Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách"

Transkript

1 Téma: Fáze Měsíce a planet, zdánlivý pohyb oblohy na planetách Zpracoval Doc. RNDr. Zdeněk Hlaváč, Cc Vlivem vzájemné polohy lunce, Země a dalšího tělesa(např. jiné planety nebo Měsíce) dochází k jevu, kdy pozorovatel ze Země nevidí celý osvětlený kotouč třetího tělesa, ale pouze část(srpek). Jaká část plochy kotouče třetího tělesa je ze Země viditelná se popisuje pojmem fáze nebeského tělesa. Rozumíme jí poměr f plochy ze Země viditelné a současně luncem osvětlené části kotouče třetího tělesa, ku ploše celého kotouče. Fáze f je tedy bezrozměrný parametr ležící v intervalu 0, 1. Po pronásobení stemjilzeudávattéžvprocentech. Je-li f=0říkáme,žetělesojevnovu,je-li f=1říkáme,žetělesojevúplňku, je-li f= 1 df asoučasněfázeroste(tedy > 0), říkáme, že těleso je v první čtvrti, dt je-li f= 1 df asoučasněfázeklesá(tedy <0),říkáme,žetělesojevposledníčtvrti. dt Odvodíme závislost fáze Měsíce a planet na čase, ovšem za zjednodušujících předpokladů kruhovýchdrahtěchtotěles(ε=0)vroviněekliptiky(i=0). Fáze vnitřních planet Naobrázku1jeznázorněnakruhovádráhaZemě(Z)auvnitřnírovněžkruhová dráha vnitřní planety(merkura nebo Venuše) se luncem() jakožto společným středem obou drah. Protože pozemský pozorovatel registruje pouze relativní pohyb planety vůči Zemi, lze bez újmy na obecnosti uvažovat polohu Země za neměnnou(na obrázku v dolní poloze). Vzhledem k platnosti III. Keplerova zákona vnitřní planeta při svém oběhu kolem lunce Zemi předbíhá, takže probíhá relativní pohyb planety v kladném smyslu. Při pohledu na planetární dráhy od severního ekliptikálního pólu nechť je poloha středu planety P. Polohu průvodiče planety oproti průvodiči Země budeme popisovat úhlem. Tento úhel tedy vyjadřuje úhlovou odchylku průvodiče planety od polohy dolní konjunkce se luncem. Na obr.1 znázorňujeme jako kruh planetární kouli v řezu rovinou ekliptiky. Zřejmě polokoule osvětlená luncem(na řezu polokruh) je polokoule přivrácená ke lunci oddělená rovinou procházející středem planety kolmo na spojnici jejího středu(v řezu je dělící rovina znázorněna jako úsečka). Vodorovnými šrafami je na obrázku znázorněna polokoule(polokruh) osvětlený luncem. Ze Země je viditelná pouze polokoule přivrácená k Zemi, oddělená rovinou procházející středem planety kolmo na spojnici se Zemí. vislými šrafami je na obrázku znázorněna polokoule(polokruh) viditelný ze Země. Průnikem zmíněných polokruhů je znázorněna ta část, jež je současně viditelná ze Země a osvětlená luncem, jež se pozemskému pozorovateli jeví jako příslušná fáze vnitřní planety. Popíšeme závislost fáze na úhlu. Poznámka: Úhel souvisí s časem t uplynuvším od doby poslední dolní konjunkce planety se luncem(datum a čas této události je tabelován v astronomických ročenkách) jednoduchým vztahem. Vzhledem k předpokladu kruhových drah jsou úhlové rychlosti Země ω Z iplanety ωpřipohybukolemluncekonstantní.relativnípohybplanetyvůči Zemiprotocharakterizujeúhlovárychlostrozdílová ω ω Z (vtomtopořadí).potom 1

2 P HK υ, P P DK Z Obrázek 1: zřejměje =(ω ω Z )t.protožeúhlovérychlostipřirovnoměrnýchpohybechsouvisejís příslušnýmidobamioběhukolemlunce(o360stupňů) T Z a Tznámýmivýrazy ω= π T a ω Z = π T Z,dostávámeodtudproúhel vztah ( 1 =π T 1 ) t. T Z Odtudplyne,žepro t= T ZT T Z je =π.všechnyfázeseprotoopakujíposynodické T době oběhu planety(viz příslušné téma). VtrojúhelníkuZP(vizobr.1)označmeúheluvrcholuPjako ϑ.tředovýúhel ϑ, příslušející současně luncem osvětlené a ze Země viditelné části kotouče má k výše popsanému úhlu kolmá ramena. Úhly s kolmými rameny jsou buď totožné nebo doplňkové do π.zobrázku1jepatrno,ževnašempřípaděje ϑ=π ϑ. Označíme-li R Z poloměrzemskédráhykolemlunce(tedyastronomickájednotka) a R poloměr dráhy planety kolem lunce, dostáváme aplikací sínové a kosínové věty v trojúhelníku ZP, že sin ϑ sin = R Z ZP ; ZP= R Z+ R R Z Rcos, odkudrozšířenímvýrazuzlomkem 1 R Z azavedenímveličiny R = R R Z (tojestpoloměr dráhy planety v astronomických jednotkách) dostaneme vztah sin ϑ = sin 1+R R cos. (1) Zobrázku1jepatrno,žepro =0(planetavdolníkonjunkci)je ϑ = π,takže ϑ=0aplanetasenacházívnovu.vprůběhučasu t ( ) 0, Tsy rosteodnulydo π, ϑ klesáod πknule,atudíž ϑzaserosteodnulydo π.fázevnitřníplanetytedyv tomtoobdobíroste.pro = π β,kde βjemaximálníelongačníúhelvnitřníplanety,

