Ze zadaných požadavkù navrhneme klasickou teorií pøenosovou funkci Ha (p) vzorového

Rozměr: px
Začít zobrazení ze stránky:

Download "9.1. 2. Ze zadaných požadavkù navrhneme klasickou teorií pøenosovou funkci Ha (p) vzorového"

Transkript

1 9.1 Základní vlastnosti IIR filtrù byly uvedeny v odst Je významné, že pøi jejich návrhu mùžeme vycházet z charakteristik vzorového analogového filtru požadovaných vlastností, jehož parametry transformujeme z analogové oblasti do digitální oblasti. Výhodnost takového postupu spoèívá v tom, že pro návrh analogových filtrù existuje øada velmi dobøe propracovaných postupù, jako napø. pro Butterworthovy, Èebyševovy, Cauerovy, Besselovy, eliptické ajiné analogové filtry. Postup návrhu IIR filtru mùžeme rozdìlit do ètyø krokù: 1. Formulace požadavkù na vzorový analogový filtr, obvykle na jeho frekvenèní charakteristiku nebo na impulzní odezvu. 2. Ze zadaných požadavkù navrhneme klasickou teorií pøenosovou funkci Ha (p) vzorového analogového filtru. 3. Pøenosovou funkci Ha (p) analogového filtru transformujeme podle použité metody návrhu zp-roviny do z-roviny na systémovou funkci H(z) digitálního filtru. Získaná funkce H(z) již specifikuje koeficienty ok a bk navrhovaného digitálního filtru. 4. Pro kontrolu mùžeme ze systémové funkce H(z) substitucí z = ejfjj stanovit odpovídající frekvenèní charakteristiku H(m) takto navrženého digitálruno filtru a porovnat ji s výchozími požadavky. Existuje nìkolik standardních metod návrhu IIR filtrù, které se liší zpùsobem transformace Ha(P) na H(z), pøi zachování stability filtru. V jednoduchých pøípadech lze rekurzivní filtr navrhnout intuitivnì na základì døíve uvedených poznatkù o vlivu pozice nul a pólù na frekvenèní charakteristiku -viz pøíklady v odst.6.4. Pøed uvedením standardních metod návrhu!ir filtrù si pøipomeneme základní vztahy pro pøenosovou funkci Ha (p) analogových filtrù: -112-

2 , 2. (9.1) nebo Ha(p)=!!.SJ!2=K (p-zt)(p-z2) (P-ZM) A(p) (p -Pt) (p -P2)"" (p -P) kde ak, bk jsou koeficienty pøíslušné diferenciální rovnice, Zl' Z2, PI, P2, P jsou póly pøenosové funkce Ha (p) V komplexní p-rovinì. Z M jsou nuly a Pro stabilitu analogového filtru je nutné, aby všechny póly Pk jeho pøenosové funkce Ha (p) ležely v levé polorovinì. Uvedeme ještì souvislost H(z) a Ha(P) ve spektrální oblasti. 1. Pro systémovou funkci H(z) platí: H(z) = Z[h(n)]. Pro z = ejiii jednotkové kružnici (r = 1 ) v komplexní z-rovinì bude: tj. pro body ležící na cožje frekvenèní charakteristika digitálního filtru. Pro pøenosovou funkci Ha(P) platí: Ha(P) = L[h(t)]. Pro P = io, tj. pro body ležící na imaginární ose io v p-rovinì bude: což je frekvenèní charakteristika analogového filtru, kde.q je úhlová frekvence v [rad/s] na rozdíl od {ij [rad]. Dále ještì frekvenèní charakteristika Ha (.Q) analogového filtru má aperiodický prùbìh (není periodická). Podle (9.3) a (9.4) se body z imaginární osy j.q v p-rovinì transformují (mapují) na jednotkovou kružnici (r = 1 ) v z-rovinì a obrácenì. Existuje tedy pøímá souvislost mezi frekvencemi v tìchto dvou rovinách (ovšem H(iii) je periodická, kdežto Ha(.Q) je aperiodická). 9.2 Metoda aproximace derivací diferencemi Již v odst. 5.5 byl uveden elementární pøíklad transformace analogového filtru (RC obvodu) na digitální strukturu s použitím aproximace derivace:

