Astronomická pozorování

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Astronomická pozorování"

Transkript

1 KLASICKÁ ASTRONOMIE

2 Astronomická pozorování Základní úloha při pozorování nějakého děje, zejména pohybu těles je stanovení jeho polohy (rychlosti) v daném okamžiku Astronomie a poziční astronomie Souřadnicové systémy a jejich transformace Pohyb pozorovatele a zdroje záření Opravy souřadnic: precese, nutace, aberace Vliv atmosféry na pozorování: refrakce, extinkce Vlastní pohyby

3 Souřadné soustavy obecně Ve fyzice se používají různé systémy souřadnic, podle potřeb řešené úlohy: přímočarý x křivočarý rovinný x prostorový (kartézská, polární; kartézská, cylindrická, sférická) podstatné je umístění počátku souřadnic Při potřeby astronomie se používají nejčastěji soustavy, vycházející ze sférické:

4 Souřadné soustavy v astronomii Obzorníkové (horizontální) souřadnice Rovníkové souřadnice 1. druhu Rovníkové souřadnice 2. druhu Počátek souřadnic v místě pozorovatele = topocentrická ve středu Země = geocentrická ve středu Slunce = heliocentrická v těžišti sluneční soustavy = barycentrická Souřadnicové sítě určujeme na jednotkové nebeské sféře

5 Světová sféra, póly, rovník Severní a jižní světový pól Meridián místní poledník Almukantaráty, vertikály Horizont (deprese horizontu), světový rovník Zenit (nadhlavník) Nadir (podnožník) Jarní bod Astronomické souřadnice

6 Světová sféra, póly, rovník

7 Obzorníkové (horizontální) souřadnice (h, A) I. Obě obzorníkové souřadnice se mění následkem denního pohybu oblohy s časem Základní roviny rovina protínající nebeskou sféru v hlavní kružnici zvané obzorník/horizont rovina místního poledníku/meridiánu počátek průsečík meridiánu s horizontem

8 Obzorníkové (horizontální) souřadnice (h, A) II. Souřadnice h výška nad obzorem, úhel měřený na výškové kružnici, nabývá hodnot od +90 do -90 A azimut, měřený ve směru S W N E od 0 do 360 ; rozdíl oproti zeměpisnému azimutu

9 Obzorníkové (horizontální) souřadnice (h, A) III. Speciální případy h, A: Hvězda v zenitu/ nadiru má výšku +90 /-90, hvězda, která vychází/zapadá má výšku 0 Zenitová vzdálenost úhlová vzdálenost od zenitu (z = 90 h, zenit = 0, nadir = 180 ) Nebeská tělesa procházející poledníkem mají azimut 0 nebo 180 Průchod tělesa poledníkem kulminace (zenitová vzdálenost je nejmenší nebo největší) Svrchní/spodní kulminace Slunce v poledne (svrchní kulminace), Slunce v půlnoci (spodní kulminace) Tento typ souřadnic se používá pro astronomická pozorování u dalekohledů s azimutální montáží

10 Rovníkové (ekvatoreální) souřadnice 1. druhu (t, δ) I. První souřadnice se mění se zeměpisnou délkou místa i s časem, ale změna je rovnoměrná, druhá souřadnice se nemění (v krátkém časovém intervalu hvězdy) Základní roviny rovina protínající nebeskou sféru v hlavní kružnici zvané nebeský rovník rovina místního poledníku/meridiánu počátek průsečík meridiánu a nebeského rovníku

11 Rovníkové (ekvatoreální) souřadnice 1. druhu (t, δ) II. Souřadnice t hodinový úhel, nabývá hodnot od 0 do 360 nebo také od 0 h do 24 h δ deklinace, úhel měřený na deklinační kružnici, nabývá hodnot od -90 do +90

12 Rovníkové (ekvatoreální) souřadnice 1. druhu (t, δ) III. Hvězda procházející meridiánem má hodinový úhel t = 0, t = 0 h 1 h = 15, 1 min = 15, 1 s = 15 1 = 4 min, 1 = 4 s, 1 = 0,06 s Obdoba zenitové vzdálenosti je pólová vzdálenost/distance, tedy úhlová vzdálenost měřená po deklinační kružnici od severního pólu (p = 90 δ, severní pól = 0, jižní pól = 180 ) Tento typ souřadnic se používá pro astronomická pozorování u dalekohledů s paralaktickou montáží

13 Rovníkové (ekvatoreální) souřadnice 2. druhu (α,δ) I. Obě rovníkové souřadnice nejsou závislé na zeměpisné poloze a s časem se mění velice pomalu Základní roviny rovina protínající nebeskou sféru v hlavní kružnici zvané nebeský rovník rovina procházející bodem, který se zúčastňuje rovnoměrného pohybu oblohy tento bod leží na nebeském rovníku a nachází se v něm Slunce v době jarní rovnodennosti jarní bod počátek průsečík roviny procházející jarním bodem s rovníkem

14 Rovníkové (ekvatoreální) souřadnice 2. druhu (α,δ) II. Souřadnice α rektascenze, měří se od 0 h do 24 h, roste proti směru denního pohybu oblohy, tedy od jarního bodu směrem na východ δ deklinace, úhel měřený na deklinační kružnici, nabývá hodnot od -90 do +90

15 Rovníkové (ekvatoreální) souřadnice 2. druhu (α,δ) III. Kolur rovnodennosti deklinační kružnice procházející jarním a podzimním bodem Pro výšku tělesa nad obzorem platí h = 90 ϕ + δ Tento typ souřadnic se používá např. pro tvorbu astronomických map a atlasů pro určitou epochu Udání souřadnic nebeského tělesa nezávisle na čase pozorování

16 Hvězdný čas V praxi je třeba znát hodinový úhel tělesa nebo hvězdy problém je řešitelný, pokud je znám místní hvězdný čas Hvězdný čas je hodinový úhel jarního bodu Např. tedy v okamžiku svrchního průchodu jarního bodu meridiánem je 0 h 0 m 0 s hvězdného času