3 jezřejmě ϑ = π(protožetečnakekružnicijekolmákpříslušnémuprůvodiči),aprotoi ϑ= πaplanetasenacházívprvníčtvrti(asoučasněvnejvětšízápadníelongaci).pro t= Tsy je =π,takže ϑ =0aϑ=π.Vtétopoloze(horníkonjunkciseluncem)je tedyplanetavúplňku.pro t Tsy,T sy jesituaceanalogickávtomsmyslu,žegrafy příslušnýchveličinjsousymetricképodlepřímky t= Tsy (nebo =π).fázevtomto intervaluklesáopětknuleavpolozenejvětšívýchodníelongace(kdy = 3π+ β)je planeta v poslední čtvrti. Poznámka: 1.Zobrázku1jepatrno,ževobdobírůstufázevnitřníplanetyjezeZeměviditelný kruhový obrys jejího kotouče zleva. rpek planety má tedy tvar písmene C. Mnemotechnická pomůcka pro určování fází Měsíce(D=dorůstá-fáze roste a C=couvá-fáze klesá) zde funguje přesně obráceně.. Protože v okolí konjunkcí není vnitřní planeta pozorovatelná(jest přezářená luncem), nelze ji pozorovat ani v okolí novu ani v okolí úplňku. Vnitřní planety nejlépe pozorujeme v okolí největších elongací, kdy se z hlediska fáze nachází ve čtvrtích (první nebo poslední). Zvýrazu(1)azdefinicefunkcearcsinvyplývá,žepro ϑ 0, π β )je ϑ =arcsin sin 1+R R cos 0, π (tojestpro () apro ϑ π,π (tojestpro π β,π )je ϑ = π arcsin sin 1+R R cos. (3) ρ ρcos υ Obrázek : Na obrázku 1 jsme na kotouček planety pohlíželi od severního ekliptikálního pólu. Podíváme-li se na něho ze Země, objeví se pohled znázorněný na obrázku. Tloušťka srpkuplanetyvroviněekliptiky(tedyvmístě,kdejenejsilnější)jezřejmě ρ(1 cos ϑ), kde ρ je(fiktivní) poloměr planetárního kotoučku(také jej můžeme brát jednotkový). Pro ϑ=0sezřejmějednáonov(nulovátloušťkasrpku),pro ϑ= π sejednáo(první) 3

4 y y = ρ x y = ρ x cos υ ρ ρ x Obrázek 3: čtvrť(tloušťkasrpkujerovnapoloměrukotoučku)apro ϑ=πsejednáoúplněk,kdy tloušťka srpku je rovna průměru kotoučku. Poznamenejme, že nekruhový obrys srpku má zřejmě v souřadnicové soustavě x, y zobrázku3rovnici y= ρ x cos ϑ.jestližetedy A= πρ jeplochapolovinykotoučku,jezřejměplocha dolní (neosvětlené)částikotoučkurovna A = πρ cos ϑ. Plocha osvětlené části je pak rozdíl obou ploch, a tedy fáze planety je podle definice f= A ( ) A A =1 1 A = 1 cosϑ A = 1+cosϑ, (4) protožeplatí cosϑ=cos(π ϑ )= cos ϑ. Pro libovolný čas mezi nulou a synodickou dobou oběhu planety(pro Merkura roku,provenuši1.597roku)paknejprvezrovnice(1)určímeúhel,potézrovnice() nebo(3)určímeúhel ϑ anakonecpodle(4)určímeodpovídajícífázivnitřníplanety. Závislost f()jeprooběvnitřníplanetyuvedenanaobrázku Zavislost faze vnitrnich planet a Mesice na uhlove odchylce oproti Zemi faze f [procent] Mesic Merkur Venuse φ [stupnu] Obrázek 4: 4

5 Fáze vnějších planet Naobrázku5jeznázorněnakruhovádráhaZemě(Z)avněnírovněžkruhovádráha vnější planety(marsu až Neptuna) se luncem(), jakožto společným středem obou drah. Protože pozemský pozorovatel registruje pouze relativní pohyb planety vůči Zemi, lzebezújmynaobecnostiopětuvažovatpolohuzemězaneměnnou(naobrázkuv dolní poloze). Vzhledem k platnosti III. Keplerova zákona vnější planeta při svém oběhu kolem lunce se za Zemí zpožďuje, probíhá relativní pohyb planety v záporném smyslu. Při pohledu na planetární dráhy od severního ekliptikálního pólu nechť je poloha středu planety P. Polohu průvodiče planety oproti průvodiči Země budeme opět popisovat úhlem. Tento úhel tedy vyjadřuje úhlovou odchylku průvodiče planety od polohy opozice planety ke lunci. vislými šrafami je na obrázku znázorněna polokoule (polokruh) viditelný ze Země, vodorovnými šrafami je znázorněna polokoule(polokruh) osvětlený luncem. Průnikem zmíněných polokruhů je znázorněna ta část, jež se pozemskému pozorovateli jeví jako příslušná fáze vnější planety. P K P, υ Z P O Obrázek 5: Označíme-li,stejnějakovpřípaděvnitřníplanety,symbolem ϑ úhelmezisměryze středu planety na(střed) lunce a na(střed) Země. Aplikací sínové a kosínové věty na trojúhelník ZP získáme výraz sin ϑ = sin 1+R R cos, (5) kterýmáformálněstejnýtvarjako(1)propřípadvnitřníplanety.veličina R,jakožto poloměr dráhy planety v astronomických jednotkách, je v tomto případě větší než jedna. Prostředovýúhel ϑ,charakterizujícípříslušnoufázi,platíopět ϑ=π ϑ.rovněžvztah (4) zůstává v platnosti. 5