3 b) a) Derivaci na levé stranì si pøedstavíme jako výstup analogového systému s pøenosovou funkcí H~(P) podle obr. 9.1a). _~~r-~ ~~ ~L_~ ~ y(n)-y(n-1).--!j~~~~[~~-~=::::!:=.. Obr. 9.1 K aproximaci derivace diferencerni Pøenosová funkce H~(P) je dána pomìrem L-obrazu vstupu, tj. Ya(p), kl-obrazu výstupu, tj. pya(p), takže bude: H~(P) = p Tento analogový systém aproximujeme digitálním systémem se systémovou funkcí H'(z) podle obr. 9.1b). Systémová funkce H'(z) je dána pomìrem Z-obrazu vstupu, tj. Y(z), k Z- obrazu výstupu, tj.! T ~(z) -z-i Y(z)l takže bude: H'(z) = 1- z-i T Tato systémová funkce aproximuje pøenosovou funkci H~(p). Tedy z dané H~(P) pøejdeme na H'(z) substitucí p= I-z' T -1 Obecnì, bude-li zadána pøenosová funkce Ha (P) vzorového analogového filtru, která má tvar podle (9.1), potom systémová funkce H(z) odpovídajícího digitálního filtru bude: Z rovnice (9.9) dostaneme pro z: 1z=l-=-p"T (9.10) Tato rovnice vyjadøuje, jak se body p transformují z p-roviny do bodù z v z-rovinì (mapuje p- rovinu do z-roviny)

4 ~ --~ Zvolíme-li p = j.q, pak analýzou zjistíme, že imaginární osa j.q v p-rovinì se takto mapuje na kružnici o polomìru 0,5 se støedem v bodì z = 0,5 v z-rovinì a levá polorovina do plochy této kružnice -viz obr.9.2. j.qt joo p-rovina ~,--- Imzt jednotková kružnice ~, z-rovina '.' ~ o O' I, 1 Rez J.Q ~ -JOO ;/,/ Obr. 9.2 Mapování osy j.q zp-roviny do z-roviny pøi aproximaci derivací diferencemi Z uvedeného vyplývá: -bude-li vzorový analogový filtr stabilní, bude stabilní i takto navržený digitální filtr (transformace zachovává stabilitu) frekvenèní charakteristika takto navrženého digitálního filtru bude odlišná, nebo pro její zachování by bylo tøeba, aby se osa io transformovala na jednotkovou kružnici. Pouze v malé oblasti v okolí bodu z = 1 (tj. v oblasti nízkých frekvencí m«7t/2) se budou body na malé kružnici pøibližovat bodùm na jednotkové kružnici, takže v této oblasti frekvencí se bude také H(m) digitálního filtru pøibližovat Ha (O) analogového filtru. To by mohlo vyhovìt návrhu filtrù typu DP, nikoliv PP nebo HP. 9.3 Metoda impulznì invariantní transformace Tato metoda zachovává hodnoty impulzní odezvy h(t) analogového filtru. Impulzní odezva h(n) navrženého digitálního filtru totiž vychází z jejích vzorkù h(n): h(n) = h(t)1 t=nt n=o,1,2, (9.11 ) kde T je vzorkovací interval. Tyto hodnoty h(n) ovšem nemùžeme pokládat za koeficienty digitálního filtru, nebo h(t) má teoreticky neomezenou délku. Postup návrhu bude následující. Ze zadaných požadavkù na filtr navrhneme nìkterou známou metodou pøenosovou funkci Ha (p) vzorového analogového filtru ve tvaru: _11,-

5 (9.12) kde Zk jsou nuly a Pk jsou póly vzorového analogového filtru v p-rovinì. Za pøedpokladu, že tato Ha (p) neobsahuje násobné póly, vyjádøíme Ha (p) rozkladem v parciální zlomky, který bude ve tvaru: AJ Ha(P) =-:~ Az++... p-pz (9.13) kde Ak jsou reálné nebo komplexní konstanty (podle povahy pólu Pk). Tím jsme vlastnì analogový filtr vyjádøili ve tvaru paralelní kombinace elementárních filtrù s jednoduchými (reálnými nebo komplexními) póly Pk -viz obr.9.3. Obr. 9.3 Rozklad Ha (p) na paralelní kombinaci elementárních filtrù Tuto Ha (p) budeme nyní transformovat do digitální oblasti na systémovou funkci H (z). Hledaný vztah pro H(z) odvodíme následovnì. Impulzní odezva hk (f) jednoho elementárního analogového filtru na obr. 9.3 je dána inverzní LT: a hk(t) = L-1 = Ak epkt hk(t)=o pro «o pro t~o (9.14) Výsledná impulzní odezva uvedené paralelní kombinace bude dána sumací odezev jednotlivých elementárních filtrù: h(t) = Lhk(t) = LAk epkt k=l k=l (9.15) -116-

