ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE"

Transkript

1 ALGEBRA LINEÁRNÍ, KVADRATICKÉ ROVNICE A NEROVNICE, SOUSTAVY ROVNIC A NEROVNIC Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Prostějov 2010

2 2 Lineární rovnice a nerovnice Úvod Vytvořený výukový materiál pokrývá předmět matematika, která je vyučována v osnovách a tematických plánech na gymnáziích nižšího a vyššího stupně. Mohou ho však využít všechny střední a základní školy, kde je vyučován předmět matematika, a které mají dostatečné technické vybavení a zázemí. Cílová skupina: Podle chápání a schopností studentů je stanovena úroveň náročnosti vzdělávacího plánu a výukových materiálů. Zvláště výhodné jsou tyto materiály pro studenty s individuálním studijním plánem, kteří se nemohou pravidelně zúčastňovat výuky. Tito studenti mohou s pomocí našich výukových materiálů částečně kompenzovat svou neúčast ve vyučovaném předmětu matematika, formou e-learningového studia.

3 Lineární rovnice a nerovnice 3 Obsah Lineární rovnice a nerovnice... 8 Lineární rovnice... 8 Lineární rovnice Lineární rovnice Lineární rovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Lineární rovnice s absolutní hodnotou Lineární rovnice s absolutní hodnotou Lineární rovnice s absolutní hodnotou... 27

4 4 Lineární rovnice a nerovnice Lineární rovnice s absolutní hodnotou Lineární nerovnice Lineární nerovnice Lineární nerovnice Lineární nerovnice Lineární nerovnice s absolutní hodnotou Lineární nerovnice s absolutní hodnotou Lineární nerovnice s absolutní hodnotou Lineární nerovnice s absolutní hodnotou Kvadratické rovnice a nerovnice Rovnice v součinovém tvaru Rovnice v součinovém tvaru Rovnice v součinovém tvaru Rovnice v součinovém tvaru Kvadratická rovnice Kvadratická rovnice... 45

5 Lineární rovnice a nerovnice Kvadratická rovnice Kvadratická rovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Grafické řešení kvadratické rovnice a nerovnice Grafické řešení kvadratické rovnice a nerovnice Grafické řešení kvadratické rovnice a nerovnice Grafické řešení kvadratické rovnice a nerovnice Umocňování rovnice Umocňování rovnice Umocňování rovnice Umocňování rovnice Řešení rovnic užitím substituce... 66

6 6 Lineární rovnice a nerovnice Řešení rovnic užitím substituce Řešení rovnic užitím substituce Řešení rovnic užitím substituce Soustavy rovnic a nerovnic Lineární rovnice se dvěma neznámými Lineární rovnice se dvěma neznámými Lineární rovnice se dvěma neznámými Lineární rovnice se dvěma neznámými Lineární nerovnice se dvěma neznámými Lineární nerovnice se dvěma neznámými Lineární nerovnice se dvěma neznámými Lineární nerovnice se dvěma neznámými Soustavy dvou lineárních rovnic se dvěma neznámými Soustavy dvou lineárních rovnic se dvěma neznámými Soustavy dvou lineárních rovnic se dvěma neznámými Soustavy dvou lineárních rovnic se dvěma neznámými

7 Lineární rovnice a nerovnice Soustavy lineárních rovnic s více neznámými a soustavy rovnice lineární a kvadratické. 106 Soustavy lineárních rovnic s více neznámými a soustavy rovnice lineární a kvadratické Soustavy lineárních rovnic s více neznámými a soustavy rovnice lineární a kvadratické Soustavy lineárních rovnic s více neznámými a soustavy rovnice lineární a kvadratické Soustavy lineárních nerovnic Soustavy lineárních nerovnic Soustavy lineárních nerovnic Soustavy lineárních nerovnic Lineární nerovnice v součinovém a podílovém tvaru Lineární nerovnice v součinovém a podílovém tvaru Lineární nerovnice v součinovém a podílovém tvaru Lineární nerovnice v součinovém a podílovém tvaru Lineární rovnice a nerovnice s parametrem Lineární rovnice a nerovnice s parametrem