6 Zobrázku5jepatrno,žepro =0(planetavopozici)je ϑ =0,takže ϑ=πa planetasenacházívúplňku.vprůběhučasu t ( ) 0, Tsy úhel rosteodnulydo π, aleúhel ϑ nejprverostedojistémaximálníhodnotyapotézaseklesáknule.proto úhel ϑnejprveklesádojistéminimálníhodnotyapotéopětrostedo π.fázeplanety proto také nejprve klesá do jisté minimální hodnoty a poté opět roste do jedničky. Pro t= Tsy je =π, ϑ =0, ϑ=πaf =1.Vnějšíplanetajeprotoopětvúplňku. Pro t Tsy,T sy jesituacesymetrickávzhledemkhodnotě t= Tsy.Určímenynívýše popsanou minimální fázi vnější planety. Protožefunkce f= f(ϑ )vevztahu(4)jemonotónněrostoucínaintervalu 0,π, stačínajíthodnotu min,vekterénabýváfunkce ϑ ()svéhomaxima.tatohodnota dosazenado(5)aposlézedo(4)dáhledanouminimálnífázi f min.nutnoupodmínkou extrémufunkce ϑ ()jenulovostjejíderivace.derivujmetedyrovnici(5)podle. Dostaneme po dílčí úpravě dϑ d =cos (1+R R cos) R sin. cos ϑ (1+R R cos ) 3 Nulovostzlomkujeekvivalentnínulovostijehočitatele.Jestliženavícdosadímesin = =1 cos,dostanemenutnoupodmínkuextrémuvetvaru R cos (1+R )cos +R =0, což je kvadratická rovnice pro cos. Jejím řešením obdržíme Úpravou odtud cos 1, = 1+R ± (1+R ) 4R R. cos 1 = R ; cos = 1 R. Protožesezabývámevnějšímiplanetami,prokteréjest R >1,jejedinýmřešením cos min = 1.Vzhledemktomu,žesejednázřejměoúhelsvojíhodnotoumezinulou R a π,je sin min = Dosazením do(5) dostaneme po úpravě Odtud sin ϑ max= cos ϑ max= 1 cos min = R 1 R. sin min 1+R R cos min = 1 R. 1 sin ϑ max= R 1 R. Vzhledemkmonotónněklesajícífunkci f(ϑ )odtuddosazenímdo(4)konečnědostaneme f min = 1+cosϑ max = R + R 1 R. (6) 6

7 Postačující podmínky extrému není třeba ověřovat, neboť vzhledem k fyzikální podstatě úlohy je v(6) určena skutečně minimální fáze vnější planety. Pro všech pět vnějších planet jsou výsledky znázorněny v následující tabulce. Tabulka 1: Planeta Mars Jupiter aturn Uran Neptun R [au] min [ o ] f min Z tabulky je patrno, že minimální fáze velkých vnějších planet je větší než 99 procent. Tyto planety jsou proto prakticky stále v úplňku. vůj význam má tato hodnota pouze umarsu,kdefázeklesáažpod88procent.konkrétnízávislost f()jepromars,jupiter aaturnuvedenanaobrázku Zavislost faze vnejsich planet na uhlove odchylce oproti Zemi faze f [procent] Mars Jupiter aturn φ [stupnu] Obrázek 6: Fáze Měsíce Naobrázku7jeznázorněnakruhovádráhaZemě(Z)kolemluncearovněžkruhová dráha Měsíce M kolem Země. tejně jako výše lze bez újmy na obecnosti předpokládat trvalou polohu Země tak, jak je zakreslena a sledovat pouze relativní pohyb Měsíce vůči Zemiúhlovourychlostí ω= ω M ω Z,kde ω M jeúhlovárychlostměsícepřijehopohybu 7

8 kolemzemě.protože ω M > ω Z,konáserelativnípohybMěsícevkladnémsmyslu. Obecná poloha středu Měsíce je popsána úhlem průvodiče Měsíce od jeho polohy v opoziciseluncem.vtrojúhelníkuzmjeprotovnitřníúheluvrcholuzroven π. M K π Z υ, M M O Obrázek 7: Označmeperiodu,příslušejícírelativníúhlovérychlosti ωměsícejako T sym.jedná se o analogii synodické doby oběhu planet a je to doba mezi dvěma sousedními stejnými polohamiměsícevevztahukelunciakzemi.nazývámejisynodickýmměsícema platíproni 1 = 1 1 T sim = T ZT sym, T sym T sim T Z T Z T sym kde T sim jeperiodatzv.siderickéhoměsíce,tedydoba,zakterouměsícvykonákolem Zeměúplnéotočeníoúhel360 o.perioda T Z jedobaotočenízeměkolemlunce(tzv. siderickýrok).protože T sym jeperiodazměnyfázíměsíce,kteroumůžemesnadno pozorovatnaobloze,víme,žeje T sym =9.53dní(středníchslunečních).Protožesiderický rok má dní, dostáváme z předchozího výrazu, že délka siderického měsíce (který na obloze pozorovati nemůžeme) je dní. vislými šrafami je na obrázku 7 znázorněna polokoule(polokruh) Měsíce viditelný ze Země, vodorovnými šrafami je znázorněna polokoule(polokruh) osvětlený luncem. Průnikem zmíněných polokruhů je znázorněna ta část, jež se pozemskému pozorovateli jevíjakopříslušnáfázeměsíce.označíme-lisymbolem ϑ úhelmezisměryzestředu Měsíce na(střed) lunce a na(střed) Země, získáme aplikací sínové a kosínové věty na trojúhelník ZM výraz 8

