1.5.5 Potenciální energie

Rozměr: px
Začít zobrazení ze stránky:

Download "1.5.5 Potenciální energie"

Transkript

1 .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem odiny je tedy samostatná orientace studentů v dosazování srávnýc odnot. Potřebují na to jediné dostatek času. Není roto žádnou tragédií, okud nestinete oslední tři říklady, okud se studenti v ředcozím růběu odiny s dosazováním srávnýc odnot. Minulá odina: Jedním ze zůsobů, jak dodat kuličce energii, bylo její vyzvednutí nad stůl. Zvednutá kulička může sadnout, běem ádu na ní ůsobí gravitační síla, která koná ráci a zvětšuje kinetickou energii kuličky. Kinetická energie se nebere z ničeo kulička zvednutá nad stůl má dru energie, který souvisí s její oloou. Tento dru energie mají v gravitačním oli všecny zvednuté ředměty. Tento dru energie souvisí s oloou, nazývá se roto otenciální (oloová) energie. Udává se v Joulec. Př. : Představ si, jak Ti na lavu adají z výšky různé ředměty. Najdi veličiny, na kterýc závisí velikost otenciální energie těcto ředmětů řed začátkem ádu, a najdi vzorec ro velikost otenciální energie. Velikost otenciální energie závisí na: motnosti ředmětu m (těžší ředmět má více energie), výšce, ve které se ředmět nacází (ve větší výšce má více energie), síle gravitačnío ole (na Měsíci je gravitace slabší a roto nebudou zranění od adajícíc ředmětů tak vážná), sílu ole vyjadřujeme omocí gravitačnío zryclení g. vzorec E = mg. Pedagogická oznámka: Sílu gravitačnío ole je většinou třeba studentům nabídnout tím, že jim řiomenete, aby se ve svýc úvaác nezaměřovali ouze na Zemi. Vzorec vyadá velmi rozumně. Práce, kterou může díky ádu z výšky vykonat gravitační síla: W = Fs = Fg = mg = E. Př. : Stavební výta zvedl do výšky cily o motnosti 50 kg. Cily tak získaly otenciální energii 0000 J. Do jaké výšky výta cily zvedl? Jakou ráci výta ři zvedání ciel vykonal? Zvednuté cily mají otenciální energii: E E = mg = = m = 6,7 m mg 50 0 Práce, kterou výta vykonal běem zvedání, se musí rovnat získané otenciální energii W = E = 0000 J

2 Výta zvedl cily do výšky 6,7 m a vykonal ři tom ráci 0000 J. Př. 3: Ve třídě, jejíž odlaa se nacází 8 m nad zemí, zvedl učitel ze stolu vysokéo 80 cm míč o motnosti 350g do výšky 60 cm nad stůl. Urči otenciální energii míče. Záleží na tom, kam by necal učitel míč sadnout. Míč by adal na stůl: je výška nad stolem = 60 cm = 0, 6 m E = mg = 0,35 0 0,6 J =,J. Míč by adal na odlau: je výška nad odlaou = cm =, 4 m E = mg = 0,35 0, 4J = 4,9 J. Míč by adal na zem: je výška nad zemí = cm = 9, 4 m E = mg = 0,35 0 9, 4J = 3,9 J. Pedagogická oznámka: Většina studentů oužije rvní dosazení, ale najdou se i takoví, kteří oužijí dosazení drué nebo dokonce i třetí. Možnost diskuse je zaručena vždy. Většinou už ři řešení říkladu se studenti tají, kterou odnotu mají oužít. Odovídám, že mají řešit říklad dle svéo nejlešío svědomí. Který z výsledků je srávný? Všecny výsledky jsou srávné. Při výočtu kinetické energie jsme získali různé výsledky v závislosti na tom, ze které vztažné soustavy jsme ředmět sledovali (vyazování ivní lave z vlaku). Při výočtu otenciální energie získáme různé výsledky v závislosti na tom, ze kteréo místa měříme výšku, ve které se ředmět nacází. Místu, odkud výšku měříme, říkáme místo s nulovou ladinou otenciální energie. Tělesa nacázející se v gravitačním oli mají otenciální (oloovou) energii. Potenciální energie tělesa se vždy vztauje ke dvěma bodům: oloze tělesa, místu, kde bycom otenciální energii ovažovali za nulovou (místo s nulovou ladinou otenciální energie). Ve výšce nad nulovou ladinou otenciální energie je otenciální energie tělesa o motnosti m určena vztaem: E = mg. Vzta latí ouze, když můžeme zanedbat změny velikosti gravitačnío zryclení (na Zemi v malýc vzdálenostec od ovrcu). Př. 4: Učebna má stro ve výšce 350 cm. Učitel vysoký 8 cm zvedl do výšky 60 cm nad odlaou třídnici o motnosti 50 g. Urči otenciální energii třídnice, okud se ladina nulové otenciální energie nacází: a) na úrovni odlay, b) na stole vysokém 75 cm, c) ve výšce 8 cm nad odlaou, d) ve výšce strou. Vysvětli význam znamének u jednotlivýc výsledků. a) Hladina nulové otenciální energie se nacází na úrovni odlay. Třídnice je 60 cm nad odlaou =,6m E = mg = 0,5 0,6J =,4J b) Hladina nulové otenciální energie se nacází na stole vysokém 75 cm.