6 1 Impulzní odezva odpovídajícího impulznì invariantního filtru pak bude dána podle (9.12) diskrétními hodnotami (vzorky) h(n): h(n) = LAk k=l epknt n~o (9.16) Její Z-transformací již získáme odpovídající systémovou funkci H(z) navrhovaného digitálního filtru: CX> H(z) = L h(n) z-n = L LAk epknt z-n= LAk L(z-l epkt )n n=o n=o k=l k=l n=o (9.17) S použitím vzorce pro sumaci souètu neomezené geometrické øady dostaneme: H(z) = LAk k=l 1- z-i epkt =LAk k=l z z -epkt (9.18) Podle (9.18) bude systémová funkce digitálního filtru obsahovat jednoduchých (reálných nebo komplexních) pólù k = 1,2, (9.19) kde Pk jsou jednoduché póly vzorového analogového filtru. Dále bude obsahovat nul v poèátku. Ze znalosti Ha(P) ve tvaru podle (9.13) tedy mùžeme ihned vyjádøit vztah pro H(z) podle (9.18). Obdobnì jako na obr. 9.3 pøedstavuje také sumace (9.18) paralelní kombinaci elementárních digitálních filtrù se systémovými funkcemi: k=1,2, Bude-li H k (z) v sumaci (9.18) obsahovat komplexní pól zk = exp(pkt), pak ovšem musí tato sumace obsahovat také Hk(z) s komplexnì sdruženým pólem. Obì takové èásti mùžeme slouèit do jedné dílèí systémové funkce, obsahující dva komplexnì sdružené póly. Realizace výsledné H(z) mùže odpovídat paralelnímu tvaru dílèích H k (z) podle (9.18). ebo mùžeme vztah (9.18) upravit na sériový tvar (souèet zlomkù pøevedeme na spoleèného jmenovatele). Pøíklad 9.1 Pøenosová funkce vzorového analogového filtru je dána ve tvaru: Ha(P) = 0,2 + p (0,2+p)

7 -j4t Zøejmì obsahuje nulu v bodì p = -0,2 a pár komplexnì sdružených pólù Pl,2 = -0,2 :t j 4. ejprve rozložíme Ha (p) na parciální zlomky: medanou H(z) získáme podle vztahu (9.18): 0,5 1 -z-i e-o,2t e Zøejmì obsahuje dva komplexnì sdružené póly ZI,2 = e-o,2t:tj4t.mùžeme tedy dva èleny H(z) upravit do jediného èlenu: v Podle vztahu (9.19) mùžeme vyjádøit souvislost mezi body v z-rovinì a body v p-rovinì: z = exp(pt). Zavedeme-li substituci z = r exp(jm) a p = O' + j,q" dostaneme: r = exp(at) a m =,Q,T. Z toho vyplývá, že pro O' < O bude O < r < 1, takže levá polorovina p-roviny se bude mapovat do plochy jednotkové kružnice v z-rovinì. Dále pro O' = O bude r = 1, takže imaginární osa j,q, se bude mapovat na jednotkovou kružnici. Tato metoda tedy zachovává stabilitu filtru a zaruèuje shodu impulzních odezev digitálního filtru a vzorového analogového filtru. A však souvislost mezi frekvenèními charakteristikami Ha(Q) a H(iiJ) nebude tak jednoznaèná. Spojité impulzní odezvì h(t) pøísluší pøenosová funkce Ha(.Q) = F[h(t)] -viz obr.9.4. o Ov Q Obr. 9.4 Impulzní odezva a frekvenèní charakteristik analogového filtru Potom vzorkované h(n) = h(nt) bude podle vzorkovacího teorému -viz odstavce 2.3 a 3.1 -pøíslušet periodické opakování Ha(Q) s periodou Qv = 2n/T (Ha(Q) je spektrum impulzní odezvy h(t)). Bude tedy analogicky ke vztahu (2.17) pro frekvenèní charakteristiku digitálního filtru platit: -llr-

8 00 H(ilJ) = H(.Q.T) = Fv LHa k=-oo (.Q. + k.qv) (9.20) Pak ovšem budou platit také poznatky z odst. 3.1 o pøekrývání (aliasing) sousedních prùbìhù Ha (O + k.o.v) -viz obr.9.5. Výsledná frekvenèní charakteristika bude dána souètem pøekrývajících se èástí, takže bude odlišná od Ha (O). Tento negativní vliv mùžeme zmenšit volbou menší hodnoty T, tj. hustìjším vzorkováním odezvy h(t). - H(ro ):H(OT) Ha(O-Ov)/ Ha(O-20v) ~~~/"--~~,,,/a ( o ) JI'. \: ~ \: ~,/"Y, '/,,~, " " '-. I I ---I-r-- o 1t 21t 31t ro=.gt Q o 1/2.o.v Oy Ov.Q Obr. 9.5 Vzorky impulzní odezvy h(n) a odpovídající frekvenèní charakteristika H(iJJ) 9.4 Metoda bilineární transformace Odvození transformaèního vztahu mezi komplexními promìnnými p a z vychází z diferenciální rovnice analogového filtru, kde se derivace neaproximuje diferencí jako v odst. 9.2, ale derivace se integruje a integrál se aproximuje podle trojúhelníkového pravidla. Po úpravì pak získáme transformaèní vztah ve tvaru: 2 (I-Z-l ) 2 z-i P=r ~=t =r;+i (9.21) nazývaný bilineámí transformace, kde T je èinitel úmìrnosti. Bude-li zadána pøenosová funkce Ha(P) vzorového analogového filtru, pak systémovou funkci H(z) odpovídajícího digitálního filtru získáme substitucí: H(z) = Ha(P) 2 z-i p=-- T z+1 (9.22) Abychom poznali vlastnosti bilineární transformace, zavedeme v rov. (9.21) substituci z = r exp(jm) a p = a + j.q. Z výsledku zjistíme, že pro a < O bude r < O a pro a = O bude r = 1, takže levá polorovina z p-roviny se bude mapovat do plochy jednotkové kružnice -119-