9 sin ϑ = sin 1+R +R cos, (7) kde R M jepoloměrdráhyměsícekolemzeměvastronomickýchjednotkách.oproti analogickému výrazu pro planety je ve třetím sčítanci jmenovatele zde znaménko plus. Prostředovýúhel ϑ,charakterizujícípříslušnoufázi,platíopět ϑ=π ϑ.rovněžvztah (4) zůstává v platnosti. Zobrázku7jepatrno,žepro =0(Měsícvopozici)je ϑ =0,takže ϑ=πaměsíc senacházívúplňku.vprůběhučasu t ( 0, T ) sym úhel rosteodnulydo π,úhel ϑ rovněžrosteodnulydo π,cožznamená,žestředovýúhel ϑklesáod πknuleafáze rovněžklesáodjedničkyknule.pro t= T sym je =π, ϑ = π, ϑ=0atedyif=0. Měsícsenacházívnovu.Pro t T sym,t sym jesituacesymetrickávzhledemkhodnotě t= T sym. Poznámka:Zobrázku7jepatrno,ževobdobípoklesufázeMěsícejezeZeměviditelný kruhový obrys jejího kotouče zleva. rpek Měsíce má tedy tvar písmene C. Mnemotechnická pomůcka pro určování fází Měsíce(D=dorůstá-fáze roste a C=couvá-fáze klesá)zdefunguje.závislost f()jeproměsícrovněžuvedenanaobrázku4. Planetární hvězdné a sluneční dni TakjakouZeměrozeznávámehvězdnýdenjakodobuotočeníZeměkolemjejíosya sluneční den jako dobu mezi dvěma sousedními průchody lunce místním poledníkem, lze totéž učinit i u ostatních planet. První periodu označujeme jako hvězdný(siderický) den t si adruhoujakosluneční(synodický)den t sy. A A A t = 0 t = t si t = t sy Obrázek 8: Naobrázku8mámeznázorněnpohlednadráhuplanetyzesměrukolméhonarovinu její dráhy(tedy vzhledem k platnosti předpokladu i = 0 ze směru severního ekliptikálního pólu). Levý obrázek označuje stav, kdy začínáme měřit čas, kdy lunce svítí kolmo namístoanaplanetě.prostředníobrázekukazujestavpouplynutíperiody t si,kdy ovšemlunceještěnesvítíkolmonamístoanaplanetě,protožetatosezatutoperiodu posunula na svojí dráze kolem lunce. Pravý obrázek znázorňuje stav po uplynutí periody t sy,kdylunceopětsvítíkolmonamístoanaplanetě.zatudobuseplaneta posunula na své dráze kolem lunce o úhel průvodiče. Protože předpokládáme 9

10 kruhové dráhy kolem lunce(ε = 0), pohybují se planety kolem lunce rovnoměrně. Protože rotace planet kolem svých os je rovněž rovnoměrná, můžeme psát následující úměrnosti: 1. Pro pohyb kolem lunce. Pro pohyb kolem planetární osy t sy T = π. (8) t sy = π+., (9) t si π kde T je doba oběhu planety kolem lunce(tzv. siderický rok planety). Dosazenímza π z(8)do(9)dostaneme 1 = 1 1 t sy t si T t sy= t sit. (10) T t si Předchozí výpočet byl proveden za automatických předpokladů, že u všech planet je siderický rok delší než hvězdný den(což je u všech planet s výjimkou Venuše splněno) a že rotace všech planet kolem osy je prográdní, tedy v matematicky kladném smyslu, jakopohybkolemlunce(cožjeopětuvšechplanetsvýjimkouvenušesplněno).v následující tabulce jsou uvedeny popisované časové parametry u všech planet s výjimkou Venuše. Údaje jsou uvedeny ve středních slunečních(pozemských) dnech, které užíváme v běžném životě. Tabulka : Planeta T t si t sy Merkur Země Mars Jupiter aturn Uran Neptun Z tabulky je patrno, že velké planety(jupiter až Neptun) mají natolik velký časový rozdíl mezi svým siderickým rokem a siderickým dnem, že jejich sluneční den je přesně totožný s hvězdným. lunce i hvězdy se na tamní obloze zdánlivě pohybují prakticky se stejnou úhlovou rychlostí. Země a Mars mají sluneční den o dvě nebo tři promile delší než den hvězdný. Hvězdy se pohybují zdánlivě na oblohách těchto planet nepatrně větší úhlovou rychlostí než lunce(rozdíl mezi hvězdným a slunečním časem na Zemi- viz příslušné téma). Merkur má sluneční den cirka třikrát delší než hvězdný. lunce se tedy na obloze Merkura pohybuje(v průměru) třikrát menší úhlovou rychlostí než hvězdy. Venuše se vymyká všem planetám sluneční soustavy, neboť její pohyb kolem osy je retrográdní a navíc úhlově pomalejší než pohyb kolem lunce. Její parametry jsou T=5(středníchslunečníchpozemských)dníat si =43dní.Obrázek9znázorňuje 10