3 Třídnice je 85 cm nad stolem = 0,85m E = mg = 0,5 0 0,85J =,3J c) Hladina nulové otenciální energie se nacází ve výšce 8 cm nad odlaou. Třídnice je cm od zadanou výškou 0,m = E ( ) = mg = 0,5 0 0, J = 0,3J d) Hladina nulové otenciální energie se nacází ve výšce strou. Třídnice je 90 cm od stroem,9 m E = mg = 0,5 0,9 J =,9 J = ( ) Záorné znaménko u odnoty otenciální energie znamená, že ředmět má nižší energii, než by měl v nulové ladině, a museli bycom mu energii dodat, aby se na nulovou ladinu dostal. Př. 5: Z výšky 30 cm nad stolem vysokým 75 cm sadne na zem kulička o motnosti 00 g. Urči její otenciální energii na očátku a na konci ádu. Urči změnu její otenciální energie běem ádu. Za ladinu nulové otenciální energie ovažuj odlau. m = 00g, E =?, E =?, =? E Počáteční otenciální energie: kulička je 05cm nad odlaou =,05m E = mg = 0, 0,05J =,05J. Konečná otenciální energie: kulička je na zemi E = 0. E = E E = 0,05J =,05J Kulička měla očáteční otenciální energii,05 J, konečnou otenciální energii 0 J. Při ádu se její otenciální energie změnila o,05 J. Záorné znaménko změny otenciální energie ři ádu je srozumitelné. Při ádu se otenciální energie kuličky zmenšuje. Př. 6: Z výšky 30 cm nad stolem vysokým 75 cm sadne na zem kulička o motnosti 00 g. Urči její otenciální energii na očátku a na konci ádu. Urči změnu její otenciální energie běem ádu. Za ladinu nulové otenciální energie ovažuj desku stolu. m = 00g, E =?, E =?, =? E Počáteční otenciální energie: kulička je 30 cm nad stolem = 0,3m E = mg = 0, 0 0,3J = 0,3J. Konečná otenciální energie: kulička je 70 cm od stolem = 0,75m ( ) E = mg = 0, 0 0,75 J = 0,75J. E = E E = 0,75 0,3J =,05J Kulička měla očáteční otenciální energii 0,3 J, konečnou otenciální energii 0,75 J. Při ádu se její otenciální energie změnila o,05 J. 3