9 v z-rovinì a body z imaginární osy j.o. v p-rovinì se budou mapovat do bodù z = exp(jm) na jednotkové kružnici v z-rovinì. Stabilní analogový filtr se tak bude transformovat na stabilní digitální filtr. Uvedenou substitucí z = exp(j m) a p = j.o. (O" = O) do rov. (9.21) získáme vztah mezi body na ose j.o. v p-rovinì a body z = exp(jm) na jednotkové kružnici v z-rovinì, tj. mezi frekvencemi.o. a m : Bude tedy platit: "A 21-z-1 p = J~~ =-=-= 21-exp(-jiiJ) "2 J-tgiiJ T 1+z-1 T l+exp(-jiij) T >.Q =rtg2.ar nebo iij = 2 arctg. (9.23) 2 kde je.q v [rad/s] a iij v [rad]. Závislost mezi frekvencemi.qt a iij podle rov. (9.23) je graficky znázornìna na obr Obr. 9.6 Závislost mezi frekvencemi analogového a digitálního filtru pøi bilineární transformaci V oblasti nižších hodnot iij je závislost témìø lineární, ale se stoupající hodnotou iij se stává silnì nelineární. Dále celý frekvenèní interval O ~.Q ~ 00 analogového filtru se u digitálního filtru komprimuje na koneèný interval odpovídající pùlkružnici jednotkové kružnice v z- rovinì, tj. na interval O ~ iij ~ 7t. Potlaèení vlivu této nelinearity vyžaduje trochu pozmìnìný postup návrhu proti pøedchozím metodám. ávrh vychází ze specifikace požadavkù na frekvenèní charakteristiku digitálního filtru. Specifikují se významné frekvence, napø. frekvence vymezující pøechodové oblasti frekvenèní charakteristiky digitálního filtru -viz pøíklad na obr.9.7 v dolní èásti, kde jsou specifikovány frekvence iij1, iij2 [rad]

10 Podle vztahu (9.23) se k tìmto frekvencím urèí odpovídající frekvence ni, n2 v analogové oblasti -viz graf vlevo nahoøe na obr.9. 7, kde je tato transformace znázornìna graficky s využitím závislosti mezi (jj a.o. podle obr.9.6. Podle hodnot takto získaných frekvencí.o. i se potom navrhne nìkterou známou metodou pøenosová funkce Ha (p) vzorového analogového filtru. Obr. 9.7 K souvislosti mezi frekvenèními charakteristikami H(iiJ) a H(.aT) a stanovení významných frekvencí u metody bilineámí transformace S použitím bilineární transformace podle rov. (9.22) již získáme systémovou funkci H(z) navrhovaného digitálního filtru, u kterého budou zaruèeny jako významné frekvence ml' m2. Tato metoda návrhu IIR filtrù nemá omezení jako pøedchozí metody, je použitelná pro filtry typu DP, PP, a HP, vyluèuje pøekrývání (aliasing) frekvenèních charakteristik a zachovává stabilitu filtru. Avšak impulzní odezva takto navrženého digitálního filtru neodpovídá výchozímu analogovému filtru

7.1. Číslicové filtry IIR

7.1. Číslicové filtry IIR Kapitola 7. Návrh číslicových filtrů Hraniční kmitočty propustného a nepropustného pásma jsou ve většině případů specifikovány v[hz] společně se vzorkovacím kmitočtem číslicového filtru. Návrhové algoritmy

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Diskretizace. 29. dubna 2015

Diskretizace. 29. dubna 2015 MSP: Domácí příprava č. 3 Vnitřní a vnější popis diskrétních systémů Dopředná Z-transformace Zpětná Z-transformace Řešení diferenčních rovnic Stabilita diskrétních systémů Spojování systémů Diskretizace

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému

Flexibilita jednoduché naprogramování a přeprogramování řídícího systému Téma 40 Jiří Cigler Zadání Číslicové řízení. Digitalizace a tvarování. Diskrétní systémy a jejich vlastnosti. Řízení diskrétních systémů. Diskrétní popis spojité soustavy. Návrh emulací. Nelineární řízení.

