Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Rozměr: px
Začít zobrazení ze stránky:

Download "Téma 2: Pravděpodobnostní vyjádření náhodných veličin"

Transkript

1 Nominální napětí v pásnici Std Mean Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola báňská Technická univerzita Ostrava

2 Osnova přednášky Náhodný jev, pravděpodobnost náhodného jevu Náhodná veličina: diskrétní spojitá Základní pojmy teorie : Rozdělení : Parametrické Neparametrické (empirické) Pravděpodobnostní funkce Hustota rozdělení Distribuční funkce Aproximace omezených rozdělení, histogramy Náhodná veličina v pravděpodobnostním výpočtu Pravděpodobnostní vyjádření náhodných veličin 1 / 22

3 Pravděpodobnost Náhodným jevem se rozumí opakovatelná činnost prováděná za stejných (nebo přibližně stejných) podmínek, jejíž výsledek je nejistý a závisí na náhodě. Příklady mohou být například házení kostkou, střelba do terče nebo losování loterie. Pravděpodobnost náhodného jevu je číslo, udávající s jakou jistotou lze daný náhodný jev očekávat. Míra náleží do uzavřeného intervalu <0, 1>, kde nula znamená, že událost nemůže nastat a jednička, že jev je jistý. Lze vyjádřit i procentuálně (po vynásobení 100) V teorii spolehlivosti konstrukcí např. kde P f P s P f... pravděpodobnost, že nastane porucha P s... pravděpodobnost, že konstrukce zůstane zachovaná Základní principy teorie 2 / 22 1

4 Náhodná veličina Náhodná veličina je libovolná reálná funkce X definovaná na množině elementárních jevů ω pravděpodobnostního prostoru Ω. Náhodná veličina je určena rozdělením. Spojité a diskrétní veličiny: Náhodné veličiny lze rozdělit na nespojité (diskrétní) a spojité. Diskrétní veličiny mohou nabývat pouze početný počet hodnot (konečný i nekonečný), zatímco spojité veličiny nabývají hodnoty z intervalu (konečného nebo nekonečného). Obor všech hodnot náhodné veličiny se nazývá definičním oborem. Příklad: Výskyt daného jevu lze označit hodnotou 1. Pokud k výskytu daného jevu nedojde, náhodné veličině se přiřadí hodnota 0. Jedná se tedy o diskrétní náhodnou veličinu, která nabývá pouze hodnoty 0 nebo 1. Základní principy teorie 3 / 22

5 Náhodná veličina P (x ) 0,180 0,165 Pravděpodobnostní funkce hodu kostkou Rozdělení diskrétní náhodné veličiny 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 0,030 0,015 0, x Rozdělení spojité náhodné veličiny Základní principy teorie 4 / 22

6 Rozdělení, pravděpodobnostní funkce Rozdělení náhodné veličiny je pravidlo, kterým se každému jevu popisovanému touto veličinou přiřadí určitá pravděpodobnost. Rozdělení náhodné veličiny lze získat, pokud se každé hodnotě diskrétní náhodné veličiny, popř. intervalu hodnot spojité náhodné veličiny, přiřadí pravděpodobnost s pomocí pravděpodobnostní funkce P(x). Znalost pravděpodobnostní funkce lze použít k výpočtu. Např. pravdě- x podobnost, že náhodná veličina X leží mezi hodnotami x 1 a x 2 se určí: P 2 x x x Px 1 2 x xx 1 P(x) x 1 P(x 1 ) x 2 P(x 2 ) x n P(x n ) Základní principy teorie 5 / 22

7 Distribuční funkce diskrétní veličiny Pomocí pravděpodobnostní funkce lze zavést tzv. distribuční funkci vztahem: F x P X x Distribuční funkce je neklesající a je spojitá zleva. Hodnoty distribuční funkce leží v rozsahu x 1 0 F Pro diskrétní náhodnou veličinu X lze pro libovolné reálné číslo x vyjádřit distribuční funkci vztahem F x tx P t Vlastnosti Jestliže hodnoty náhodné veličiny leží v intervalu <a,b), pak F(a) = 0 a F(b) = 1. Základní principy teorie 6 / 22