17 Ekliptikální a galaktické souřadnice Ekliptikální souřadnice (λ, β) jsou obdobou rovníkových souřadnic, základní rovinou je rovina ekliptiky, užívá se především při výpočtech drah těles ve sluneční soustavě Galaktické souřadnice (l, b) základní rovinou je rovina Galaxie nejčastěji se používají pro popis rozložení útvarů v Galaxii, studium Galaxie a ve vzdáleném Vesmíru

18 Sférická trigonometrie Nautický trojúhelník sférický trojúhelník daný zenitem, severním pólem a polohou hvězdy Užití pro vyjádření transformačních vztahů mezi soustavami astronomických souřadnic Základní rovnice sférické trigonometrie (S, C, S-C):

19 Transformace souřadnic - úvod Často je třeba převádět souřadnice jednotlivých systémů navzájem, pozorovatel ve volné přírodě x pozorovatel na observatoři pomocí sférické nebo rovinné trigonometrie Výpočet transformace provedeme pomocí rovinné trigonometrie rotace souřadnic o úhel ϕ, tj. o úhel zeměpisné šířky

20 Transformace souřadnic I. Převod z obzorníkových souřadnic do rovníkových souřadnic 1. druhu: V uvedených rovnicích se též používá zenitová vzdálenost z místo výšky objektu nad obzorem h

21 Transformace souřadnic II. Převod z rovníkových souřadnic 1. druhu do obzorníkových souřadnic: Opět lze uvedené rovnice přepsat a použít pro zenitovou vzdálenost

22 Vlivy působící na souřadnice Pohyb objektu, tzv. vlastní pohyb největší u hvězdy Barnardova šipka µ 10 /rok, obvykle µ 1 /rok Pohyb pozorovatele a konečná rychlost světla, tzv. aberace podrobněji další výklad Přechod od jedné vztažné soustavě k druhé: topocentrická geocentrická (vznik denní paralaxy) geocentrická heliocentrická (vznik roční paralaxy) Pohyb souřadných os v prostoru precese, nutace, pohyb pólů Vliv atmosféry refrakce; objekty jsou vidět více k zenitu v důsledku lomu světla na rozhraní vakuum/atmosféra Ohyb světla v gravitačním poli Slunce u okrajů Slunce ~ 1,73

23 Aberace Důsledek konečné rychlosti světla Vysvětlení pohyb automobilu a střely odchylka od původního směru

24 Aberace Aberace roční bod, ke kterému Země (Slunce) směřuje rychlostí ~30 km.s -1 = apex (R.A. ~ 18 h, DECL. ~ +30, poblíž hvězdy Vega); touto rychlostí je unášen každý přístroj na povrchu Země nutnost sklonit dalekohled o určitý úhel α, β je úhlová vzdálenost od apexu denní způsobena rotací Země; maximální hodnota je pro pozorovatele na rovníku 0,3 sekulární způsobena pohybem sluneční soustavy v Galaxii nezapočítává se

25 Precese Precese zemská osa vykonává pohyb po plášti kužele (periodický pohyb let; tzv. Platónský rok) Typy precese lunisolární precese (50,371 /rok) planetární precese (-0,125 /rok) generální (obecná) precese (50,253 /rok)

26 Nutace Nutace pohyb osy Země kolem střední polohy v důsledku působení Měsíce s periodou 18,61 roku Důsledek sklonu měsíční dráhy k ekliptice ~5 gravitační síla Slunce se snaží měsíční dráhu narovnat do roviny ekliptiky

27 Pohyb pólů První teorie Eulerova teorie (1756), Země rotuje jako tuhé těleso; perioda 305 dní 1884 Harrellow-Talcottova metoda 1892 S. T. Chandler, Jr. pohyb má dvě periody: roční závisí na pokrytí Země sněhem, klimatické změny během roku Chandlerova perioda ekvivalent Eulerovy periody (Země není tuhá, ale je deformována slapy 427 dní, rozdíl oproti 305 dnům v Eulerově teorii) Průměr oblasti, ve které se pól pohybuje je 15 m

28 Refrakce Jev způsobený atmosférou světlo prochází do hustšího prostředí lom ke kolmici; paprsek se zakřivuje a hvězda se jeví výše nad obzorem Roste se vzrůstající zenitovou vzdáleností zenit = 0, obzor 0,5

29 Refrakce Lom mezi vrstvami j a j+1: Úpravami dostaneme výsledný vztah pro refrakci: Urychluje východ a opožďuje západ nebeských těles Způsobuje deformaci Měsíce a Slunce nad obzorem

30 Měření vzdáleností v astronomii I. Nejjednodušší a nejstarší je tzv. paralaktická metoda; paralaxa míra vzdálenosti Malé vzdálenosti základnou je rovníkový poloměr Země (~70 AU, tzv. denní paralaxa) Větší vzdálenosti základnou je astronomická jednotka (vzdálenost Země Slunce), (>70 AU, tzv. roční paralaxa)

31 Měření vzdáleností v astronomii II. Paralaxy určované geometricky: denní paralaxa u blízkých těles sluneční soustavy vzniká vlivem rotace Země roční paralaxa vzniká u blízkých hvězd (~100 ly) sekulární paralaxa vzniká vlivem pohybu celé sluneční soustavy ekvatoreální horizontální paralaxa podrobněji dále

32 Měření vzdáleností v astronomii III. Paralaxy určované na základě fyzikálních vlastností tělesa: fotometrická paralaxa ze zdánlivé a absolutní hvězdné velikosti (m a M) lze určit vzdálenost dynamická paralaxa paralaxa určovaná z hmotnosti, úhlového rozměru velké poloosy a oběžné doby jednotlivých složek u vizuálních dvojhvězd spektroskopická paralaxa určení vzdálenosti pomocí referenční hvězdy, u které je vzdálenost určena přesně a mající stejné fyzikální vlastnosti jako hvězda zkoumaná Další metoda určování vzdáleností ve vesmíru je odraz radiových signálů od povrchu zkoumaného tělesa lze použít hlavně u bližších objektů ve, tj. sluneční soustavě