Více

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností

Automatizace je proces při němž je řídicí funkce člověka nahrazována činností Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné

Více

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015

Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček. 8. přednáška 11MSP pondělí 20. dubna 2015 Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MSP pondělí 20. dubna 2015 verze: 2015-04-14 12:31

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Antonín Kamarýt Opakujeme si MATEMATIKU 3 doplnìné vydání Pøíprava k pøijímacím zkouškám na støední školy Pøíruèka má za úkol pomoci ètenáøùm pøipravit se k pøijímacím zkouškám na støední školu Pøíruèka

Více

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S

v trojúhelníku P QC sestrojíme vý¹ky na základnu a jedno rameno, patu vý¹ky na rameno oznaèíme R a patu na základnu S Øe¹ení 5. série IV. roèníku kategorie JUNIOR RS-IV-5-1 Pro na¹e úvahy bude vhodné upravit si na¹í rovnici do tvaru 3 jx 1 4 j+2 = 5 + 4 sin 2x: Budeme uva¾ovat o funkci na pravé stranì na¹í rovnice, tj.

Více

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem

Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem Abychom se vyhnuli užití diferenčních sumátorů, je vhodné soustavu rovnic(5.77) upravit následujícím způsobem I 1 = 1 + pl 1 (U 1 +( )), = 1 pc 2 ( I 1+( I 3 )), I 3 = pl 3 (U 3 +( )), 1 U 3 = (pc 4 +1/

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

Extrémy funkce dvou proměnných

Extrémy funkce dvou proměnných Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže

Více

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně

Lineární a adaptivní zpracování dat. 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Lineární a adaptivní zpracování dat 2. SYSTÉMY a jejich popis v časové doméně a frekvenční doméně Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály a systémy Vlastnosti systémů Systémy

Více

ÚPGM FIT VUT Brno,

ÚPGM FIT VUT Brno, Systémy s diskrétním časem Jan Černocký ÚPGM FIT VUT Brno, cernocky@fit.vutbr.cz 1 LTI systémy v tomto kursu budeme pracovat pouze se systémy lineárními a časově invariantními. Úvod k nim jsme viděli již

Více

Inverzní Laplaceova transformace

Inverzní Laplaceova transformace Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy

Přijímací zkouška na navazující magisterské studium Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Přijímací zkouška na navazující magisterské studium 013 Studijní program Fyzika obor Učitelství fyziky matematiky pro střední školy Studijní program Učitelství pro základní školy - obor Učitelství fyziky

Více

Vlastnosti členů regulačních obvodů Osnova kurzu

Vlastnosti členů regulačních obvodů Osnova kurzu Osnova kurzu 1) Základní pojmy; algoritmizace úlohy 2) Teorie logického řízení 3) Fuzzy logika 4) Algebra blokových schémat 5) Statické vlastnosti členů regulačních obvodů 6) Dynamické vlastnosti členů

Více

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti

Lineární a adaptivní zpracování dat. 3. SYSTÉMY a jejich popis ve frekvenční oblasti Lineární a adaptivní zpracování dat 3. SYSTÉMY a jejich popis ve frekvenční oblasti Daniel Schwarz Osnova Opakování: systémy a jejich popis v časové oblasti Fourierovy řady Frekvenční charakteristika systémů

Více

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů

základní vlastnosti, používané struktury návrhové prostředky MATLAB problém kvantování koeficientů A0M38SPP - Signálové procesory v praxi - přednáška 4 2 Číslicové filtry typu FIR a IIR definice operace filtrace základní rozdělení FIR, IIR základní vlastnosti, používané struktury filtrů návrhové prostředky

Více

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.

Více

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1

y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1 ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což

Více

Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Úvod do zpracování signálů

Úvod do zpracování signálů 1 / 25 Úvod do zpracování signálů Karel Horák Rozvrh přednášky: 1. Spojitý a diskrétní signál. 2. Spektrum signálu. 3. Vzorkovací věta. 4. Konvoluce signálů. 5. Korelace signálů. 2 / 25 Úvod do zpracování

Více

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali

Úvod. Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali NEURČITÝ INTEGRÁL Úvod Integrování je inverzní proces k derivování Máme zderivovanou funkci a integrací získáme původní funkci kterou jsme derivovali Umět pracovat s integrálním počtem Je důležité pro

Více

Matematika II Lineární diferenciální rovnice

Matematika II Lineární diferenciální rovnice Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice

Více

PODROBNÝ OBSAH 1 PØENOSOVÉ VLASTNOSTI PASIVNÍCH LINEÁRNÍCH KOMPLEXNÍCH JEDNOBRANÙ A DVOJBRANÙ... 9 1.1 Úvod... 10 1.2 Èasové charakteristiky obvodu pøechodné dìje... 10 1.3 Pøechodné charakteristiky obvodù

Více

Laplaceova transformace

Laplaceova transformace Laplaceova transformace Modelování systémů a procesů (11MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 5. přednáška 11MSP pondělí 23. března