4 Z ředcozíc dvou říkladů je vidět, že změna otenciální energie je na rozdíl o samotné otenciální energie nezávislá na volbě nulové ladiny otenciální energie. Je to logické změna výšky nezáleží na tom, odkud měříme. Př. 7: Když se malé děti učí codit, velice často adají. Přesto se jim většinou nic vážnéo nestane a rozodně nejsou následky jejic ádů tak vážné, jako když sadne ři cůzi dosělý člověk. Vysvětli. Běem ádu se otenciální energie člověka řemění na energii oybovou. Kinetické energie se ak tělo zbaví nárazem do země nebo jinéo ředmětu. Množství energie (a tedy i následky ádu), kteréo se tělo nárazem zbavuje, je tedy závislé na množství otenciální energie stojícío člověka. Potřebné veličiny odadneme. Jako výšku odadujeme výšku těžiště člověka nad zemí. m = kg = 50cm = 0,5m m = 70 kg = 90cm = 0,9m E E d d = m g = 0 0,5J = 60J d d d = m g = ,9 = 630J D D D D Z výsledků je zřejmé, že energie, která zůsobuje náraz je ři ádu dosěléo člověka asi desetkrát větší než ři ádu dítěte. V odobném oměru jsou i následky ádu. Pedagogická oznámka: Rozdíl má i biologické říčiny, naříklad kostra dětí je daleko ružnější než kostra dosělýc. D Př. 8: Basketbalový míč musí odle ravidel slňovat následující odmínku: Pokud řádně nauštěný míč ustíme volně z výšky 70 cm, sám se odrazí do výšky minimálně 50 cm. Vyočtěte absolutní a rocentuální ztrátu mecanické energie míče ři skoku. Hmotnost míče o velikosti 7 se může oybovat v rozmezí g (ro jednodušší výočty zvol motnost 600 g). = 70cm =,7 m, = 50cm, m = 600g = 0,6 kg, E =? E = mg = 0,6 0,7 J = 0,J E = mg = 0,6 0,5J = 9 J E = E E = 9 0,J =, J Procentuální ztráta 00% 0, J x%, J x, x =, 00 =,8% 00 0, 0, Míč ztratil otenciální energii, J, což je,8% otenciální energie, kterou měl na začátku. Výočet úbytku otenciální energie si můžeme usnadnit, když osuneme nulovou ladinu otenciální energie do výšky 50 cm. Pro očáteční odnotu otenciální energie ak latí: = 0cm = 0, m E = mg = 0,6 0 0,J =,J. Protože konečná odnota otenciální energie je nulová, ined vidíme, že latí E = E E = 0,J =, J. Problém je s rocentuální ztrátou energie. Při tomto řístuu by byla storocentní, což evidentně neodovídá smyslu říkladu. Jde o dobrý říklad zadání, které sice není fyzikálně zcela korektní, ale obecně je vcelku srozumitelné. 4

5 Př. 9: Těleso o motnosti 0 kg je uštěno z výšky m a zaryje se do loubky,3 cm, Vyočtěte růměrný odor ůdy. m = 0 kg = m s =, 3cm = 0, 03m F =? V říkladu neuvažujeme odor vzducu. Poloová energie tělesa se řemění na oybovou a ta se ři zarývání do země řemění na ráci. E = W mg mg = Fs F = s mg 0 0 F = = = 8700 N s 0,03 Průměrný odor ůdy je 8700 N. Př. 0: Při skocíc do vody z výšky m ronikne skokan rukama do loubky m. Do jaké loubky roniknou jeo ruce, když bude skákat z dvojnásobné výšky? Odor vzducu zanedbej a ředokládej, že odor vody bude v obou říadec stejný. = x = 0,m x =? Před skokem má skokan otenciální energii, ta se běem letu řemění na kinetickou energii, která se ři rorážení vody řemění na ráci. Práce, kterou vykoná ři rorážení vody se tedy musí rovnat jeo otenciální energii řed skokem. F Při rvním skoku: E = W mg = Fx = x mg F Při druém skoku: E = W mg = Fx = x mg Pravé strany obou rovnic se rovnají, musejí se rovnat i levé. = x = x x x x = x m 4 m = = Při skoku z dvojnásobné výšky roniknou skokanovy ruce do dvojnásobné loubky. Poznámka: Výsledek říkladu je zřejmý z too, že otenciální energie je římo úměrná výšce tělesa. Ve dvojnásobné výšce má skokan dvojnásobnou energii, může ve vodě vykonat dvojnásobnou ráci a tím roniknout do dvojnásobné loubky. Př. : Jaká bude oravdová loubka, do které roniknou skokanovi ruce ve skutečnosti v orovnání s výsledkem vyočteným v ředcozím říkladě. Hloubka bude méně než dvojnásobná. Při ryclejším oybu brzdí skokana větší odor vzducu a ztratí větší část energie než ři skoku z menší výšky. Srnutí: Potenciální energie je určena výškou, motností a silou gravitačnío ole. Její velikost také ovlivňuje volba nulové ladiny otenciální energie. 5

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE DOPLŇKOVÉ TEXTY BB1 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ ENERGIE Obsa Energie... 1 Kinetická energie... 1 Potenciální energie... Konzervativní síla... Konzervativníu silovéu oli odovídá dru otenciální