33 Ekvatoreální horizontální paralaxa I. Úhel pod kterým vidíme např. z Měsíce poloměr zemského rovníku Určení paralaxy (Měsíce): měřením polohy Měsíce v různých místech na Zemi ve stejný časový okamžik měřením z jednoho stanoviště určováním zenitových vzdáleností při průchodu a jistou dobu po průchodu meridiánem Střední paralaxa Měsíce 57 02,70 U ostatních těles sluneční soustavy je paralaxa mnohem menší, u Slunce 8,79

34 Ekvatoreální horizontální paralaxa II. Známe-li paralaxu tělesa a jeho zdánlivý poloměr, můžeme určit jak je těleso velké vzhledem k Zemi (např. Měsíc R = 1737 km): Skutečná vzdálenost plyne z paralaxy jednoduchou geometrií. Pro vzdálenost tělesa r platí:

35 Paralaxy a vzdálenosti některých blízkých hvězd Proxima Centauri 0,763 1,31 pc α Centauri 0,756 1,31 pc 61 Cygni 0,299 3,34 pc Sirius 0,376 2,66 pc Procyon 0,291 3,42 pc Vega 0,140 7,15 pc Polárka 0, ,00 pc

36 Určení astronomické jednotky I. Jako první se pokoušel určit vzdálenost Země Slunce Aristarchos ze Samu ve 3. stol. př. n. l. Měření úhlu ξ v okamžiku první, resp. poslední čtvrti v trojúhelníku ZMS

37 Určení astronomické jednotky II. Pomocí přechodu Venuše přes sluneční disk z různých míst na Zemi, celkem vzácný úkaz např. přechod nebo poslední Měření paralaxy planetek v blízkosti opozice, např. (433) Eros v třicátých letech nebo v roce 1970 u planetky (1566) Icarus V současnosti je nejpřesnější měření pomocí radarových pozorování

38 Jednotky vzdálenosti v astronomii Astronomická jednotka střední vzdálenost Země Slunce (1 AU = 1, m) Světelný rok vzdálenost, kterou uletí světlo ve vakuu za jeden rok (1 ly = 9, m) Parsek vzdálenost, ze které se jeví poloměr zemské dráhy pod úhlem jedné obloukové vteřiny (1 pc = 3, m) 1 pc = AU = 3,262 ly 1 ly = AU = 0,307 pc 1 AU = 0, pc = 0, ly

39 Příklady Vypočítejte čas západu a azimut zapadajícího Slunce v den podzimní rovnodennosti dne v místě o zeměpisné šířce ϕ = 50. Deklinace Slunce pro tento den byla δ = [t z = 18 h; A = 90 ] Určete, zda je možné pozorovat planetku s R. A. = 12 h 35 m a DECL. = ve 22:00 UT v místě o zeměpisné délce λ = 15 a šířce ϕ = 50. V 00:00 UT kulminují hvězdy s R. A. = 1 h 43 m. [Planetku není možné pozorovat, h = ]

40 Příklady vlastní výpočet Z předchozího příkladu určete čas východu a západu planetky, čas její svrchní kulminace, výšku nad obzorem v době svrchní kulminace a délku denního oblouku (denní oblouk je doba, po kterou těleso setrvává nad obzorem). Určete též v úhlové míře jak velkou část kružnice těleso po obloze opíše. [t v = 5h 34min; t z = 16h 30min; t k = 10h 52 min; h = ; délka denního oblouku je 11h 16 min; 167,4 ]

41 Příklady Vypočítejte vzdálenost a průměr Slunce, jestliže víte, že denní paralaxa Slunce je 8,79 a úhlový průměr Slunce je 30. [d = 1, km; r = 6, km] Roční paralaxa hvězdy Proxima Centauri je 0,763. Vypočítejte její vzdálenost v kilometrech, světelných rocích a parsecích. [4, km; 4,27 ly; 1,31 pc]

42 Příklady vlastní výpočet Roční paralaxa hvězdy Prokyon ze souhvězdí Malého psa má hodnotu 0,312 ± 0,006. Určete jeho vzdálenost a odpovídající chybu v určení této vzdálenosti. [(3,205 ± 0,062) pc] Jak velká by byla konstanta roční aberace na Venuši? Střední vzdálenost Slunce Venuše je 0,723 AU. [14,81 ]

Základní jednotky v astronomii

Základní jednotky v astronomii v01.00 Základní jednotky v astronomii Ing. Neliba Vlastimil AK Kladno 2005 Délka - l Slouží pro určení vzdáleností ve vesmíru Základní jednotkou je metr metr je definován jako délka, jež urazí světlo ve

Více

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ

HVĚZDNÁ OBLOHA, SOUHVĚZDÍ HVĚZDNÁ OBLOHA, SOUHVĚZDÍ Souhvězdí I. Souhvězdí je optické uskupení hvězd různých jasností na obloze, které mají přesně stanovené hranice Podle usnesení IAU je celá obloha rozdělena na 88 souhvězdí Ptolemaios

Více

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele

Korekce souřadnic. 2s [ rad] R. malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů. výška pozorovatele OPT/AST L07 Korekce souřadnic malé změny souřadnic, které je nutno uvažovat při stanovení polohy astronomických objektů výška pozorovatele konečný poloměr země R výška h objektu závisí na výšce s stanoviště

Více

Čas. John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou.