8 8 Lineární rovnice a nerovnice Lineární rovnice a nerovnice s parametrem Lineární rovnice a nerovnice s parametrem Lineární rovnice a nerovnice s parametrem Lineární rovnice a nerovnice Lineární rovnice Základní pojmy Definice: Lineární rovnicí s neznámou x nazýváme každou rovnici ve tvaru: 0, kde,. Lineární rovnicí dále nazýváme každou rovnici, kterou lze pomocí tzv. ekvivalentních úprav převést na rovnici ve výše uvedeném tvaru. Mezi základní ekvivalentní úpravy patří: - Přičtení stejného čísla (výrazu) k oběma stranám rovnice. - Odečtení stejného čísla (výrazu) od obou stran rovnice. - Vynásobení obou stran rovnice číslem (výrazem) různým od nuly. - Vydělení obou stran rovnice číslem (výrazem) různým od nuly.

9 Lineární rovnice a nerovnice 9

10 10 Lineární rovnice a nerovnice Lineární rovnice Řešte rovnici Ekvivalentní úpravy provádíme tak, abychom na jedné straně rovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice :3 5 Výsledek řešení: Příklady k procvičení: 1) Řešte rovnici 3 0. [ ] 2) Řešte rovnici 0,1 0,02 0. [ ] 3) Řešte rovnici [1] 4) Řešte rovnici 0. [ ]

11 Lineární rovnice a nerovnice 11 Lineární rovnice Řešte rovnici Ekvivalentní úpravy provádíme tak, abychom na jedné straně rovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice : 3 Výsledek řešení: Příklady k procvičení: 5) Řešte rovnici [ ] 6) Řešte rovnici 0,1 0,2 1,1 0,4. [0,6] 7) Řešte rovnici [ 8) Řešte rovnici [NŘ]

12 12 Lineární rovnice a nerovnice Lineární rovnice Řešte rovnici. Vyskytují-li se v lineární rovnici zlomky, měla by první ekvivalentní úprava směřovat k odstranění zlomků. To provedeme tak, že obě strany rovnice vynásobíme společným (nejlépe nejmenším) násobkem všech jmenovatelů : Výsledek řešení: Příklady k procvičení: 9) Řešte rovnici. 10) Řešte rovnici 11) Řešte rovnici 12) Řešte rovnici.. [12] [NŘ] []. [14]

13 Lineární rovnice a nerovnice 13 Řešení rovnice v daném oboru, zkouška při řešení rovnice Základní pojmy Není-li uveden obor čísel, v němž hledáme řešení rovnice, míní se zpravidla obor všech reálných čísel. Velmi často se však stává (např. při řešení slovních úloh), že je obor řešení dané rovnice omezen (např. na kladná čísla, atd.). V praxi postupujeme tak, že danou rovnici vyřešíme v nejširším možném oboru () a řešení pak konfrontujeme s oborem, ve kterém rovnici řešíme. Dosazením čísla za neznámou na obou stranách rovnice se výrazy s proměnnou změní na číselné výrazy. Jsou-li hodnoty obou číselných výrazů stejné, je toto číslo řešením dané rovnice, v opačném případě nikoliv. V praxi postupujeme tak, že zvlášť určíme číselnou hodnotu výrazu na levé straně, zvlášť na pravé straně a pak hodnoty porovnáme. Tomuto postupu se říká zkouška při řešení rovnice. Pokud jsme při řešení rovnice používali pouze ekvivalentní úpravy, není zkouška nezbytnou součástí řešení rovnice.