Více

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky

X31EO2 - Elektrické obvody 2. Kmitočtové charakteristiky X3EO - Elektrické obvody Kmitočtové charakteristiky Doc. Ing. Petr Pollák, CSc. Letní semestr 5/6!!! Volné šíření není povoleno!!! Fázory a spektra Fázor harmonického průběhu Û m = U m e jϕ ut) = U m sinωt

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

Předmět A3B31TES/Př. 13

Předmět A3B31TES/Př. 13 Předmět A3B31TES/Př. 13 PS 1 1 Katedra teorie obvodů, místnost č. 523, blok B2 Přednáška 13: Kvantování, modulace, stavový popis PS Předmět A3B31TES/Př. 13 květen 2015 1 / 28 Obsah 1 Kvantování 2 Modulace

Více

Při návrhu FIR filtru řešíme obvykle následující problémy:

Při návrhu FIR filtru řešíme obvykle následující problémy: Návrh FIR filtrů Při návrhu FIR filtru řešíme obvykle následující problémy: volba frekvenční odezvy požadovaného filtru; nejčastěji volíme ideální charakteristiku normovanou k Nyquistově frekvenci, popř.

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou

Funkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí

Více

teorie elektronických obvodů Jiří Petržela obvodové funkce

teorie elektronických obvodů Jiří Petržela obvodové funkce Jiří Petržela obvod jako dvojbran dvojbranem rozumíme elektronický obvod mající dvě brány (vstupní a výstupní) dvojbranem může být zesilovač, pasivní i aktivní filtr, tranzistor v některém zapojení, přenosový

Více

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni

KTE/TEVS - Rychlá Fourierova transformace. Pavel Karban. Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni KTE/TEVS - Rychlá Fourierova transformace Pavel Karban Katedra teoretické elektrotechniky Fakulta elektrotechnická Západočeská univerzita v Plzni 10.11.011 Outline 1 Motivace FT Fourierova transformace

Více

Matematika II Funkce více promìnných

Matematika II Funkce více promìnných Matematika II Funkce více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Euklidovský n-rozmìrný prostor Def. Euklidovským

Více

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita

Lineární a adpativní zpracování dat. 3. Lineární filtrace I: Z-transformace, stabilita Lineární a adpativní zpracování dat 3. Lineární filtrace I: Z-transformace, stabilita Daniel Schwarz Investice do rozvoje vzdělávání Osnova Opakování: signály, systémy, jejich vlastnosti a popis v časové

Více

Teorie měření a regulace

Teorie měření a regulace Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace 22.z-3.tr ZS 2015/2016 2015 - Ing. Václav Rada, CSc. TEORIE ŘÍZENÍ druhá část tématu předmětu pokračuje. oblastí matematických pomůcek

Více

Filtrace v prostorové oblasti

Filtrace v prostorové oblasti prostorová oblast (spatial domain) se vztahuje k obrazu samotnému - metody zpracování obrazu jsou zalo¾eny na pøímou manipulaci s pixely v obraze transformaèní oblast (transform domain) - metody zpracování

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

Inverzní z-transformace. prof. Miroslav Vlček. 25. dubna 2013

Inverzní z-transformace. prof. Miroslav Vlček. 25. dubna 2013 Modelování systémů a procesů 25. dubna 2013 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Obsah Inverzní z-transformace 1 Inverzní z-transformace 2 Metody výpočtu inverzní z-transformace Zpětná

Více

Vlastnosti a modelování aditivního

Vlastnosti a modelování aditivního Vlastnosti a modelování aditivního bílého šumu s normálním rozdělením kacmarp@fel.cvut.cz verze: 0090913 1 Bílý šum s normálním rozdělením V této kapitole se budeme zabývat reálným gaussovským šumem n(t),

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ

ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ ZÁKLADY AUTOMATICKÉHO ŘÍZENÍ 1. týden doc. Ing. Renata WAGNEROVÁ, Ph.D. Ostrava 2013 doc. Ing. Renata WAGNEROVÁ, Ph.D. Vysoká škola báňská

Více

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY

Lineární a adaptivní zpracování dat. 1. ÚVOD: SIGNÁLY a SYSTÉMY Lineární a adaptivní zpracování dat 1. ÚVOD: SIGNÁLY a SYSTÉMY Daniel Schwarz Investice do rozvoje vzdělávání Osnova Úvodní informace o předmětu Signály, časové řady klasifikace, příklady, vlastnosti Vzorkovací

Více

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky

MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH. Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky MĚŘENÍ A ANALÝZA ELEKTROAKUSTICKÝCH SOUSTAV NA MODELECH Petr Kopecký ČVUT, Fakulta elektrotechnická, Katedra Radioelektroniky Při návrhu elektroakustických soustav, ale i jiných systémů, je vhodné nejprve

Více

Maturitní otázky z předmětu MATEMATIKA

Maturitní otázky z předmětu MATEMATIKA Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti

Více

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1.