Čas. John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou. Čas John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo najednou. Čas John Archibald Wheeler: Čas - to je způsob, jakým příroda zajišťuje, aby se všechno neodehrálo

Více

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník

DUM č. 20 v sadě. 12. Fy-3 Průvodce učitele fyziky pro 4. ročník projekt GML Brno Docens DUM č. 20 v sadě 12. Fy-3 Průvodce učitele fyziky pro 4. ročník Autor: Miroslav Kubera Datum: 21.06.2014 Ročník: 4B Anotace DUMu: Prezentace je zaměřena na základní popis a charakteristiky

Více

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Téma: Světlo a stín. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Téma: Světlo a stín Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Objekty na nebeské sféře září ve viditelném spektru buď vlastním světlem(hvězdy, galaxie) nebo světlem odraženým(planety, planetky, satelity).

Více

Část A strana A 1. (14 b) (26 b) (60 b) (100 b)

Část A strana A 1. (14 b) (26 b) (60 b) (100 b) Část A strana A 1 Bodové hodnocení vyplňuje komise! část A B C Celkem body (14 b) (26 b) (60 b) (100 b) Pokyny k testovým otázkám: U následujících otázek zakroužkuj vždy právě jednu správnou odpověď. Zmýlíš-li

Více

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku

Obr. 4 Změna deklinace a vzdálenosti Země od Slunce v průběhu roku 4 ZÁKLADY SFÉRICKÉ ASTRONOMIE K posouzení proslunění budovy nebo oslunění pozemku je vždy nutné stanovit polohu slunce na obloze. K tomu slouží vztahy sférické astronomie slunce. Pro sledování změn slunečního

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Geodetická astronomie 3/6 Aplikace keplerovského pohybu

Více

Soutěžní úlohy části A a B (12. 6. 2012)

Soutěžní úlohy části A a B (12. 6. 2012) Soutěžní úlohy části A a B (1. 6. 01) Pokyny k úlohám: Řešení úlohy musí obsahovat rozbor problému (náčrtek dané situace), základní vztahy (vzorce) použité v řešení a přesný postup (stačí heslovitě). Nestačí

Více

I Mechanika a molekulová fyzika

I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I Mechanika a molekulová fyzika Úloha č.: XVII Název: Studium otáčení tuhého tělesa Pracoval: Pavel Brožek stud. skup. 12

Více

Sluneční hodiny na školní zahradě. vlastimil.santora@krizik.eu vlasta.santora@centrum.cz

Sluneční hodiny na školní zahradě. vlastimil.santora@krizik.eu vlasta.santora@centrum.cz Sluneční hodiny na školní zahradě vlastimil.santora@krizik.eu vlasta.santora@centrum.cz Co nás čeká a (snad) nemine Základní pojmy Ukázky typů slunečních hodin Stručná historie času no dobrá, tak aspoň

Více

HOVORKOVÁ M., LINC O.: OPTICKÉ ÚKAZY V ATMOSFÉŘE

HOVORKOVÁ M., LINC O.: OPTICKÉ ÚKAZY V ATMOSFÉŘE OPTICKÉ ÚKAZY V ATMOSFÉŘE M. Hovorková, O. Linc 4. D, Gymnázium Na Vítězné pláni 1126, Praha 4, šk. rok 2005/2006 Abstrakt: Článek se zabývá vysvětlením několika světelných jevů, viditelných na obloze.

Více

Měření indexu lomu kapaliny pomocí CD disku

Měření indexu lomu kapaliny pomocí CD disku Měření indexu lomu kapaliny pomocí CD disku Online: http://www.sclpx.eu/lab4r.php?exp=1 Tento experiment vychází svým principem z klasického experimentu měření vlnové délky světla pomocí CD disku, který

Více

Astronomie jednoduchými prostředky. Miroslav Jagelka

Astronomie jednoduchými prostředky. Miroslav Jagelka Astronomie jednoduchými prostředky Miroslav Jagelka 20.10.2016 Když si vystačíte s kameny... Stonehenge (1600-3100 BC) Pyramidy v Gize (2550 BC) El Castilllo (1000 BC) ... nebo s hůlkou Gnomón (5000 BC)

Více

Věra Keselicová. duben 2013

Věra Keselicová. duben 2013 VY_52_INOVACE_VK50 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová duben 2013 7. ročník

Více

Témata semestrálních prací:

Témata semestrálních prací: Témata semestrálních prací: 1. Balistická raketa v gravitačním poli Země zadal Jiří Novák Popište pohyb balistické rakety vystřelené ze zemského povrchu v gravitačním poli Země. Sestavte model této situace

Více

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace

Česká astronomická společnost http://www.astro.cz http://olympiada.astro.cz Krajské kolo 2013/14, kategorie GH (6. a 7. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max. 25 b) B I: (max. 20 b) B

Více

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou:

ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVÝ TOK - Φ e : Podíl zářivé energie E e a doby t, za kterou projde záření s touto energií danou plochou: ZÁŘIVOST - I e : Podíl té části zářivého toku Φ e, který vychází ze zdroje do malého prostorového

Více

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku

Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Nejdůležitější pojmy a vzorce učiva fyziky II. ročníku V tomto článku uvádíme shrnutí poznatků učiva II. ročníku

Více

Přírodní zdroje. K přírodním zdrojům patří například:

Přírodní zdroje. K přírodním zdrojům patří například: 1. SVĚTELNÉ ZDROJE. ŠÍŘENÍ SVĚTLA Přes den vidíme předměty ve svém okolí, v noci je nevidíme, je tma. V za temněné učebně předměty nevidíme. Když rozsvítíme svíčku nebo žárovku, vidíme nejen svítící těleso,

Více

geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl

geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl 82736-250px-coronelli_celestial_globe Geografie=Zeměpis geografie, jest nauka podávající nám, jak sám název značí-popis země; avšak obsah a rozsah tohoto popisu byl a posud do jisté míry jest sporný Topografie

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 05_2_Kinematika hmotného bodu Ing. Jakub Ulmann 2 Kinematika hmotného bodu Nejstarším odvětvím fyziky,

Více

Identifikace. Přehledový test (online)

Identifikace. Přehledový test (online) Identifikace Na každý list se zadním nebo řešením napiš dolů svoje jméno a identifiktor. Neoznačené listy nebudou opraveny! Žk jméno: příjmení: identifiktor: Škola nzev: město: PSČ: Hodnocení A B C D E

Více

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1

PLANETA ZEMĚ A JEJÍ POHYBY. Maturitní otázka č. 1 PLANETA ZEMĚ A JEJÍ POHYBY Maturitní otázka č. 1 TVAR ZEMĚ Geoid = skutečný tvar Země Nelze vyjádřit matematicky Rotační elipsoid rovníkový poloměr = 6 378 km vzdálenost od středu Země k pólu = 6 358 km

Více

Zpracoval Zdeněk Hlaváč. 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli.