11 A A A t = 0 t = T t = t sy Obrázek 9: analogii k obrázku 8 ovšem pouze pro Venuši. Levý obrázek označuje stav, kdy začínáme měřit čas, kdy lunce svítí kolmo na místo A na planetě. Prostřední obrázek ukazuje stavpouplynutíperiody T,kdyovšemlunceještěnesvítíkolmonamístoA.Tatose zatutoperiodupřipohybukolemosyposunulaomenšíúhelnež360 o.pravýobrázek znázorňujestavpouplynutíperiody t sy,kdylunceopětsvítíkolmonamístoa.zatu dobuseplanetaposunulanasvédrázekolemlunceoúhelprůvodičeπ+ anasvé poutikolemosyoúhelπ.úměrnosti(8)a(9)majízdetvar π+ π Vyloučením π ztěchtovýrazůdostaneme t sy T = t sy t si = t sy T ; π π = t sy t si. t sy = t sit t si + T. (11) Podosazeníčíselnýchhodnotparametrů Ta t si dostávámedélkuvenušinaslunečního dne t sy =34dní. Zastavíme se ještě u Merkura, jehož trajektorie kolem lunce je zdaleka nejvýstřednější.předpoklad ε=0proněhotedyplatínejméněpřesně.navícnamerkurusiderický rok je řádově srovnatelný se siderickým dnem. Tato fakta mají zajímavý důsledek, který popíšeme. Označme ω okamžitou úhlovou rychlost Merkura při jeho pohybu kolem lunce a r jeho okamžitou vzdálenost od lunce. Indexem s budeme značit střední hodnoty veličin, indexem a hodnoty v afeliu a indexem p hodnoty v periheliu. Podle II. Keplerova zákona platí r sω s = r pω p = r aω a (=w), (1) kde w je plošná rychlost Merkura při jeho pohybu kolem lunce. Dále zřejmě platí r p = a; r p = a e; r a = a+e, (13) kde a je délka velké poloosy Merkurovy dráhy a e její délková výstřednost. Dosazením (13)do(1)arozšířenímzlomkůvýrazem 1 a vzniká ω p ω s = ( ) rs = r p ( ) a = 1 ω a a e (1 ε) ; = ω s 11 ( rs r a ) = ( ) a = 1 a+e (1+ε). (14)

12 Označmenyní T x (x=s,p,a)periodyoběhumerkurakolemluncepříslušejícíkúhlovýmrychlostem ω x zapředpokladu,žebypohybbylrovnoměrnýpocelýoběh. ohledem na(14) pak platí T p T s = ω s ω p =(1 ε) ; T a T s = ω s ω a =(1+ε). Dosadíme-lidotěchtovýrazůčíselnéhodnotyproMerkura T s =88dníaε=0.06,dostaneme T p =55.5dníaT a =18dní.Tytovýsledkyukazujíjednaknavelkékolísánírychlosti Merkuranajehocestěkolemlunceajednaknafakt,ževokolíperiheliaseMerkurpohybuje kolem lunce úhlově rychleji než kolem své osy. Tato skutečnost snadno plyne ze srovnáníperiody T p speriodouhvězdnéhodnenamerkuru(58.646dní).tomázanásledek, že v okolí prerihelia Merkurovy dráhy se lunce zdánlivě pohybuje po obloze opačně nežhvězdy.dvakrátzamerkurůvrok(88dní)setedyluncenasvézdánlivépoutipo Merkurově obloze zastaví, aby vzápětí změnilo orientaci svého zdánlivého pohybu. To je situace na planetách sluneční soustavy zcela ojedinělá. 1

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

1.6.9 Keplerovy zákony

1.6.9 Keplerovy zákony 1.6.9 Keplerovy zákony Předpoklady: 1608 Pedagogická poznámka: K výkladu této hodiny používám freewareový program Celestia (3D simulátor vesmíru), který umožňuje putovat vesmírem a sledovat ho z různých

Více

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem

Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Výpočet vzdálenosti Země Slunce pozorováním přechodu Venuše před Sluncem Podle mateiálu ESO přeložil Rostislav Halaš Úkol: Změřit vzdálenost Země Slunce (tzv. astronomickou jednotku AU) pozorováním přechodu

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

Úvod do nebeské mechaniky

Úvod do nebeské mechaniky OPT/AST L09 Úvod do nebeské mechaniky pohyby astronomických těles ve společném gravitačním poli obecně: chaotický systém nestabilní numerické řešení speciální případ: problém dvou těles analytické řešení

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Tělesa sluneční soustavy

Tělesa sluneční soustavy Tělesa sluneční soustavy Měsíc dráha vzdálenost 356 407 tis. km (průměr 384400km); určena pomocí laseru/radaru e=0,0549, elipsa mění tvar gravitačním působením Slunce i=5,145 deg. měsíce siderický 27,321661

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

očekávaný výstup ročník 7. č. 11 název

očekávaný výstup ročník 7. č. 11 název č. 11 název anotace očekávaný výstup druh učebního materiálu Pracovní list druh interaktivity Aktivita ročník 7. Vesmír a Země, planeta Země V pracovních listech si žáci opakují své znalosti o vesmíru

Více

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list

KEPLEROVY ZÁKONY. RNDr. Vladimír Vaščák. Metodický list KEPLEROVY ZÁKONY RNDr. Vladimír Vaščák Metodický list RNDr. V L A D I M Í R V A Š Č Á K Metodický list RNDr. Vladimír Vaščák www.vascak.cz Obsah O aplikaci... 1 Verze pro PC, ipad a Android... 2 1. Keplerův

Více

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max.