14 14 Lineární rovnice a nerovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Zjistěte, zda rovnice má řešení v množině racionálních čísel. Ekvivalentní úpravy provádíme tak, abychom na jedné straně rovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice : Řešením dané rovnice je iracionální číslo, řešení v množině racionálních čísel tedy neexistuje. Výsledek řešení: Řešení v množině racionálních čísel neexistuje. Příklady k procvičení: 1) Zjistěte, zda rovnice 2 0 má řešení v množině racionálních čísel. [Ano, ] 2) Zjistěte, zda rovnice 0,01 0,002 0 má řešení v množině celých čísel. [Ne] 3) Zjistěte, zda rovnice má řešení v množině přirozených čísel. [Ano, 2] 4) Zjistěte, zda rovnice má řešení v množině reálných čísel. [Ne]

15 Lineární rovnice a nerovnice 15 Řešení rovnice v daném oboru, zkouška při řešení rovnice Řešte rovnici a proveďte zkoušku. Ekvivalentní úpravy provádíme tak, abychom na jedné straně rovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice : 5 Zkouška: L P LP Výsledek řešení: 3 L P LP Příklady k procvičení: 5) Řešte rovnici a proveďte zkoušku. [ P ] 6) Řešte rovnici 0,2 0,4 1,6 0,3 a proveďte zkoušku. [0,5; LP0,5] 7) Řešte rovnici a proveďte zkoušku. [NŘ] 8) Řešte rovnici a proveďte zkoušku. [ 2; L P4 2]

16 16 Lineární rovnice a nerovnice Řešení rovnice v daném oboru, zkouška při řešení rovnice Řešte rovnici 7 2 a proveďte zkoušku. Vyskytují-li se v lineární rovnici zlomky, měla by první ekvivalentní úprava směřovat k odstranění zlomků. To provedeme tak, že obě strany rovnice vynásobíme společným (nejlépe nejmenším) násobkem všech jmenovatelů L P : Výsledek řešení: L P Příklady k procvičení: 9) Řešte rovnici 10) Řešte rovnici 11) Řešte rovnici 12) Řešte rovnici a proveďte zkoušku. 24 a proveďte zkoušku. [4; LP5] [17; L P7] 10 a proveďte zkoušku. [8; L P0] 1 a proveďte zkoušku. [11; L P2]

17 Lineární rovnice a nerovnice 17 Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Základní pojmy V rovnicích s neznámou ve jmenovateli se vyskytují lomené výrazy. Dříve, než takovou rovnici řešíme, určíme všechny podmínky, za kterých mají jednotlivé lomené výrazy smysl. Poté rovnici řešíme standardním způsobem, tj. odstraněním zlomků a následným řešením dalšími ekvivalentními úpravami. Výsledné řešení pak musíme konfrontovat se všemi podmínkami jednotlivých lomených výrazů. Každou lineární rovnici lze zapsat ve tvaru. Jedná se tak vlastně o zápis rovnosti dvou lineárních funkcí: : : Řešení původní rovnice pak odpovídá x-ové souřadnici průsečíků grafů obou lineárních funkcí. Jelikož je grafem lineární funkce přímka, mohou pro vzájemnou polohu obou grafů a tedy i pro řešení lineární rovnice nastat tři případy: Přímky jsou různoběžné existuje jeden průsečík a rovnice má jedno řešení. Přímky jsou rovnoběžné různé neexistuje žádný průsečík a rovnice nemá řešení. Přímky jsou totožné existuje nekonečně mnoho společných bodů a rovnice má nekonečně mnoho řešení.