Zpracoval Zdeněk Hlaváč. 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli. Teoretické otázky ke zkoušce z NEBESKÉ MECHANIKY Zpracoval Zdeněk Hlaváč A) Základní formulace 1. Definujte hlavní kružnici kulové plochy. Uveďte příklady hlavních kružnic na zeměkouli. 2. Popište pojmy

Více

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km.

9. Astrofyzika. 9.4 Pod jakým úhlem vidí průměr Země pozorovatel na Měsíci? Vzdálenost Měsíce od Země je 384 000 km. 9. Astrofyzika 9.1 Uvažujme hvězdu, která je ve vzdálenosti 4 parseky od sluneční soustavy. Určete: a) jaká je vzdálenost této hvězdy vyjádřená v kilometrech, b) dobu, za kterou dospěje světlo z této hvězdy

Více

Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH

Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH Vzorové řešení příkladů korespondenčního kola Astronomické olympiády 2010/11, kategorie GH A) Sluneční soustava II. Sluneční erupce Slunce je aktivní hvězdou, na jejímž povrchu můžeme čas od času pozorovat

Více

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

GRAVITAČNÍ POLE. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník GRAVITAČNÍ POLE Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Gravitace Vzájemné silové působení mezi každými dvěma hmotnými body. Liší se od jiných působení. Působí vždy přitažlivě. Působí

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

ČAS, KALENDÁŘ A ASTRONOMIE

ČAS, KALENDÁŘ A ASTRONOMIE ČAS, KALENDÁŘ A ASTRONOMIE Čas Založen na základě praktických zkušeností s následností dějů Je vzájemně vázán s existencí hmoty a prostoru, umožňuje rozhodnout o následnosti dějů, neexistuje možnost zpětné

Více

Vlastivěda není věda II. Planeta Země. Milena Hanáková, Oldřich Kouřimský

Vlastivěda není věda II. Planeta Země. Milena Hanáková, Oldřich Kouřimský Vlastivěda není věda II. Planeta Země Milena Hanáková, Oldřich Kouřimský 3 Publikace vznikla díky podpoře Magistrátu Hlavního města Prahy. Vytvoření odborného textu: Milena Hanáková, Oldřich Kouřimský

Více

v02.00 Zatmění Slunce Jiří Šála AK Kladno 2009

v02.00 Zatmění Slunce Jiří Šála AK Kladno 2009 v02.00 Zatmění Slunce Jiří Šála AK Kladno 2009 Trocha historie Nejstarší záznamy o pozorování tohoto jevu pochází z čínských kronik 22.10. 2137 př.n.l. Analogické odkazy lze najít ve starověké Mezopotámii

Více

Hledejte kosmickou plachetnici

Hledejte kosmickou plachetnici ASTRONOMICKÉ informace - 3/2011 Hvězdárna v Rokycanech, Voldušská 721, 337 11 Rokycany http://hvr.cz Hledejte kosmickou plachetnici Kosmická sonda NASA pojmenovaná Nano Sail-D rozvinula na oběžné dráze

Více

Identifikace práce prosíme vyplnit čitelně tiskacím písmem

Identifikace práce prosíme vyplnit čitelně tiskacím písmem Identifikace práce prosíme vyplnit čitelně tiskacím písmem Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na /korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ

Více

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA

ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA ŠROUBOVÝ A PROSTOROVÝ POHYB ROTAČNĚ SYMETRICKÉHO TĚLESA Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Pojem šroubového pohybu Šroubový pohyb je definován jako pohyb, jejž lze ve vhodném referenčním bodě rozložit

Více

Identifikace práce. B III: (max. 18b)

Identifikace práce. B III: (max. 18b) vyplňuje žák čitelně tiskacím písmem. Identifikace práce Žák identifikátor / jméno příjmení rok narození* (*nehodící se škrtni, identifikační číslo obdržíš po vyřešení části online) Pokud jsi část řešil(a)

Více

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny

λ, (20.1) 3.10-6 infračervené záření ultrafialové γ a kosmické mikrovlny Elektromagnetické vlny Optika, část fyziky zabývající se světlem, patří spolu s mechanikou k nejstarším fyzikálním oborům. Podle jedné ze starověkých teorií je světlo vyzařováno z oka a oko si jím ohmatává

Více

Světlo v multimódových optických vláknech

Světlo v multimódových optických vláknech Světlo v multimódových optických vláknech Tomáš Tyc Ústav teoretické fyziky a astrofyziky, Masarykova univerzita, Kotlářská 2, 61137 Brno Úvod Optické vlákno je pozoruhodný fyzikální systém: téměř dokonalý

Více

Experimentální metody EVF II.: Mikrovlnná

Experimentální metody EVF II.: Mikrovlnná Experimentální metody EVF II.: Mikrovlnná měření parametrů plazmatu Vypracovali: Štěpán Roučka, Jan Klusoň Zadání: Měření admitance kolíku impedančního transformátoru v závislosti na hloubce zapuštění.