8 Pravděpodobnostní a distribuční funkce hodu kostkou P (x ) 0,180 Pravděpodobnostní funkce hodu kostkou Pravděpodobnostní funkce 0,165 0,150 0,135 0,120 0,105 0,090 0,075 0,060 0,045 F (x ) 1,000 Distribuční funkce hodu kostkou 0,030 0,015 0,800 0, x 0,600 0,400 0,200 Distribuční funkce 0, x Základní principy teorie 7 / 22

9 Hustota rozdělení Rozdělení spojité náhodné veličiny se určuje prostřednictvím funkce, kterou označujeme jako hustota rozdělení (hustota ). Je-li (x) hustota spojité náhodné veličiny X, pak platí kde Ω je definiční obor veličiny X. xdx 1 (Pro hodnoty x mimo definiční obor Ω je hustota nulová). Ze znalosti hustoty (x) lze určit pravděpodobnost, že náhodná veličina X bude mít hodnotu z intervalu <x 1,x 2 >, tedy P 2 x X x x 1 2 dx x x 1 Základní principy teorie 8 / 22

10 Distribuční funkce spojité veličiny Pro spojitou náhodnou veličinu s hustotou (x) lze definovat distribuční funkci vztahem F x t dt Vlastnosti Platí, že F 0 a F 1. Distribuční funkci lze použít k výpočtu, neboť P x X x Fx F x1 Lze dokázat, že mezi hustotou (x) a distribuční funkcí F(x) platí vztah x x df dx Základní principy teorie 9 / 22

11 Distribuční funkce spojité veličiny Pravděpodobnostní funkce Distribuční funkce Základní principy teorie 10 / 22

12 Parametrická rozdělení spojité náhodné veličiny Důležitá spojitá rozdělení : Rovnoměrné rozdělení Normální rozdělení (Gaussovo rozdělení) Exponenciální rozdělení Laplaceovo rozdělení Std Variable 1 Mean Std Logistické rozdělení Charakteristiky rozdělení náhodné veličiny - Maxwellovo rozdělení parametry (např. střední hodnota a směrodatná Studentovo rozdělení odchylka) Fischerovo-Snedecorovo rozdělení χ² rozdělení (Chí kvadrát) Pravděpodobnostní vyjádření náhodných veličin 11 / 22

13 Parametrická rozdělení spojité náhodné veličiny Obecný vzorec funkce hustoty normálního (Gaussova) rozdělení... střední hodnota... směrodatná odchylka f x 1 2 2, x e 2 2 0,1 0,09 0,08 0,07 1 n n i 1 ln x i s=0.5 s=0.75 s=1 Obecný vzorec funkce hustoty lognormálního rozdělení f ln x 1 2 2, x x e 2 2 0,06 0,05 0,04 0,03 0,02 0, lnx i n i 1 0,1 1,1 2,1 3,1 4,1 5,1 n 2 Pravděpodobnostní vyjádření náhodných veličin 12 / 22

14 (Ne)parametrické rozdělení Parametrická rozdělení popsány analytickou funkcí např. obecný vzorec funkce hustoty normálního (Gaussova) rozdělení Parametry - charakteristiky rozdělení náhodné veličiny (např. střední hodnota a směrodatná odchylka) f x 1 2 2, x e 2 2 Nominální napětí v pásnici Neparametrické (empirické) rozdělení 0.02 Std Mean Std Mez kluzu Std Mean Std definovány na základě měření, často i dlouhodobých Pravděpodobnostní vyjádření náhodných veličin 13 / 22

15 Omezení definičního oboru rozdělení spojité náhodné veličiny Neomezený obor rozdělení náhodné spojité veličiny Omezený obor rozdělení náhodné spojité veličiny Pravděpodobnostní vyjádření náhodných veličin 14 / 22

16 Omezení definičního oboru rozdělení Omezení rozsahu definičního oboru rozdělení z důvodu počítačové interpretace: Rozsah datových typů: Celočíselné typy: Byte (8 bitů 1 bajt) 0 až 255 Integer (16 bitů 2 bajty) až Word (16 bitů 2 bajty) 0 až Integer (32 bitů 4 bajty) až Typy s plovoucí čárkou: Float (32 bitů 4 bajty) ±3, až 3, Double (64 bitů 8 bajtů) ±1, až 1, Long double (80 bitů 10 bajtů) ±3, až 3, Pravděpodobnostní vyjádření náhodných veličin 15 / 22