Více

1.5.7 Zákon zachování mechanické energie I

1.5.7 Zákon zachování mechanické energie I .5.7 Záon zacoání mecanicé energie I Předolady: 506 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα. Předmět, terý se oybuje ryclostí má ineticou energii E = m. Předmět, terý se nacází e ýšce nad ladinou

Více

1.5.2 Mechanická práce II

1.5.2 Mechanická práce II .5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a

Více

7.5.13 Rovnice paraboly

7.5.13 Rovnice paraboly 7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,

Více

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka:

1.5.9 Zákon zachování mechanické energie III Předpoklady: Dokonale pružný centrální ráz dvou koulí Pedagogická poznámka: .5.9 Zákon zacování mecanické energie III Předpoklady: 58 Dokonale pružný centrální ráz dvou koulí v v m m Speciální typ srážky, situace známá z kulečníku: dokonale pružný: při srážce se neztrácí energie,

Více

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.

7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny. 75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST

F4 SÍLA, PRÁCE, ENERGIE A HYBNOST F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60

KLUZNÁ LOŽISKA. p s. Maximální měrný tlak p Max (MPa) Střední měrný tlak p s (Mpa) Obvodová rychlost v (m/s) Součin p s a v. v 60 KLUZNÁ LOŽIKA U PM oužití ro uložení ojnic, klikovýc a vačkovýc řídelů, vaadel a kol rovodů, Zde dnes výradně kluná ložiska s řívodem tlakovéo maacío oleje. Pro rvní návr se oužívá nejjednoduššíc metod

Více

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A

Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_4_Mechanická práce a energie Ing. Jakub Ulmann 4 Mechanická práce a energie 4.1 Mechanická práce 4.2

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

Konstrukce kladkostroje. Výpočet výkonu kladkostroje.

Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Název: Konstrukce kladkostroje. Výpočet výkonu kladkostroje. Tematický celek: Mechanická práce a energie. Úkol: 1. Kladkostroj druhy a využití. 2. Navrhněte konstrukci robota - jeřábu s kladkostrojem.

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

STRUKTURA A VLASTNOSTI PLYNŮ

STRUKTURA A VLASTNOSTI PLYNŮ I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly

Více

Sbírka A - Př. 1.1.5.3

Sbírka A - Př. 1.1.5.3 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít

Více

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210

( ) ( ) 1.2.11 Tření a valivý odpor II. Předpoklady: 1210 Tření a valivý odpor II Předpoklady: Př : Urči zrychlení soustavy závaží na obrázku Urči vyznačenou sílu, kterou působí provázek na závaží Hmotnost kladek i provázku zanedbej Koeficient tření mezi závažími

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

Popis Pohybu. Signální verze učebnice, Prodos 2006.

Popis Pohybu. Signální verze učebnice, Prodos 2006. Pás dopravníku na obrázku je v poybu. To naznačuje i šipka, kterou pan kreslíř namaloval k převodovému kolu. Zdá se, že v poybu jsou i kočka s myší, vždyť uánějí o sto šest. Proč by se ale na ně zedník

Více

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou

Numerické výpočty proudění v kanále stálého průřezu při ucpání kanálu válcovou sondou Konference ANSYS 2009 Numerické výočty roudění v kanále stálého růřezu ři ucání kanálu válcovou sondou L. Tajč, B. Rudas, a M. Hoznedl ŠKODA POWER a.s., Tylova 1/57, Plzeň, 301 28 michal.hoznedl@skoda.cz

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Zákon zachování energie - příklady

Zákon zachování energie - příklady DUM Základy přírodních věd DUM III/2-T3-13 Téma: ZZE - příklady Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Zákon zachování energie - příklady 1.) Jakou má polohovou energii

Více

1.2.2 Síly II. Předpoklady: 1201

1.2.2 Síly II. Předpoklady: 1201 1.. Síly II Předoklady: 101 Oakování z minulé hodiny: Pohyb a jeho změny zůobují íly. Pro každou ravou ílu můžeme najít: ůvodce (těleo, které ji zůobuje), cíl (těleo, na které íla ůobí), artnerkou ílu

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora

Pokud není uvedeno jinak, uvedený materiál je z vlastních zdrojů autora Číslo projektu Číslo materiálu Název školy Autor Název Téma odiny Předmět očník /y/ CZ.1.07/1.5.00/34.0394 Y_32_INOACE_EM_1.02_měření odporu Střední odborná škola a Střední odborné učiliště, Hustopeče,