Více

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu

Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I. Mechanika hmotného bodu Elektronický učební text pro podporu výuky klasické mechaniky pro posluchače učitelství I Mechanika hmotného bodu Autor: Kateřina Kárová Text vznikl v rámci bakalářské práce roku 2006. Návod na práci s

Více

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ

VY_32_INOVACE_06_III./20._SOUHVĚZDÍ VY_32_INOVACE_06_III./20._SOUHVĚZDÍ Severní obloha Jižní obloha Souhvězdí kolem severního pólu Jarní souhvězdí Letní souhvězdí Podzimní souhvězdí Zimní souhvězdí zápis Souhvězdí Severní hvězdná obloha

Více

Název: Jak si vyrobit sluneční hodiny?

Název: Jak si vyrobit sluneční hodiny? Výukové materiály Název: Jak si vyrobit sluneční hodiny? Téma: Měření času, střídání dne a noci, střídání ročních období (RVP: Vesmír) Úroveň: 2. stupeň ZŠ Tematický celek: Vidět a poznat neviditelné Předmět

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Identifikace práce. POZOR, nutné vyplnit čitelně! vyplňuje hodnotící komise A I: A II: B I: B II: C: D I: D II: Σ:

Identifikace práce. POZOR, nutné vyplnit čitelně! vyplňuje hodnotící komise A I: A II: B I: B II: C: D I: D II: Σ: vyplňuje žák Identifikace práce POZOR, nutné vyplnit čitelně! Žák jméno příjmení věk Bydliště ulice, č.p. město PSČ jiný kontakt (např. e-mail) vyplňuje škola Učitel jméno příjmení podpis Škola ulice,

Více

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima

KULOVÁ ZRCADLA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima KULOVÁ ZRCADLA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - Septima Zakřivená zrcadla Zrcadla, která nejsou rovinná Platí pro ně zákon odrazu, deformují obraz My se budeme zabývat speciálním typem zakřivených

Více

VESMÍR Hvězdy. Životní cyklus hvězdy

VESMÍR Hvězdy. Životní cyklus hvězdy VESMÍR Hvězdy Pracovní list HEUREKA! aneb podpora badatelských aktivit žáků ZŠ v přírodovědných předmětech ASTRONOMIE Úloha 1. Ze života hvězdy. Úloha 1a. Očísluj jednotlivé fáze vývoje hvězdy. Následně

Více

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů.

Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů. Měření horizontálních a vertikálních úhlů Úhloměrné přístroje a jejich konstrukce Horizontace a centrace Přesnost a chyby v měření úhlů Kartografie přednáška 10 Měření úhlů prostorovou polohu směru, vycházejícího

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Fyzika 3. období 8. ročník M.Macháček : Fyzika pro ZŠ a VG 7/1 (Prometheus), M.Macháček : Fyzika pro ZŠ a VG 7/2 (Prometheus) M.Macháček : Fyzika 8/1

Více

Interpretace pozorování planet na obloze a hvězdné obloze

Interpretace pozorování planet na obloze a hvězdné obloze Interpretace pozorování planet na obloze a hvězdné obloze - role vztažné soustavy - modely Sluneční soustavy stejná pozorování je možné vysvětlit různými modely! heliocentrický x geocentrický model Tanec

Více

Zobrazení. Geografická kartografie Přednáška 4

Zobrazení. Geografická kartografie Přednáška 4 Zobrazení Geografická kartografie Přednáška 4 kartografické zobrazení způsob, který každému bodu na referenční ploše přiřazuje právě jeden bod na zobrazovací ploše (výjimkou jsou ovšem singulární body)

Více

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202

KINEMATIKA 2. DRÁHA. Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 KINEMATIKA 2. DRÁHA Mgr. Jana Oslancová VY_32_INOVACE_F1r0202 OPAKOVÁNÍ ZÁKLADNÍCH POJMŮ Otázka 1: Co znamená pojem hmotný bod a proč jej zavádíme? Uveď praktické příklady. Otázka 2: Pomocí čeho udáváme

Více

Téma: Časomíra. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc

Téma: Časomíra. Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Téma: Časomíra Zpracoval Doc. RNDr. Zdeněk Hlaváč, CSc Jakákoliv změna fyzikální veličiny se kvantifikuje pomocí kategorie, kterou nazýváme čas. Například při pohybu hmotného bodu se mění jeho poloha.

Více

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I

GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JAN FIXEL, RADOVAN MACHOTKA GEODETICKÁ ASTRONOMIE A KOSMICKÁ GEODEZIE I MODUL 01 SFÉRICKÁ ASTRONOMIE STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Astronomický rok 2015

Astronomický rok 2015 Astronomický rok 2015 V následujícím článku jsou vybrány nejzajímavější nebeské úkazy a události vztahující se k astronomii, které nám nabídne nadcházející rok. Dnes si projdeme první pololetí 2015. Ze

Více

11. Geometrická optika

11. Geometrická optika Trivium z optiky 83 Geometrická optika V této a v následující kapitole se budeme zabývat studiem světla v situacích, kdy je možno zanedbat jeho vlnový charakter V tomto ohledu se obě kapitoly podstatně

Více

Slovo úvodem 9 1 Klasická astronomie, nebeská mechanika 11 1.1 Časomíra...... 11 1.1.1 Sluneční hodiny.... 11 1.1.2 Pravý místní sluneční čas versus pásmový středoevropský čas.. 13 1.1.3 Přesnější definice

Více

Astronomie, sluneční soustava

Astronomie, sluneční soustava Základní škola Nový Bor, náměstí Míru 128, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 010; fax: 487 722 378 Registrační číslo: CZ.1.07/1.4.00/21.3267

Více

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.

Řešení úloh celostátního kola 55. ročníku fyzikální olympiády. Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

Geodetické polohové a výškové vytyčovací práce

Geodetické polohové a výškové vytyčovací práce Geodézie přednáška 3 Geodetické polohové a výškové vytyčovací práce Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Geodetické vytyčovací práce řeší úlohu

Více

Soustředění 2014/15, kategorie CD, EF, Valašské Meziříčí června 2015

Soustředění 2014/15, kategorie CD, EF, Valašské Meziříčí června 2015 . Soustředění 2014/15, kategorie CD, EF, Valašské Meziříčí 7. - 10. června 2015 část A 1. příklad Planetka má shodnou hustotu jako Země, ale její poloměr je 100krát menší (předpokládejme, že má kulový

Více

Výuka astronomie na základních školách v České republice můžeme být spokojeni?