18 18 Lineární rovnice a nerovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Řešte rovnici 0. Nejprve stanovíme podmínky, za kterých mají lomené výrazy, vyskytující se v rovnici, smysl Ekvivalentní úpravy provádíme tak, abychom na jedné straně rovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice :2 4 Řešení není v rozporu s výše uvedenou podmínkou a je tedy řešením dané rovnice. Výsledek řešení: 4 Příklady k procvičení: 1) Řešte rovnici 1. [7; 4] 2) Řešte rovnici 10. [ ; 5] 3) Řešte rovnici 4) Řešte rovnici 6. [NŘ; 3] 3. [8; 8]

19 Lineární rovnice a nerovnice 19 Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Řešte rovnici: Nejdříve stanovíme podmínky: : Výsledek řešení: 13 6 Příklady k procvičení: 5) Řešte rovnici. 6) Řešte rovnici. [1; 0;1] [2; 0;8] 7) Řešte rovnici 1. [NŘ; 4] 8) Řešte rovnici. [ ; 2;6;3]

20 20 Lineární rovnice a nerovnice Rovnice s neznámou ve jmenovateli a grafické řešení lineární rovnice Řešte graficky rovnici 343. Jedná se tak vlastně o zápis rovnosti dvou lineárních funkcí: : 3 : 4 3 Řešení původní rovnice pak odpovídá x-ové souřadnici průsečíků grafů obou lineárních funkcí. 2 Výsledek řešení:

21 Lineární rovnice a nerovnice 21 Příklady k procvičení: 9) Řešte graficky rovnici

22 22 Lineární rovnice a nerovnice 10) Řešte graficky rovnici

23 Lineární rovnice a nerovnice 23 11) Řešte graficky rovnici

24 24 Lineární rovnice a nerovnice 12) Řešte graficky rovnici NŘ

25 Lineární rovnice a nerovnice 25 Lineární rovnice s absolutní hodnotou Základní pojmy Definice: Absolutní hodnota čísla je definována takto: a) pro 0 b) pro 0 Věta: Pro libovolná čísla, platí: 1.) 0 2.) 3.) 4.), 0 Poznámka: Číslo se pro libovolné rovná vzdálenosti obrazu čísla a na číselné ose od počátku (tj. od obrazu čísla 0). Číslo se pro libovolná čísla, rovná vzdálenosti obrazů čísel a, b na číselné ose.

26 26 Lineární rovnice a nerovnice Lineární rovnice s absolutní hodnotou Řešte rovnici 3. Absolutní hodnota z čísla x je rovna vzdálenosti tohoto čísla na číselné ose od počátku, tedy od čísla 0. Můžeme sestrojit pomocnou kružnici se středem v bodě 0 a poloměrem 3 jednotky. Tato kružnice protne číselnou osu v těch bodech, které jsou řešením uvedené rovnice. Z obrázku je vidět, že rovnice má dvě řešení:, 3. Výsledek řešení:, Příklady k procvičení: 1) Řešte rovnici 1. [1] 2) Řešte rovnici 12. [12] 3) Řešte rovnici 0. [0] 4) Řešte rovnici 1. [NŘ]

27 Lineární rovnice a nerovnice 27 Lineární rovnice s absolutní hodnotou Řešte rovnici 1 3. Absolutní hodnota z čísla 1 je rovna vzdálenosti čísla x na číselné ose od čísla 1. Můžeme sestrojit pomocnou kružnici se středem v bodě 1 a poloměrem 3 jednotky. Tato kružnice protne číselnou osu v těch bodech, které jsou řešením uvedené rovnice. Z obrázku je vidět, že rovnice má dvě řešení: 2, 4. Výsledek řešení:, Příklady k procvičení: 5) Řešte rovnici [7, 15] 6) Řešte rovnici 1 5. [4, 6] 7) Řešte rovnici 1 2. [3, 1] 8) Řešte rovnici 1 3. [NŘ]