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

Základy elektrických pohonů, oteplování,ochlazování motorů

Základy elektrických pohonů, oteplování,ochlazování motorů Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

1.4.3 Zrychlující vztažné soustavy II

1.4.3 Zrychlující vztažné soustavy II 143 Zrychlující vztažné outavy II Předoklady: 1402 Př 1: Vaón SVARME rovnoměrně zrychluje dorava Rozeber ilové ůobení a tav čidel na nátuišti z ohledu MOBILů Čidla na nátuišti (ohled MOBILŮ ze zrychlujícího

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

Práce, energie, výkon

Práce, energie, výkon I N V E S T I C E D O R O Z V O E V Z D Ě L Á V Á N Í TENTO PROEKT E SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laoratorní práce č. 6 Práce,, výon Pro potřey projetu

Více

4 Ztráty tlaku v trubce s výplní

4 Ztráty tlaku v trubce s výplní 4 Ztráty tlaku v trubce s výlní Miloslav Ludvík, Milan Jahoda I Základní vztahy a definice Proudění kaaliny či lynu nehybnou vrstvou částic má řadu alikací v chemické technologii. Částice tvořící vrstvu

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i

ÍKLAD Rychlost st ely = 4 gramy = 1 tuny = 20,4 cm zákon pohybová energie náboje polohovou energii t p e el e n l ou en e e n r e gi r i PŘÍKLAD Rychlost střely lze určit tak, že se vystřelí zblízka do dostatečně těžkého pytle s pískem, který je zavěšen na několikametrovém laně. Změří se, do jaké výšky vystoupalo těžiště T pytle. Odtud

Více

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207

6.2.8 Vlnová funkce. ψ nemá (zatím?) žádný fyzikální smysl, fyzikální smysl má funkce. Předpoklady: 060207 6..8 Vlnová funkce ředpoklady: 06007 edagogická poznámka: Tato hodina není příliš středoškolská. Zařadil jsem ji kvůli tomu, aby žáci měli alespoň přibližnou představu o tom, jak se v kvantové fyzice pracuje.

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek

MATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot

Více

Obr. 5 Plovoucí otoč - nerovnovážný stav

Obr. 5 Plovoucí otoč - nerovnovážný stav Te International Journal of TRANSPORT & LOGISTICS Medzinárodný časopis DOPRAVA A LOGISTIKA STABILITA PLOVOUCÍ PÁSOVÉ DOPRAVNÍ TRASY ISSN 45-07X Leopold Hrabovský Klíčová slova: plovoucí pásový dopravník,

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova

GEOMETRICKÉ PROJEKCE. Petra Surynková, Yulianna Tolkunova GEOMETRICKÉ PROJEKCE S VYUŽITÍM 3D POČÍTAČOVÉHO MODELOVÁNÍ Petra Surynková, Yulianna Tolkunova Článek ojednává o realizovaných metodách inovace výuky deskritivní geometrie na Matematicko-fyzikální fakultě

Více

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL

VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL VÝUKOVÝ MATERIÁL Identifikační údaje školy Číslo projektu Název projektu Číslo a název šablony Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská

Více

11. TUHOST TECHNOLOGICKÉ SOUSTAVY A PŘESNOST A KVALITA OBROBENÉHO POVRCHU

11. TUHOST TECHNOLOGICKÉ SOUSTAVY A PŘESNOST A KVALITA OBROBENÉHO POVRCHU 11. TUHOST TECHNOLOGICKÉ SOUSTAVY A PŘESNOST A KVALITA OBROBENÉHO POVRCHU Po úsěšném a aktivním absolvování této KAPITOLY Budete umět: Vyjmenovat druhy odchylek ři obrábění Posat co zůsobují odchylky zaříčiněné

Více

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2

KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2 Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním

Více

1.1.4 Měření pohybu, změna veličiny

1.1.4 Měření pohybu, změna veličiny 1.1.4 Měření pohybu, změna veličiny Předpoklady: 1103 Většina fyzikálních kursů začíná stejně studiem pohybu - asi nejnápadnějšího fyzikálního jevu. Tato část fyziky se nazývá kinematika (hmotného bodu).