Výuka astronomie na základních školách v České republice můžeme být spokojeni? Astronomické vzdelávanie Školská fyzika 2013 / 6 Výuka astronomie na základních školách v České republice můžeme být spokojeni? Miroslav Randa 1, Fakulta pedagogická Západočeské univerzity v Plzni Astronomie

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK. Fyzika Orientace na obloze

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK. Fyzika Orientace na obloze Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.35 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Orientace na

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV VÝROBNÍCH STROJŮ, SYSTÉMŮ A ROBOTIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF PRODUCTION MACHINES,

Více

Martin Blažek. Astronomický Ústav UK

Martin Blažek. Astronomický Ústav UK ORLOJ Martin Blažek Astronomický Ústav UK 1) Principy astrolábu 2) Astronomický ciferník orloje 3) Kalendářní ciferník orloje 4) Co není vidět 5) Původ orloje 6) Pražské povstání 7) QUIZ 1. Principy astrolábu

Více

3 Elektromagnetické vlny ve vakuu

3 Elektromagnetické vlny ve vakuu 3 Elektromagnetické vlny ve vakuu Od mechanických vln s pružinkami a závažími se nyní přesuneme k vlnám elektromagnetickým. Setkáváme se s nimi na každém kroku radiové vlny, mikrovlny, světlo nebo třeba

Více

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o.

Nabídka. nových vzdělávacích programů. Hvězdárny Valašské Meziříčí, p. o. Nabídka nových vzdělávacích programů Hvězdárny Valašské Meziříčí, p. o. Ballnerova hvězdárna Sluneční analematické hodiny Vážení přátelé, příznivci naší hvězdárny, kolegové, jsme velmi potěšeni, že Vám

Více

Zajímavosti: Zákryty hvězd transneptunickými tělesy

Zajímavosti: Zákryty hvězd transneptunickými tělesy http:/hvr.cz Únor 2010 (2) Zajímavosti: Zákryty hvězd transneptunickými tělesy V nedávné době se objevily informace o dvou pozorováních, která byla uskutečněna zcela odlišně, ale jejich společným ukazatelem

Více

SVĚTLO / ZÁKON ODRAZU

SVĚTLO / ZÁKON ODRAZU SVĚTLO / ÁKON ODRAU foto: zdroj www.google.cz foto: zdroj www.google.cz 1 ÁKON ODRAU dopadá-li světlo na těleso: - část světla se od povrchu tělesa odráží - část se v tělese pohlcuje - část tělesem prochází

Více

Astrooptika Jaroslav Řeháček

Astrooptika Jaroslav Řeháček Astrooptika Jaroslav Řeháček katedra optiky, PřF Univerzity Palackého v Olomouci Obsah Historický vývoj Trochu teorie Refraktory Reflektory Katadioptrické systémy Moderní astrooptika Velké pozemské teleskopy

Více

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA

ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA ASTRONOMICKÉ ÚLOHY A WEBOVÉ ONLINE APLIKACE NA ASTRONOMIA Ota Kéhar Oddělení fyziky Katedry matematiky, fyziky a technické výchovy ZČU v Plzni Abstrakt: V příspěvku představím několik webových online aplikací

Více

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr

Fyzikální praktikum 2. 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Ústav fyziky kondenzovaných látek Přírodovědecká fakulta, Masarykova univerzita, Brno Fyzikální praktikum 9. Závislost indexu lomu skla na vlnové délce. Refraktometr Úkoly k měření Povinná část Měření

Více

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ

Složení hvězdy. Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Hvězdy zblízka Složení hvězdy Hvězda - gravitačně vázaný objekt, složený z vysokoteplotního plazmatu; hmotnost 0,08 M ʘ cca 150 M ʘ, ale R136a1 (LMC) má 265 M ʘ Plazma zcela nebo částečně ionizovaný plyn,

Více

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK

Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Identifikace vzdělávacího materiálu VY_52_INOVACE_F.9.A.34 EU OP VK Škola, adresa Autor ZŠ Smetanova 1509, Přelouč Mgr. Ladislav Hejný Období tvorby VM Červen 2012 Ročník 9. Předmět Fyzika Hvězdy Název,

Více

Fyzika I (mechanika a molekulová fyzika NOFY021)

Fyzika I (mechanika a molekulová fyzika NOFY021) Fyzika I (mechanika a molekulová fyzika NOFY01) Jakub Čížek katedra fyziky nízkých teplot Tel: 1 91 788 jakub.cizek@mff.cuni.cz http://www.kfnt.mff.cuni.cz výuka Fyzika I (mechanika a molekulová fyzika)

Více

CZECH REPUBLIC. Pravidla soutěže týmů

CZECH REPUBLIC. Pravidla soutěže týmů Pravidla soutěže týmů 1. Soutěže týmů se mohou účastnit týmy tří a více studentů. 2. Tým dostane sadu 5 úloh, na jejichž řešení má 60 minut. 3. O výsledku týmů rozhoduje celkový součet bodů za všech 5

Více

TERÉNNÍ ČÁST. Celkem 30 bodů. S výjimkou práce v terénu v úkolu 2 pracujte samostatně.

TERÉNNÍ ČÁST. Celkem 30 bodů. S výjimkou práce v terénu v úkolu 2 pracujte samostatně. TERÉNNÍ ČÁST Celkem 30 bodů S výjimkou práce v terénu v úkolu 2 pracujte samostatně. 1 12 bodů MAPOVÁNÍ ZMĚN MĚSTSKÉ KRAJINY (autor: J. Kabrda, autor map: J. D. Bláha) Pomůcky: Dodané organizátorem: list

Více

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace

Krajské kolo 2013/14, kategorie EF (8. a 9. třída ZŠ) Identifikace Identifikace Žák/yně jméno příjmení identifikátor Identifikátor zjistíš po přihlášení na http://olympiada.astro.cz/korespondencni. Jeho vyplnění je nutné. Škola ulice, č.p. město PSČ Hodnocení A: (max.