28 28 Lineární rovnice a nerovnice Lineární rovnice s absolutní hodnotou Řešte rovnici Řešení rovnic s větším počtem absolutních hodnot provádíme jiným způsobem. Nejdříve stanovíme tzv. nulové body všech absolutních hodnot, tedy body, v nichž se výrazy uvnitř jednotlivých absolutních hodnot rovnají nule. Množinu reálných čísel pak rozdělíme pomocí těchto nulových bodů na jednotlivé disjunktní intervaly. V každém intervalu zvlášť pak zkoumáme znaménko jednotlivých výrazů v absolutních hodnotách a absolutní hodnoty zde v souladu s definicí nahrazujeme přímo tímto výrazem nebo výrazem opačným. Celý postup zpravidla zapisujeme do přehledné tabulky. NB: 1, ; ;1 1; I. II. III. V každém z intervalů I., II. a III. Pak řešíme zvlášť lineární rovnici, ale absolutní hodnoty nahrazujeme příslušnými výrazy z tabulky. I :3 5 3 ; 3 2

29 Lineární rovnice a nerovnice 29 II ;1 III :3 11; Řešení mají tedy rovnice pouze v intervalech I. a II. Původní rovnice má tak dvě řešení. Množinu řešení můžeme zapsat ve tvaru ; 1. Výsledek řešení: 5 3 ;1 Příklady k procvičení: 9) Řešte rovnici ; 10) Řešte rovnici ) Řešte rovnici ) Řešte rovnici ;

30 30 Lineární rovnice a nerovnice Lineární nerovnice Základní pojmy Definice: Lineární nerovnicí s neznámou x nazýváme každou nerovnici v jednom z těchto tvarů: a) 0, b) 0, c) 0, d) 0, kde,. Lineární nerovnicí dále nazýváme každou nerovnici, kterou lze pomocí tzv. ekvivalentních úprav převést na nerovnici ve výše uvedeném tvaru. Při řešení lineárních nerovnic používáme stejné ekvivalentní úpravy jako při řešení lineárních rovnic, s jednou podstatnou výjimkou: Násobíme-li nerovnici záporným číslem, mění se znaménko nerovnosti v opačné!

31 Lineární rovnice a nerovnice 31 Lineární nerovnice Řešte rovnici Ekvivalentní úpravy provádíme tak, abychom na jedné straně nerovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od rovnice :2 5 Řešení zpravidla zapisujeme pomocí intervalu: ;. Výsledek řešení: ; Příklady k procvičení: 1) Řešte rovnici 2 0. [ ; ] 2) Řešte rovnici 0,1 0, [ ; ] 3) Řešte rovnici [ ; ] 4) Řešte rovnici 0. [ ; ]

32 32 Lineární rovnice a nerovnice Lineární nerovnice Řešte rovnici Ekvivalentní úpravy provádíme tak, abychom na jedné straně nerovnice (zpravidla levé) osamostatnili neznámou. Prováděné úpravy zapisujeme za svislou čáru vpravo od nerovnice : 6 Řešení zpravidla zapisujeme pomocí intervalu: ;. Výsledek řešení: ; Příklady k procvičení: 5) Řešte rovnici [ ; ] 6) Řešte rovnici 0,1 0,3 1,1 0,7. [; ] 7) Řešte rovnici [ ; ] 8) Řešte rovnici []

33 Lineární rovnice a nerovnice 33 Lineární nerovnice Řešte rovnici 7. Vyskytují-li se v lineární nerovnici zlomky, měla by první ekvivalentní úprava směřovat k odstranění zlomků. To provedeme tak, že obě strany nerovnice vynásobíme společným (nejlépe nejmenším) násobkem všech jmenovatelů : Řešení zpravidla zapisujeme pomocí intervalu: ;. Výsledek řešení: ; Příklady k procvičení: 9) Řešte nerovnici ) Řešte nerovnici 11) Řešte nerovnici 12) Řešte nerovnici. [ ; ] [NŘ]. []. [ ; ]

34 34 Lineární rovnice a nerovnice Lineární nerovnice s absolutní hodnotou Základní pojmy Definice: Absolutní hodnota čísla je definována takto: c) pro 0 d) pro 0 Věta: Pro libovolná čísla, platí: 5.) 0 6.) 7.) 8.), 0 Poznámka: Číslo se pro libovolné rovná vzdálenosti obrazu čísla a na číselné ose od počátku (tj. od obrazu čísla 0). Číslo se pro libovolná čísla, rovná vzdálenosti obrazů čísel a, b na číselné ose.