Více

2. Poloměr Země je 6 378 km. Následující úkoly spočtěte při představě, že kolem rovníku nejsou hory ani moře. a) Jak dlouhý je rovníkový obvod Země?

2. Poloměr Země je 6 378 km. Následující úkoly spočtěte při představě, že kolem rovníku nejsou hory ani moře. a) Jak dlouhý je rovníkový obvod Země? Astronomie Autor: Miroslav Randa. Doplň pojmy ze seznamu na správná místa textu. seznam pojmů: Jupiter, komety, Merkur, měsíce, Neptun, planetky, planety, Pluto, Saturn, Slunce, Uran, Venuše, Země Uprostřed

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Venuše druhá planeta sluneční soustavy

Venuše druhá planeta sluneční soustavy Venuše druhá planeta sluneční soustavy Planeta Venuše je druhá v pořadí vzdáleností od Slunce (střední vzdálenost 108 milionů kilometrů neboli 0,72 AU) a zároveň je naším nejbližším planetárním sousedem.

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

Mechanika teorie srozumitelně

Mechanika teorie srozumitelně Rovnoměrný pohybu po kružnici úhlová a obvodová rychlost Rovnoměrný = nemění se velikost rychlostí. U rovnoměrného pohybu pro kružnici máme totiž dvě rychlosti úhlovou a obvodovou. Směr úhlové rychlosti

Více

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku představím několik webových online aplikací

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

R5.1 Vodorovný vrh. y A

R5.1 Vodorovný vrh. y A Fyzika pro střední školy I 20 R5 G R A V I T A Č N Í P O L E Včlánku5.3jsmeuvedli,ževrhyjsousloženépohybyvtíhovémpoliZemě, které mají dvě složky: rovnoměrný přímočarý pohyb a volný pád. Podle směru obou

Více

1 Newtonův gravitační zákon

1 Newtonův gravitační zákon Studentovo minimum GNB Gravitační pole 1 Newtonův gravitační zákon gravis latinsky těžký každý HB (planeta, těleso, částice) je zdrojem tzv. gravitačního pole OTR (obecná teorie relativity Albert Einstein,

Více

Nabídka vybraných pořadů

Nabídka vybraných pořadů Hvězdárna Valašské Meziříčí, p. o. Vsetínská 78 757 01 Valašské Meziříčí Nabídka vybraných pořadů Pro 1. stupeň základních škol Pro zvídavé školáčky jsme připravili řadu naučných programů a besed zaměřených

Více

ANOTACE vytvořených/inovovaných materiálů

ANOTACE vytvořených/inovovaných materiálů ANOTACE vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Formát Druh učebního materiálu Druh interaktivity CZ.1.07/1.5.00/34.0722 III/2 Inovace a

Více

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY

VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY VY_32_INOVACE_06_III./17._PLANETY SLUNEČNÍ SOUSTAVY Planety Terestrické planety Velké planety Planety sluneční soustavy a jejich rozdělení do skupin Podle fyzikálních vlastností se planety sluneční soustavy

Více

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina

Přírodopis 9. Naše Země ve vesmíru. Mgr. Jan Souček. 2. hodina Přírodopis 9 2. hodina Naše Země ve vesmíru Mgr. Jan Souček VESMÍR je soubor všech fyzikálně na sebe působících objektů, který je současná astronomie a kosmologie schopna obsáhnout experimentálně observační

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

7.Vesmír a Slunce Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Planeta Země 7.Vesmír a Slunce Planeta Země Vesmír a Slunce Autor: Mgr. Irena Doležalová Datum (období) tvorby: únor 2012 červen 2013 Ročník: šestý Vzdělávací oblast: zeměpis Anotace: Žáci se seznámí se

Více

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach

Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Objevte planety naší sluneční soustavy Za 90 minut přes vesmír Na výlet mezi Ehrenfriedersdorf a Drebach Sluneční soustava Sonnensystem Sluneční soustava (podle Pravidel českého pravopisu psáno s malým

Více

VY_32_INOVACE_FY.20 VESMÍR II.

VY_32_INOVACE_FY.20 VESMÍR II. VY_32_INOVACE_FY.20 VESMÍR II. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Galaxie Mléčná dráha je galaxie, v níž se nachází

Více

SLUNCE ZEMĚ MĚSÍC. Poznávej, přemýšlej, vymaluj si... Uvnitř SOUTĚZ pro žáky základních škol o hodnotné ceny!