Více

Mendelova zemědělská a lesnická univerzita v Brně

Mendelova zemědělská a lesnická univerzita v Brně Mendelova zemědělská a lesnická univerzita v Brně Bobtnání dřeva Fyzikální vlastnosti dřeva Protokol č.3 Vypracoval: Pavel Lauko Datum cvičení: 24.9.2002 Obor: DI Datum vyprac.: 10.12.02 Ročník: 2. Skupina:

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou

ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.

Více

České vysoké učení technické v Praze. Vývoj systému pro automatické určování azimutu z měření na Slunce

České vysoké učení technické v Praze. Vývoj systému pro automatické určování azimutu z měření na Slunce České vysoké učení technické v Praze fakulta stavební Vývoj systému pro automatické určování azimutu z měření na Slunce Developement of system for automatic azimuth determination based on Sun observations

Více

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků

Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Geodézie přednáška 9 Určování výměr Srážka mapového listu Výpočet objemů Dělení pozemků Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Určování výměr určování

Více

Zdeněk Halas. Aplikace matem. pro učitele

Zdeněk Halas. Aplikace matem. pro učitele Obyčejné diferenciální rovnice Nejzákladnější aplikace křivky Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Obyčejné diferenciální rovnice Aplikace matem. pro

Více

APLIKOVANÁ OPTIKA A ELEKTRONIKA

APLIKOVANÁ OPTIKA A ELEKTRONIKA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MILOSLAV ŠVEC A JIŘÍ VONDRÁK APLIKOVANÁ OPTIKA A ELEKTRONIKA MODUL 01 OPTICKÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

CVIČENÍ č. 3 STATIKA TEKUTIN

CVIČENÍ č. 3 STATIKA TEKUTIN Rovnováha, Síly na rovinné stěny CVIČENÍ č. 3 STATIKA TEKUTIN Příklad č. 1: Nákladní automobil s cisternou ve tvaru kvádru o rozměrech H x L x B se pohybuje přímočarým pohybem po nakloněné rovině se zrychlením

Více

Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 21. III. E

Fyzikální korespondenční seminář UK MFF http://fykos.mff.cuni.cz 21. III. E 21. ročník, úloha III. E... zkoumáme pohyb Slunce (8 bodů; průměr 2,88; řešilo 16 studentů) Změřte co nejpřesněji výšku Slunce nad obzorem v pravé poledne a dobu od východu středu slunečního disku do jeho

Více

8 b) POLARIMETRIE. nepolarizovaná vlna

8 b) POLARIMETRIE. nepolarizovaná vlna 1. TEORETICKÝ ÚVO Rotační polarizace Světlo má zároveň povahu vlnového i korpuskulárního záření. V optických jevech se světlo chová jako příčné vlnění, přičemž světelné kmity probíhají všemi směry a směr

Více

Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace

Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace Základní škola, Ostrava-Poruba, I. Sekaniny 1804, příspěvková organizace Název projektu Zkvalitnění vzdělávání na ZŠ I.Sekaniny - Škola pro 21. století Registrační číslo projektu CZ.1.07/1.4.00/21.1475

Více

Planeta Země. Pohyby Země a jejich důsledky

Planeta Země. Pohyby Země a jejich důsledky Planeta Země Pohyby Země a jejich důsledky Pohyby Země Planeta Země je jednou z osmi planet Sluneční soustavy. Vzhledem k okolnímu vesmíru je v neustálém pohybu. Úkol 1: Které pohyby naše planeta ve Sluneční

Více

Alexander Kupčo. typů od malých protoplanetárních mlhovin, hvězdy - zbytku po výbuchu supernovy. obrovských dalekohledů.

Alexander Kupčo. typů od malých protoplanetárních mlhovin, hvězdy - zbytku po výbuchu supernovy. obrovských dalekohledů. Hvězdné hřbitovy pod křídlem Labutě Alexander Kupčo Souhvězdí Labutě je díky své rozlehlosti a své poloze v bohaté části Mléčné dráhy plné mlhovin a otevřených hvězdokup. I zde však nalezneme, hlavně ve

Více

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) Identifikace

Krajské kolo 2014/15, kategorie EF (8. a 9. třída ZŠ) Identifikace Žák A Astronomická Identifikace jméno: příjmení: identifikátor: Škola název: město: PSČ: Hodnocení A B C D Σ (100 b.) Účast v AO se řídí organizačním řádem, č.j. MŠMT 14 896/2012-51. Organizační řád a

Více

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika

R10 F Y Z I K A M I K R O S V Ě T A. R10.1 Fotovoltaika Fyzika pro střední školy II 84 R10 F Y Z I K A M I K R O S V Ě T A R10.1 Fotovoltaika Sluneční záření je spojeno s přenosem značné energie na povrch Země. Její velikost je dána sluneční neboli solární

Více

Měření ohniskových vzdáleností čoček, optické soustavy

Měření ohniskových vzdáleností čoček, optické soustavy Úloha č. 9 Měření ohniskových vzdáleností čoček, optické soustavy Úkoly měření: 1. Stanovte ohniskovou vzdálenost zadaných tenkých čoček na základě měření předmětové a obrazové vzdálenosti: - zvětšeného

Více

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře

Čas a kalendář. důležitá aplikace astronomie udržování časomíry a kalendáře OPT/AST L08 Čas a kalendář důležitá aplikace astronomie udržování časomíry a kalendáře čas synchronizace s rotací Země vzhledem k jarnímu bodu vzhledem ke Slunci hvězdný čas definován jako hodinový úhel

Více