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar

Matematika Kvadratická rovnice. Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar Kvadratická rovnice Kvadratická rovnice je matematický zápis, který můžeme (za pomoci ekvivalentních úprav) upravit na tvar ax 2 + bx + c = 0. x neznámá; v kvadratické rovnici se vyskytuje umocněná na

Více

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

PRÁCE A ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie PRÁCE A ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Práce Pokud síla vyvolává pohyb Fyzikální veličina ( odvozená ) značka: W základní jednotka: Joule ( J ) Vztah pro výpočet práce: W = F s Práce

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

Hoblování a obrážení

Hoblování a obrážení Hoblování a obrážení Charakteristické ro tyto metody obrábění je odebírání materiálu jednobřitým nástrojem hoblovacím res. obrážecím nožem, řičemž hlavní ohyb je římočarý vratný a vedlejší ohyb osuv je

Více

Komparace Value at Risk a Expected Shortfall v rámci Solvency II

Komparace Value at Risk a Expected Shortfall v rámci Solvency II 7. mezinárodní konference Finanční řízení odniků a finančních institucí Ostrava Komarace Value at Risk a Exected Shortfall v rámci Solvency II Ingrid Petrová 1 Abstrakt Řízení rizik je oměrně novou discilínou,

Více

VLHKÝ VZDUCH STAVOVÉ VELIČINY

VLHKÝ VZDUCH STAVOVÉ VELIČINY VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve

Více

1.2.11 Tření a valivý odpor I

1.2.11 Tření a valivý odpor I 1..11 Tření a valivý odpor I Předpoklady: 11 Př. 1: Do krabičky od sirek ležící na vodorovném stole strčíme malou silou. Krabička zůstane stát. Vysvětli. Mezi stolem a krabičkou působí tření, které se

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

... teplo pro Vás. technický ceník

... teplo pro Vás. technický ceník ... teplo pro Vás tecnický ceník Platnost cen od 1.3.2011 04/2015 Nový závod KORADO, a.s. je v současné době svým tecnologickým vybavením a organizačním uspořádáním nejmodernějším závodem na výrobu radiátorů

Více

Stanovení měrného tepla pevných látek

Stanovení měrného tepla pevných látek 61 Kapitola 10 Stanovení měrného tepla pevných látek 10.1 Úvod O teple se dá říci, že souvisí s energií neuspořádaného pohybu molekul. Úhrnná pohybová energie neuspořádaného pohybu molekul, pohybu postupného,

Více

1.8.3 Hydrostatický tlak

1.8.3 Hydrostatický tlak .8.3 Hydrostatický tlak Předpoklady: 00802 Z normální nádoby s dírou v boku voda vyteče, i když na ni netlačí vnější síla. Pokus: Prázdná tetrapacková krabice, několik stejných děr v boční stěně postupně

Více

Výkon střídavého proudu, účiník

Výkon střídavého proudu, účiník ng. Jaromír Tyrbach Výkon střídavého proudu, účiník odle toho, kterého prvku obvodu se výkon týká, rozlišujeme u střídavých obvodů výkon činný, jalový a zdánlivý. Ve střídavých obvodech se neustále mění

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici

7. ODE a SIMULINK. Nejprve velmi jednoduchý příklad s numerických řešením. Řešme rovnici 7. ODE a SIMULINK Jednou z často používaných aplikací v Matlabu je modelování a simulace dynamických systémů. V zásadě můžeme postupovat buď klasicky inženýrsky (popíšeme systém diferenciálními rovnicemi

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

Velkoměsto Pravidla hry. Masao Suganuma

Velkoměsto Pravidla hry. Masao Suganuma Velkoěsto Pravidla hry Masao Suganua Úvod sushi bar Toto rozšíření se skládá ze dvou oddělených odulů tvořených saostatnýi balíčky karet. K oběa z nich je vždy zaotřebí i základní hra. Dooručujee Vá nejrve

Více

Mechanická práce, výkon a energie pro učební obory

Mechanická práce, výkon a energie pro učební obory Variace 1 Mechanická práce, výkon a energie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1.