17 Aproximace omezených rozdělení, histogramy 1. Původní (originální) rozdělení 2. Diskrétní (discrete) rozdělení 3. Čistě diskrétní (pure discrete) rozdělení 4. Po částech rovnoměrné rozdělení Pravděpodobnost (četnost) Intenzita Pravděpodobnostní vyjádření náhodných veličin 16 / 22

18 Náhodná veličina v pravděpodobnostním výpočtu Stochastické vyjádření náhodné veličiny - variabilní hodnotou (matematickým popisem náhodných vlastností): Pravděpodobnostní funkcí Rozdělením Histogramem Pravděpodobnostní vyjádření náhodných veličin 17 / 22

19 Histogram omezeného rozdělení Histogram omezeného diskrétního (discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 18 / 22

20 Histogram omezeného rozdělení Histogram aproximace parametrického rozdělení omezeným diskrétním (discrete) rozdělením Pravděpodobnostní vyjádření náhodných veličin 19 / 22

21 Histogram čistě diskrétního rozdělení Histogram čistě diskrétního (pure discrete) rozdělení Pravděpodobnostní vyjádření náhodných veličin 20 / 22

22 Struktura datového souboru s definicí histogramu Textový soubor s příponou *.dis (distribution), jenž obsahuje údaje následujícího tvaru: [Description] (1. oddíl datového souboru) Identification= volitelný popis datového souboru Type= Pure Discrete Discrete Continuous (typ empirického rozdělení) [Parameters] (2. oddíl datového souboru) Min= minimální funkční hodnota Max= maximální funkční hodnota Bins= celkový počet tříd daného histogramu Total= součet četností ve všech třídách [Bins] (3. oddíl datového souboru) četnost v 1. třídě četnost ve 2. třídě atd.... Pravděpodobnostní vyjádření náhodných veličin 21 / 22

23 Závěry Přednáška: byla zaměřena na základní pojmy teorie, které souvisejí s pravděpodobností náhodného jevu, ukázala možnosti pravděpodobnostního vyjádření náhodné veličiny, zmínila omezení definičního oboru rozdělení v pravděpodobnostních výpočtech vlivem aproximace rozdělení náhodných veličin, stručně zmínila způsoby definice histogramu náhodné veličiny v datových souborech pravděpodobnostních výpočtů. Závěry 22 / 22

24 Nominální napětí v pásnici Std Mean Std Děkuji za pozornost!

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 1: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí

Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Téma 10: Spolehlivost a bezpečnost stavebních nosných konstrukcí Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

Rozdělení náhodné veličiny

Rozdělení náhodné veličiny Rozdělení náhodné veličiny Náhodná proměnná může mít - diskrétní rozdělení (nabývá jen určitých číselných hodnot) - spojité rozdělení (nabývá libovolných hodnot z určitého intervalu) Fyzikální veličiny

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet

Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 3 Metoda LHS, programový systém Atena-Sara-Freet Parametrická rozdělení Metoda Latin Hypercube Sampling (LHS) aplikovaná v programu Freet

Více

Design Experimentu a Statistika - AGA46E

Design Experimentu a Statistika - AGA46E Design Experimentu a Statistika - AGA46E Czech University of Life Sciences in Prague Department of Genetics and Breeding Summer Term 2015 Matúš Maciak (@ A 211) Office Hours: M 14:00 15:30 W 15:30 17:00

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33

Me neˇ nezˇ minimum ze statistiky Michaela S ˇ edova KPMS MFF UK Principy medicı ny zalozˇene na du kazech a za klady veˇdecke prˇı pravy 1 / 33 1 / 33 Méně než minimum ze statistiky Michaela Šedová KPMS MFF UK Principy medicíny založené na důkazech a základy vědecké přípravy Příklad Studie syndromu náhodného úmrtí dětí. Dvě skupiny: Děti, které