35 Lineární rovnice a nerovnice 35 Lineární nerovnice s absolutní hodnotou Řešte nerovnici 3. Absolutní hodnota z čísla x je rovna vzdálenosti tohoto čísla na číselné ose od počátku, tedy od čísla 0. Můžeme sestrojit pomocný kruh se středem v bodě 0 a poloměrem 3 jednotky. Průnik tohoto kruhu s číselnou osou je řešením uvedené nerovnice. K Z obrázku je vidět, že řešením nerovnice je interval: 3; 3. Výsledek řešení: ; Příklady k procvičení: 1) Řešte nerovnici 1. [1; 1] 2) Řešte nerovnici 12. [ ; 12 12; ] 3) Řešte nerovnici 0. [NŘ] 4) Řešte nerovnici 1. []

36 36 Lineární rovnice a nerovnice Lineární nerovnice s absolutní hodnotou Řešte nerovnici 1 3. Absolutní hodnota z čísla 1 je rovna vzdálenosti čísla x na číselné ose od čísla 1. Můžeme sestrojit pomocný kruh se středem v bodě 1 a poloměrem 3 jednotky. Průnik vnější části tohoto kruhu a jeho hraniční kružnice s číselnou osou je řešením uvedené nerovnice. K Z obrázku je vidět, že řešením nerovnice je sjednocení intervalů: ; 2 4;. Výsledek řešení: ; ; Příklady k procvičení: 5) Řešte nerovnici [ ; 7 15; ] 6) Řešte nerovnici 1 5. [6; 4] 7) Řešte nerovnici 1 2. [ ; 1 3; ] 8) Řešte nerovnici 1 3. [NŘ]

37 Lineární rovnice a nerovnice 37 Lineární nerovnice s absolutní hodnotou Řešte nerovnici Řešení nerovnic s větším počtem absolutních hodnot provádíme jiným způsobem. Nejdříve stanovíme tzv. nulové body všech absolutních hodnot, tedy body, v nichž se výrazy uvnitř jednotlivých absolutních hodnot rovnají nule. Množinu reálných čísel pak rozdělíme pomocí těchto nulových bodů na jednotlivé disjunktní intervaly. V každém intervalu zvlášť pak zkoumáme znaménko jednotlivých výrazů v absolutních hodnotách a absolutní hodnoty zde v souladu s definicí nahrazujeme přímo tímto výrazem nebo výrazem opačným. Celý postup zpravidla zapisujeme do přehledné tabulky. NB: 1, ; ;1 1; I. II. III. V každém z intervalů I., II. a III. Pak řešíme zvlášť lineární nerovnici, ale absolutní hodnoty nahrazujeme příslušnými výrazy z tabulky. I :3 5 3 ; 5 3

38 38 Lineární rovnice a nerovnice Nyní stanovíme průnik tohoto řešení s intervalem, v němž řešení provádíme, tedy: ; 5 3 ; 3 2 ; 5 3 II ; Nyní stanovíme průnik tohoto řešení s intervalem, v němž řešení provádíme, tedy: III. 1; 3 ; :3 1 1; Nyní stanovíme průnik tohoto řešení s intervalem, v němž řešení provádíme, tedy: 1; 1; 1; Řešením původní nerovnice je pak sjednocení jednotlivých dílčích řešení jednotlivých intervalů: ; ; ; 5 1; 3 Výsledek řešení: ; 5 1; 3

39 Lineární rovnice a nerovnice 39 Příklady k procvičení: 9) Řešte nerovnici ; ; 10) Řešte nerovnici ) Řešte nerovnici 3 2. ; 12) Řešte nerovnici ; ;