Více

Minia D18 SVODIČE PŘEPĚTÍ SVD SVD

Minia D18 SVODIČE PŘEPĚTÍ SVD SVD SVD SVODIČE PŘEPĚTÍ SVD K ochraně elektrických sítí a zařízení řed řeětím vzniklým neřímým úderem blesku. K ochraně řed řeětím vzniklým atmosférickými oruchami a od sínacích ochodů v sítích. K ochraně

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více

3. Optimalizace pomocí nástroje Řešitel

3. Optimalizace pomocí nástroje Řešitel 3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,

Více

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1

Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1 Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci

Více

ÚSTAV ORGANICKÉ TECHNOLOGIE

ÚSTAV ORGANICKÉ TECHNOLOGIE LABORATOŘ OBORU I ÚSTAV ORGANICKÉ TECHNOLOGIE (111) B Měření secifického ovrchu sorbentů Vedoucí ráce: Doc. Ing. Bohumír Dvořák, CSc. Umístění ráce: S31 1 MĚŘENÍ SPECIFICKÉHO POVRCHU SORBENTŮ 1. CÍL PRÁCE

Více

Geometrická optika. Omezení paprskových svazků v optické soustavě OII. C aperturní. clona C C 1. η 3. σ k. π π π p p

Geometrická optika. Omezení paprskových svazků v optické soustavě OII. C aperturní. clona C C 1. η 3. σ k. π π π p p Geometricá otia Omezení arsových svazů v oticé soustavě erturní clona - omezuje nejvíce svaze arsů z osového bodu ředmětu Vstuní uila π - je obrazem aerturní clony vytvořeným částí O I Výstuní uila π -

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební

Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FREMR doc. Ing. Martina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební stavební obzor 9 10/2014 115 Analýza chování hybridních nosníků ze skla a oceli Ing. Tomáš FRER doc. Ing. artina ELIÁŠOVÁ, CSc. ČVUT v Praze Fakulta stavební Článek oisuje exerimentální analýzu hybridních

Více

... teplo pro Vás. technický ceník NOVÝ SORTIMENT. Platnost cen od 1.3.2011

... teplo pro Vás. technický ceník NOVÝ SORTIMENT. Platnost cen od 1.3.2011 ... teplo pro Vás tecnický ceník NOVÝ SORTIMENT Platnost cen od 1.3.2011 04/2011 Nový závod KORADO, a.s. je v současné době svým tecnologickým vybavením a organizačním uspořádáním nejmodernějším závodem

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

Englis h. DEMINERALIZAČNÍ FILTR Návod k použití. Dem 32 1

Englis h. DEMINERALIZAČNÍ FILTR Návod k použití. Dem 32 1 Dem 32 DEMINERALIZAČNÍ FILTR Návod k použití Dem 32 1 Dem 32 DEMINERALIZAČNÍ FILTR NÁVOD K POUŽITÍ Vážený zákazníku, Ctěli bycom Vám tímto poděkovat za zakoupení našeo Demineralizačnío filtru Dem 32. Veškeré

Více

Obsah ARCHIMEDŮV ZÁKON. Studijní text pro řešitele FO a ostatní zájemce o fyziku Marta Chytilová

Obsah ARCHIMEDŮV ZÁKON. Studijní text pro řešitele FO a ostatní zájemce o fyziku Marta Chytilová ARCHIMEDŮV ZÁKON tudijní text pro řešitele FO a ostatní zájemce o fyziku Marta Cytilová Obsa 1 Vlastnosti kapalnéo tělesa v klidu na povrcu Země 2 2 Arcimédův zákon 6 3 Výslednice sil působícíc na uvolněné

Více

1. Vyhledávací stromy

1. Vyhledávací stromy 1. Vyledávací stromy V této kapitole budeme postaveni před následující problém. Je dáno nějaké univerzum prvků U a naším úkolem bude navrnout datovou strukturu, která udržuje konečnou množinu prvků X U.

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec

ISŠT Mělník. Integrovaná střední škola technická Mělník, K učilišti 2566, 276 01 Mělník Ing.František Moravec SŠT Mělník Číslo rojektu Označení materiálu ázev školy Autor Tematická oblast Ročník Anotace CZ..07/.5.00/34.006 VY_3_OVACE_H..05 ntegrovaná střední škola technická Mělník, K učilišti 566, 76 0 Mělník

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 24/5 na magisterský studijní rogram PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím zadání vyberte srávnou odověď zakroužkováním

Více

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ

2.4.6 Hookův zákon. Předpoklady: 2405. Podíváme se ještě jednou na začátek deformační křivky. 0,0015 0,003 Pro hodnoty normálového napětí menší než σ .4.6 Hookův zákon Předpoklady: 405 Podíváme se ještě jednou na začátek deformační křivky. 500 P 50 0,0015 0,00 Pro hodnoty normálového napětí menší než σ U je normálové napětí přímo úměrné relativnímu

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více