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

7 Pravděpodobnostní modely úvod

7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod 7 Pravděpodobnostní modely úvod Břetislav Fajmon, UMAT FEKT, VUT Brno Nyní ve druhé polovině kursu bude obsahem odlišná matematická disciplína, která snad má s numerickými

Více

spolehlivosti stavebních nosných konstrukcí

spolehlivosti stavebních nosných konstrukcí Principy posuzování spolehlivosti stavebních nosných konstrukcí Spolehlivost a bezpečnost staveb 4. ročník bakalářského studia Ing. Martin Krejsa, Ph.D. Katedra stavební mechaniky Fakulta stavební Vysoká

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc.

Cvičení 5. Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. 5 Přednášející: Mgr. Rudolf B. Blažek, Ph.D. prof. RNDr. Roman Kotecký, DrSc. Katedra počítačových systémů Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v

Více

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek

4. cvičení 4ST201. Pravděpodobnost. Obsah: Pravděpodobnost Náhodná veličina. Co je třeba znát z přednášek cvičící 4. cvičení 4ST201 Obsah: Pravděpodobnost Náhodná veličina Vysoká škola ekonomická 1 Pravděpodobnost Co je třeba znát z přednášek 1. Náhodný jev, náhodný pokus 2. Jev nemožný, jev jistý 3. Klasická

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení

Semestrální písemka BMA3 - termín varianta A13 vzorové řešení Semestrální písemka BMA3 - termín 6.1.9 - varianta A13 vzorové řešení Každý příklad je hodnocen maximálně 18 body, z toho část a) 1 body a část b) body. Mezivýsledky při výpočtech zaokrouhlujte alespoň

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

Pojistná matematika 2 KMA/POM2E

Pojistná matematika 2 KMA/POM2E Pojistná matematika 2 KMA/POM2E RNDr. Ondřej Pavlačka, Ph.D. pracovna 5.052 tel. 585 63 4027 e-mail: ondrej.pavlacka@upol.cz web: http://aix-slx.upol.cz/~pavlacka (informace + podkladové materiály) Konzultační

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

Náhodné vektory a matice

Náhodné vektory a matice Náhodné vektory a matice Jiří Militký Katedra textilních materiálů Technická Universita Liberec, Červeně označené slide jsou jen pro doplnění informací a nezkouší se. Symbolika A B Jev jistý S (nastane

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Zápočtová písemka z Matematiky III (BA04) skupina A

Zápočtová písemka z Matematiky III (BA04) skupina A skupina A 0 pro x < 1, ae x pro x 1, ), Pravděpodobnost P (X ) a P (X =.). E (X) a E ( X 1). Hustotu transformované náhodné veličiny Y = (X + 1). F(x) = x 3 pro x (0, 9), Hustotu f(x). Pravděpodobnost

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1.

PRAVDĚPODOBNOST A STATISTIKA 1 Metodický list č 1. Metodický list č 1. Název tématického celku: Elementární statistické zpracování 1 - Kolekce a interpretace statistických dat, základní pojmy deskriptivní statistiky. Cíl: Základním cílem tohoto tematického

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

Téma 4: Stratifikované a pokročilé simulační metody

Téma 4: Stratifikované a pokročilé simulační metody 0.007 0.006 0.005 0.004 0.003 0.002 0.001 Dlouhodobé nahodilé Std Distribution: Gumbel Min. EV I Mean Requested: 140 Obtained: 141 Std Requested: 75.5 Obtained: 73.2-100 0 100 200 300 Mean Std Téma 4:

Více

Požadavky ke zkoušce. Ukázková písemka

Požadavky ke zkoušce. Ukázková písemka Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

1. Přednáška. Ing. Miroslav Šulai, MBA

1. Přednáška. Ing. Miroslav Šulai, MBA N_OFI_2 1. Přednáška Počet pravděpodobnosti Statistický aparát používaný ve financích Ing. Miroslav Šulai, MBA 1 Počet pravděpodobnosti -náhodné veličiny 2 Počet pravděpodobnosti -náhodné veličiny 3 Jevy

