální unkce) a) AN; b) NE; c) NE; d) AN; e) NE; ) NE; g) AN; h) NE a),; b),; c) ; d) ; e) ; ) e + b) - - - D()= R; H ()=( ; ) ; P neeistuje

Více

VY_32_INOVACE_G 21 01

VY_32_INOVACE_G 21 01 Názv a adra školy: třdní škola růylová a uělcká, Oava, říěvková oranizac, Prakova 99/8, Oava, 7460 Názv oračnío rorau: OP zdělávání ro konkurncconot, oblat odory.5 Ritrační čílo rojktu: CZ..07/.5.00/4.09

Více

Vzdělávací obor fyzika

Vzdělávací obor fyzika 7.ročník Kompetence sociální a personální 1. LÁTKY A Žák umí měřit některé fyzikální veličiny Měření veličin Člověk a měření síly 5. TĚLESA (F-9-1-01) délka, objem, hmotnost, teplota, síla, čas technika

Více

Technická univerzita v Liberci

Technická univerzita v Liberci Technická univerzita v Liberci FAKULTA PŘÍRODOVĚDNE-HUMANITNÍ A PEDAGOGICKÁ Katedra: Studijní program: Studijní obor: Sociálních studií a speciální pedagogiky Sociální práce Penitenciární péče ZÁVISLOST

Více

HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST

HMOTNÝ BOD, POHYB, POLOHA, TRAJEKTORIE, DRÁHA, RYCHLOST Škola: Autor: Šablona: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek VY_32_INOVACE_MGV_F_SS_1S1_D02_Z_MECH_Hmotny_bod_r ychlost_pl Člověk a příroda Fyzika Mechanika

Více

Základy optického zobrazení

Základy optického zobrazení Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě

Více

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)

E = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah) GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu

Více

Alžběta Smetanová. Datum: červen 2012. Zakázka č.: Počet stran: 37. Výtisk číslo:

Alžběta Smetanová. Datum: červen 2012. Zakázka č.: Počet stran: 37. Výtisk číslo: Územní plám města Liberec - návrh Rozptylová studie Zpracoval: Spolupráce: Mgr. Radomír Smetana (držitel osvědčení o autorizaci podle zákona č. 86/2002 Sb., č.osvědčení 2358a/740/03 z 4. 8. 2003, prodlouženo

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

. Maximální rychlost lze určit z brzdného napětí V. je náboj elektronu.

. Maximální rychlost lze určit z brzdného napětí V. je náboj elektronu. Učební text k přednášce UFY8 Vnější fotoefekt a Entenovo pojetí fotonu Fotoelektrcký jev (fotoefekt) byl objeven na základě zjštění, že e znek po ovětlení ultrafalovým zářením nabíjí kladně. Čaem e ukázalo,

Více

M - Logaritmy a věty pro počítání s nimi

M - Logaritmy a věty pro počítání s nimi M - Logritmy věty pro počítání s nimi Určeno jko učení text pro studenty dálkového studi shrnující text pro studenty denního studi. VARIACE 1 Tento dokument yl kompletně vytvořen, sestven vytištěn v progrmu

Více

Termodynamický popis chemicky reagujícího systému

Termodynamický popis chemicky reagujícího systému 5. CHEMICKÉ ROVNOVÁHY Všechny chemcké rekce směřují k dynmcké rovnováze, v níž jsou řítomny jk výchozí látky tk rodukty, které všk nemjí jž tendenc se měnt. V řdě řídů je všk oloh rovnováhy tk osunut ve

Více

02. Typy šikmých, sklonitých střech

02. Typy šikmých, sklonitých střech S třední škola stavební Jihlava STŘECHY ŠIKMÉ 02. Typy šikmých, sklonitých střech Digitální učební materiál projektu: SŠS Jihlava - šablony Ing. Jaroslava Lorencová 2012 Projekt je spolufinancován Evropským

Více

Zpráva o průběhu bakalářského přijímacího řízení pro akademický rok 2014/15 na Fakultě stavební ČVUT v Praze

Zpráva o průběhu bakalářského přijímacího řízení pro akademický rok 2014/15 na Fakultě stavební ČVUT v Praze 1. Informace o přijímacích zkouškách pro studijní programy Stavební inženýrství - B3651 Architektura a stavitelství - B3502 Geodézie a kartografie - B3645 Civil Engineering - B3648 Stavitelství B3609 Metrologie

Více