Ideální frekvenční charakteristiky filtrů podle bodu 1. až 4. v netypických lineárních souřadnicích jsou znázorněny na následujícím obrázku. U 1. Aktivní filtry Filtr je obecně selektivní obvod, který propouští určité frekvenční pásmo, zatímco ostatní frekvenční pásma potlačuje. Filtry je možno realizovat sítí pasivních součástek, tj. rezistorů,

Více

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19 Matematika 1 Jiří Fišer 19. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 19. září 2016 1 / 19 Zimní semestr KMA MAT1 1 Úprava algebraických výrazů. Číselné obory. 2 Kombinatorika, základy teorie

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII

PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.

Více

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika

Vzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro

Více

Kniha je urèena všem zájemcùm o teorii elektrických obvodù Poslouží jako pøíruèka pro praxi, ale i jako uèebnice pro studenty støedních a vysokých ško

Kniha je urèena všem zájemcùm o teorii elektrických obvodù Poslouží jako pøíruèka pro praxi, ale i jako uèebnice pro studenty støedních a vysokých ško Jiøí Myslík Elektrické obvody (Pøíruèka pro praxi a uèebnice pro støední a vysoké školy) Kniha je urèena všem zájemcùm o teorii elektrických obvodù Poslouží jako pøíruèka pro praxi, ale i jako uèebnice

Více

Digitalizace převod AS DS (analogový diskrétní signál )

Digitalizace převod AS DS (analogový diskrétní signál ) Digitalizace signálu v čase Digitalizace převod AS DS (analogový diskrétní signál ) v amplitudě Obvykle převod spojité předlohy (reality) f 1 (t/x,...), f 2 ()... připomenutí Digitalizace: 1. vzorkování

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Vlastnosti IIR filtrů:

Vlastnosti IIR filtrů: IIR filtry Vlastnosti IIR filtrů: Výhody: jsou výrazně nižšího řádu než Fir filtry se stejnými vlastnostmi a z toho vyplývá že mají: Nevýhody: nižší výpočetní složitost v porovnání s Fir filtrem kratší

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

P P P ) Mw Mj = = + ,P H,P H H,P H H. ww j ww j ww = + , P H j

P P P ) Mw Mj = = + ,P H,P H H,P H H. ww j ww j ww = + , P H j Vážení zákazníci dovolueme si Vás upozornit že na tuto ukázku knihy se vztahuí autorská práva tzv. copyright. To znamená že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupuícího aby ètenáø

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

1 Modelování systémů 2. řádu

1 Modelování systémů 2. řádu OBSAH Obsah 1 Modelování systémů 2. řádu 1 2 Řešení diferenciální rovnice 3 3 Ukázka řešení č. 1 9 4 Ukázka řešení č. 2 11 5 Ukázka řešení č. 3 12 6 Ukázka řešení č. 4 14 7 Ukázka řešení č. 5 16 8 Ukázka

Více

1 Zpracování a analýza tlakové vlny

1 Zpracování a analýza tlakové vlny 1 Zpracování a analýza tlakové vlny 1.1 Cíl úlohy Prostřednictvím této úlohy se naučíte a zopakujete: analýzu biologických signálů v časové oblasti, analýzu biologických signálů ve frekvenční oblasti,

Více

Frekvenční charakteristiky

Frekvenční charakteristiky Frekvenční charakteristiky EO2 Přednáška Pavel Máša ÚVODEM Frekvenční charakteristiky popisují závislost poměru amplitudy výstupního ku vstupnímu napětí a jejich fázový posun v závislosti na frekvenci

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

5.3. Implicitní funkce a její derivace

5.3. Implicitní funkce a její derivace Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3

Příklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3 Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme

Více

II. 3. Speciální integrační metody

II. 3. Speciální integrační metody 48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou

Více

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Laplaceova transformace. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Laplaceova transformace Martin Bohata Katedra matematiky FEL ČVUT v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Laplaceova transformace 1 / 18 Definice Definice Laplaceovou

Více

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.

Test M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0. Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke

Více

Západočeská univerzita. Lineární systémy 2

Západočeská univerzita. Lineární systémy 2 Západočeská univerzita FAKULTA APLIKOVANÝCH VĚD Lineární systémy Semestrální práce vypracoval: Jan Popelka, Jiří Pročka 1. květen 008 skupina: pondělí 7-8 hodina 1) a) Jelikož byly měřící přípravky nefunkční,

Více

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b,

Mezi elementární komplexní funkce se obvykle počítají tyto funkce: f(z) = az + b, Elementární funkce Mezi elementární komplení funkce se obvykle počítají tyto funkce:. Lineární funkce Lineární funkce je funkce tvaru f(z) az + b, kde a a b jsou konečná komplení čísla. Její derivace je

Více

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony.