SLUNCE ZEMĚ MĚSÍC. Poznávej, přemýšlej, vymaluj si... Uvnitř SOUTĚZ pro žáky základních škol o hodnotné ceny! Poznávej, přemýšlej, vymaluj si... SLUNCE ZEMĚ MĚSÍC Uvnitř SOUTĚZ pro žáky základních škol o hodnotné ceny! VÝSTAVOU Metodický materiál pro 1. stupeň základních škol k výstavě Slunce, Země, Měsíc Milé

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075

Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Registrační číslo projektu: CZ.1.07/1.4.00/21.3075 Šablona: III/2 Sada: VY_32_INOVACE_5IS Ověření ve výuce Třída 9. B Datum: 6. 2. 2013 Pořadové číslo 12 1 Země, Mars Předmět: Ročník: Jméno autora: Fyzika

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Orbit TM Tellerium Kat. číslo 113.4000

Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium Kat. číslo 113.4000 Orbit TM Tellerium s velkým glóbusem Země pro demonstrování ročních období, stínů a dne a noci Orbit TM Tellerium s malou Zemí pro demonstrování fází Měsíce a zatmění

Více

Vesmír. jako označen. ení pro. stí. Podle některých n. dílech. a fantasy literatury je některn

Vesmír. jako označen. ení pro. stí. Podle některých n. dílech. a fantasy literatury je některn Vesmír Vesmír r je označen ení pro veškerý prostor a hmotu a energii v něm. n V užším m smyslu se vesmír r také někdy užíváu jako označen ení pro kosmický prostor,, tedy část vesmíru mimo Zemi. Různými

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník NÁZEV: VY_32_INOVACE_197_Planety NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_197_Planety AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11.2011 VZDĚL. OBOR, TÉMA: Fyzika ČÍSLO PROJEKTU:

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Úkol č. 1. Sluneční soustava

Úkol č. 1. Sluneční soustava Úkol č. 1. Sluneční soustava Sluneční soustava je planetární systém hvězdy známé pod názvem Slunce, ve kterém se nachází naše domovská planeta Země. Systém tvoří především 8 planet, 5 trpasličích planet,

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

VÍTEJTE V BÁJEČNÉM SVĚTĚ VESMÍRU VESMÍR JE VŠUDE KOLEM NÁS!

VÍTEJTE V BÁJEČNÉM SVĚTĚ VESMÍRU VESMÍR JE VŠUDE KOLEM NÁS! VÍTEJTE V BÁJEČNÉM SVĚTĚ VESMÍRU VESMÍR JE VŠUDE KOLEM NÁS! Ty, spolu se skoro sedmi miliardami lidí, žiješ na planetě Zemi. Ale kolem nás existuje ještě celý vesmír. ZEMĚ A JEJÍ OKOLÍ Lidé na Zemi vždy

Více

Planety sluneč. soustavy.notebook. November 07, 2014

Planety sluneč. soustavy.notebook. November 07, 2014 1 2 SLUNCE V dávných dobách měli lidé představu, že Země je středem vesmíru. Pozorováním oblohy, zdokonalováním přístrojů pro zkoumání noční oblohy a zámořskými cestami postupně prosadili názor, že středem

Více

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o.

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o. Nabídka nových vzdělávacích programů Hvězdárny Valašské Meziříčí, p. o. Ballnerova hvězdárna Sluneční analematické hodiny Vážení přátelé, příznivci naší hvězdárny, kolegové, jsme velmi potěšeni, že Vám

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

4.2.15 Funkce kotangens

4.2.15 Funkce kotangens 4..5 Funkce kotangens Předpoklady: 44 Pedagogická poznámka: Pokud nemáte čas, doporučuji nechat tuto hodinu studentům na domácí práci. Nedá se na tom nic zkazit a v budoucnu to není nikde příliš potřeba.

Více

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1.

v z t sin ψ = Po úpravě dostaneme: sin ψ = v z v p v p v p 0 sin ϕ 1, 0 < v z sin ϕ < 1. Řešení S-I-4-1 Hledáme vlastně místo, kde se setkají. A to tak, aby nemusel pes na zajíce čekat nebo ho dohánět. X...místo setkání P...místo, kde vybíhá pes Z...místo, kde vybíhá zajíc ZX = v z t P X =

Více

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK,

NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_200_Planetárium AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 9., 25.11. 2011 VZDĚL. OBOR, TÉMA: Fyzika, Planetárium

Více

Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině.

Test obsahuje látku 5. ročníku z učiva o vesmíru. Ověřuje teoretické znalosti žáků. Časově odpovídá jedné vyučovací hodině. Vzdělávací oblast : Předmět : Téma : Člověk a jeho svět Přírodověda Vesmír Ročník: 5. Popis: Očekávaný výstup: Druh učebního materiálu: Autor: Poznámky: Test obsahuje látku 5. ročníku z učiva o vesmíru.

Více

Astronomie. Astronomie má nejužší vztah s fyzikou.