Více

Náhodný vektor a jeho charakteristiky

Náhodný vektor a jeho charakteristiky Náhodný vektor a jeho číselné charakteristiky 1 Náhodný vektor a jeho charakteristiky V následující kapitole budeme věnovat pozornost pouze dvourozměřnému náhodnému vektoru, i když uvedené pojmy a jejich

Více

1 Pravděpodobnostní prostor

1 Pravděpodobnostní prostor PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1

charakteristiky KGG/STG Zimní semestr Základní statistické charakteristiky, Teoretická rozdělení 1 3. ZákladnZ kladní statistické charakteristiky rozdělení 1 charakteristiky Dva hlavní druhy základnz kladních charakteristik statistického souboru: charakteristiky úrovně,, polohy (středn ední hodnoty)

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

11 Rovnoměrné a normální rozdělení psti

11 Rovnoměrné a normální rozdělení psti 11 Rovnoměrné a normální rozdělení psti 11 Rovnoměrné a normální rozdělení psti Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá část kapitoly 13 ze skript [1] a vše, co se nachází v kapitole

Více

Deskriptivní statistické metody II. Míry polohy Míry variability

Deskriptivní statistické metody II. Míry polohy Míry variability Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti

pravděpodobnosti 9 Některá význačná diskrétní rozdělení pravděpodobnosti pravděpodobnosti pravděpodobnosti Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá část kapitoly 11 ze skript [1] a vše, co se nachází v kapitole 5 sbírky úloh [2] tuto kapitolu 5 sbírky úloh

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036

Náhodná veličina X má Poissonovo rozdělení se střední hodnotou lambda. Poissonovo rozdělení je definováno jako. P(X=k) = 0,036 Příklad : Statistika A, doc. Kropáč, str. 6, příklad 2 K benzínovému čerpadlu přijíždí průměrně 4 aut za hodinu. Určete pravděpodobnost, že během pěti minut přijede nejvýše jedno auto. Pokus: Zjištění,

Více

Odhad parametrů N(µ, σ 2 )

Odhad parametrů N(µ, σ 2 ) Odhad parametrů N(µ, σ 2 ) Mějme statistický soubor x 1, x 2,, x n modelovaný jako realizaci náhodného výběru z normálního rozdělení N(µ, σ 2 ) s neznámými parametry µ a σ. Jaký je maximální věrohodný

Více

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina

III. Úplná pravděpodobnost. Nezávislé pokusy se dvěma výsledky. Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina III Přednáška Úplná pravděpodobnost Nezávislé pokusy se dvěma výsledky Náhodná veličina Pravděpodobnost při existenci neslučitelných hypotéz Věta Mějme jev. Pokud H 1,H 2, : : :,H n tvoří úplnou skupinu

Více

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman Kotecký, 2011 Pravděpodobnost

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45.

Jednoduché cykly 35. 36. 37. 38. 39. 40. 41. 42. 43. 44. 45. Jednoduché cykly Tento oddíl obsahuje úlohy na první procvičení práce s cykly. Při řešení každé ze zde uvedených úloh stačí použít vedle podmíněných příkazů jen jediný cyklus. Nepotřebujeme používat ani

Více

VŠB Technická univerzita Ostrava BIOSTATISTIKA

VŠB Technická univerzita Ostrava BIOSTATISTIKA VŠB Technická univerzita Ostrava Fakulta elektrotechniky a informatiky JMÉNO STUDENTKY/STUDENTA: OSOBNÍ ČÍSLO: JMÉNO CVIČÍCÍ/CVIČÍCÍHO: BIOSTATISTIKA Domácí úkoly Zadání 5 DATUM ODEVZDÁNÍ DOMÁCÍ ÚKOL 1:

Více

Číselné charakteristiky a jejich výpočet

Číselné charakteristiky a jejich výpočet Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz charakteristiky polohy charakteristiky variability charakteristiky koncetrace charakteristiky polohy charakteristiky

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru.

2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. Varianta I 1. Definujte pravděpodobnostní funkci. 2. Je dáno jevové pole (Ω;A) a na něm nezáporná normovaná funkce. Definujte distrubuční funkci náhodného vektoru. 3. Definujte Fisher-Snedecorovo rozdělení.

Více