Nelineární obvody. V nelineárních obvodech však platí Kirchhoffovy zákony. Nelineární obvody Dosud jsme se zabývali analýzou lineárních elektrických obvodů, pasivní lineární prvky měly zpravidla konstantní parametr, v těchto obvodech platil princip superpozice a pro analýzu harmonického

Více

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F.

r Odvoď te přenosovou funkci obvodů na obr.2.16, je-li vstupem napě tí u 1 a výstupem napě tí u 2. Uvaž ujte R = 1Ω, L = 1H a C = 1F. Systé my, procesy a signály I - sbírka příkladů NEŘ EŠENÉPŘ ÍKADY r 223 Odvoď te přenosovou funkci obvodů na obr26, je-li vstupem napě tí u a výstupem napě tí Uvaž ujte Ω, H a F u u u a) b) c) u u u d)

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce

Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních

Více

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů

Dodatky k FT: 1. (2D digitalizace) 2. Více o FT 3. Více k užití filtrů. 7. přednáška předmětu Zpracování obrazů Dodatky k FT:. (D digitalizace. Více o FT 3. Více k užití filtrů 7. přednáška předmětu Zpracování obrazů Martina Mudrová 4 Pořízení digitálního obrazu Obvykle: Proces transformace spojité předlohy (reality

Více

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička

Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2. Plzeň, 2008 Pavel Jedlička Západočeská univerzita v Plzni Fakulta aplikovaných věd KKY/LS2 Semestrální práce Plzeň, 2008 Jan Krčmář Pavel Jedlička 1 Měřený model Je zadán systém (1), který budeme diskretizovat použitím funkce c2d

Více

3/ %,1'(& 83'1 &( &3 )XQNFH. + ; ; ; ; / ; ; + ; EH]H]PuQ\

3/ %,1'(& 83'1 &( &3 )XQNFH. + ; ; ; ; / ; ; + ; EH]H]PuQ\ Vážení zákazníci, dovolujeme si Vás upozornit, že na tuto ukázku knihy se vztahují autorská práva, tzv. copyright. To znamená, že ukázka má sloužit výhradnì pro osobní potøebu potenciálního kupujícího

Více

Teoretická elektrotechnika - vybrané statě

Teoretická elektrotechnika - vybrané statě Teoretická elektrotechnika - vybrané statě David Pánek EK 63 panek50@kte.zcu.cz Fakulta elektrotechnická Západočeská univerzita v Plzni September 26, 202 David Pánek EK 63 panek50@kte.zcu.cz Teoretická

Více

Kapitola 7: Integrál. 1/17

Kapitola 7: Integrál. 1/17 Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený

Více

filtry FIR zpracování signálů FIR & IIR Tomáš Novák

filtry FIR zpracování signálů FIR & IIR Tomáš Novák filtry FIR 1) Maximální překývnutí amplitudové frekvenční charakteristiky dolní propusti FIR řádu 100 je podle obr. 1 na frekvenci f=50hz o velikosti 0,15 tedy 1,1dB; přechodové pásmo je v rozsahu frekvencí

Více

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,

Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +, Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0,

Více

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.

arcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx. Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál

Více

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH

EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH EXTRÉMY FUNKCÍ VÍCE PROMĚNNÝCH ÚLOHY ŘEŠITELNÉ BEZ VĚTY O MULTIPLIKÁTORECH Nalezněte absolutní extrémy funkce f na množině M. 1. f(x y) = x + y; M = {x y R 2 ; x 2 + y 2 1} 2. f(x y) = e x ; M = {x y R

Více

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x

( x) ( ) ( ) { } Vzorce pro dvojnásobný úhel II. Předpoklady: Urči definiční obor výrazů a zjednoduš je. 2. x x x 9 Vzorce pro dvojnásobný úhel II Předpoklady: 08 Př : Urči definiční obor výrazů a zjednoduš je a) ( sin cos ) sin x + cos x sin x x + x sin x b) cos x + cos x + sin x + cos x sin x a) x R sin x + cos

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY

Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Vypracoval: Mgr. Lukáš Bičík TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Průběh funkce Průběhem funkce rozumíme určení vlastností funkce

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace Analýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X k jf j xk, je komplexní číslo r e r e k Oboustranná

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Diferenciální rovnice

Diferenciální rovnice Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích

Více

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014

A7B31ZZS 10. PŘEDNÁŠKA Návrh filtrů 1. prosince 2014 A7B3ZZS. PŘEDNÁŠKA Návrh filtrů. prosince 24 Návrhy jednoduchých filtrů Návrhy složitějších filtrů Porovnání FIR a IIR Nástroje pro návrh FIR filtrů v MATLABu Nástroje pro návrh IIR filtrů v MATLABu Kvantování

Více

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních

Více

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická

Číslicová filtrace. FIR filtry IIR filtry. ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická Ing. Radek Sedláček, Ph.D., katedra měření K13138 Číslicová filtrace FIR filtry IIR filtry Tyto materiály vznikly za podpory Fondu rozvoje

Více