Astronomie. Astronomie má nejužší vztah s fyzikou. Astronomie Je věda, která se zabývá jevy za hranicemi zemské atmosféry. Zvláště tedy výzkumem vesmírných těles, jejich soustav, různých dějů ve vesmíru i vesmírem jako celkem. Astronom, česky hvězdář,

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Matematika a Sluneční soustava

Matematika a Sluneční soustava Matematika a Sluneční soustava Vypracovala: Mgr. Kadlecová Helena Vlastní práce 1.Motivace Kde se setkáme s čísly většími než milion? (žáci uvádějí příklady a jsou směřováni k odpovědi: vesmírní vzdálenosti)

Více

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny

Astrofyzika. 1. Sluneční soustava. Slunce. Sluneční atmosféra. Slunce 17.6.2013. Slunce planety planetky komety, meteoroidy prach, plyny 1. Sluneční soustava Astrofyzika aneb fyzika hvězd a vesmíru planety planetky komety, meteoroidy prach, plyny je dominantním tělesem ve Sluneční soustavě koule o poloměru 1392000 km, s průměrnou hustotou

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

1.1 Oslunění vnitřního prostoru

1.1 Oslunění vnitřního prostoru 1.1 Oslunění vnitřního prostoru Úloha 1.1.1 Zadání V rodném městě X slavného fyzika Y má být zřízeno muzeum, připomínající jeho dílo. Na určeném místě v galerii bude umístěna deska s jeho obrazem. V den

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Planety a sluneční aktivita

Planety a sluneční aktivita Planety a sluneční aktivita V. Bumba, Astronomický ústav AVČR, Ondřejov, bumba @asu.cas.cz Abstrakt Pozorování ukazují, že pravidelnosti v rozložení slunečních magnetických polí korelují s oposicemi a

Více

Kamenné a plynné planety, malá tělesa

Kamenné a plynné planety, malá tělesa Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor.

Fázorové diagramy pro ideální rezistor, skutečná cívka, ideální cívka, skutečný kondenzátor, ideální kondenzátor. FREKVENČNĚ ZÁVISLÉ OBVODY Základní pojmy: IMPEDANCE Z (Ω)- charakterizuje vlastnosti prvku pro střídavý proud. Impedance je základní vlastností, kterou potřebujeme znát pro analýzu střídavých elektrických

Více

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře OPT/AST L08 Čas a kalendář důležitá aplikace astronomie udržování časomíry a kalendáře čas synchronizace s rotací Země vzhledem k jarnímu bodu vzhledem ke Slunci hvězdný čas definován jako hodinový úhel

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Značení krystalografických rovin a směrů

Značení krystalografických rovin a směrů Značení krystalografických rovin a směrů (studijní text k předmětu SLO/ZNM1) Připravila: Hana Šebestová 1 Potřeba označování krystalografických rovin a směrů vyplývá z anizotropie (směrové závislosti)

Více

Kdy a odkud pozorovat přechod Venuše

Kdy a odkud pozorovat přechod Venuše Kdy a odkud pozorovat přechod Venuše Václav Pavlík, Michael Prouza a David Ondřich Mezi velmi vzácné úkazy na obloze patří bez pochyby přechody planet (Merkur a Venuše) přes sluneční disk. Přechod Venuše

Více

VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ

VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ VÝUKA ASTRONOMIE NA ZŠ A SŠ S VYUŽITÍM STRÁNEK ASTRONOMIA.ZCU.CZ Miroslav Randa, Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku se zabýváme,

Více

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině

FOTOGRAMMETRIE. Rekonstrukce svislého nezáměrně pořízeného snímku, známe-li obraz čtverce ve vodorovné rovině FOTOGRAMMETRIE Máme-li k dispozici jednu nebo několik fotografií daného objektu (objekt zobrazený v lineární perspektivě), pomocí fotogrammetrie můžeme zjistit jeho tvar, rozměr či polohu v prostoru. Známe-li

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Úloha I.S... seriálová

Úloha I.S... seriálová Úloha I.S... seriálová 6 bodů; průměr 2,22; řešilo 41 studentů a) Některé hvězdy jsou považovány za obtočné, čili cirkumpolární. Znamená to, že jsou vidět po celý rok? Jaké hvězdy jsou v našich zeměpisných

Více

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

MODELOVÁNÍ. Základní pojmy. Obecný postup vytváření induktivních modelů. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 MODELOVÁNÍ základní pojmy a postupy principy vytváření deterministických matematických modelů vybrané základní vztahy používané při vytváření matematických modelů ukázkové příklady Základní pojmy matematický

Více

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu

VY_06_Vla5E_45. Operační program Vzdělávání pro konkurenceschopnost Inovativní metody v prvouce, vlastivědě a zeměpisu Materiál pro domácí přípravu žáků: Název programu: Název projektu: Registrační číslo projektu: Předmět: Ročník: Autor: Téma učivo: Učební pomůcky: Zápis z vyučovací hodiny: VY_06_Vla5E_45 Operační program

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Měření závislosti statistických dat

Měření závislosti statistických dat 5.1 Měření závislosti statistických dat Každý pořádný astronom je schopen vám předpovědět, kde se bude nacházet daná hvězda půl hodiny před půlnocí. Ne každý je však téhož schopen předpovědět v případě

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

Základní vlastnosti křivek

Základní vlastnosti křivek křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace

Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace Název projektu Zkvalitnění vzdělávání na ZŠ I.Sekaniny - Škola pro 21. století Registrační číslo projektu CZ.1.07/1.4.00/21.1475

Více

Počítání ve sluneční soustavě

Počítání ve sluneční soustavě Číslo klíčové aktivity III/2, Matematika ZŠ Nepomuk Počítání ve sluneční soustavě Znáš naše nejbližší vesmírné sousedy? Co o nich víš? Láká tě vesmír? Každý kosmonaut i astronom musí umět mnoho věcí. Bez

Více