40 40 Lineární rovnice a nerovnice Kvadratické rovnice a nerovnice Rovnice v součinovém tvaru Základní pojmy Definice: Rovnicí v součinovém tvaru s neznámou x nazýváme každou rovnici ve tvaru: 0, kde výrazy,,, jsou lineární dvojčleny. Rovnicí v součinovém tvaru dále nazýváme každou rovnici, kterou lze převést na rovnici ve výše uvedeném tvaru. Při řešení těchto rovnic využíváme poznatek, že součin dvou anebo více výrazů je roven nule právě tehdy, když alespoň jeden výraz je roven nule.

41 Lineární rovnice a nerovnice 41 Rovnice v součinovém tvaru Řešte rovnici Výraz na levé straně rovnice je roven nule právě tehdy, když: a), nebo b). Řešení této rovnice se tedy rozpadá na řešení dvojice lineárních rovnic. Řešením první lineární rovnice je číslo 10, řešením druhé lineární rovnice číslo. Množinu řešení dané rovnice lze tedy zapsat ve tvaru 10;. Výsledek řešení: 10; 1 2 Příklady k procvičení: 1) Řešte rovnici [ 5; ] 2) Řešte rovnici 2 0. [0; ] 3) Řešte rovnici [4; ] 4) Řešte rovnici [ ; ]

42 42 Lineární rovnice a nerovnice Rovnice v součinovém tvaru Řešte rovnici 250. Výraz na levé straně rovnice lze rozložit na součin podle vzorce do následujícího tvaru:. Je roven nule právě tehdy, když: a), nebo b). Řešení této rovnice se tedy rozpadá na řešení dvojice lineárních rovnic. Řešením první lineární rovnice je číslo 5, řešením druhé lineární rovnice číslo 5. Množinu řešení dané rovnice lze tedy zapsat ve tvaru 5; 5. Výsledek řešení: 5; 5 Příklady k procvičení: 5) Řešte rovnici [ ; ] 6) Řešte rovnici 20. [ 2; 2] 7) Řešte rovnici [ ; ] 8) Řešte rovnici [ 3; 3]

43 Lineární rovnice a nerovnice 43 Rovnice v součinovém tvaru Řešte rovnici Rovnice nejdříve převedeme pomocí ekvivalentních do anulovaného tvaru: Výraz na levé straně rovnice lze rozložit na součin vytknutím před závorku do následujícího tvaru: Je roven nule právě tehdy, když: a), nebo b).. Řešení této rovnice se tedy rozpadá na řešení dvojice lineárních rovnic. Řešením první lineární rovnice je číslo 0, řešením druhé lineární rovnice číslo. Množinu řešení dané rovnice lze tedy zapsat ve tvaru 0;. Výsledek řešení: 0; 15 8 Příklady k procvičení: 9) Řešte rovnici [1; 1] 10) Řešte rovnici [4; 5] 11) Řešte rovnici [ ; ] 12) Řešte rovnici [NŘ]

44 44 Lineární rovnice a nerovnice Kvadratická rovnice Základní pojmy Definice: Kvadratickou rovnicí s neznámou x nazýváme každou rovnici ve tvaru: 0, kde,, ; 0. Kvadratickou rovnicí dále nazýváme každou rovnici, kterou lze pomocí ekvivalentních úprav převést na rovnici ve výše uvedeném tvaru. Výraz nazýváme kvadratický člen, výraz nazýváme lineární člen a člen absolutní člen. Věta: Řešení kvadratické rovnice 0 je určeno následujícím vztahem:, 4 2 Poznámka 1: Výraz 4 nazýváme diskriminant kvadratické rovnice a podle jeho hodnoty mohou pro řešení kvadratické rovnice nastat tři možnosti: a) 0 - rovnice má v oboru dvě různá řešení, b) 0 - rovnice má v oboru jedno dvojnásobné řešení, c) 0 - rovnice nemá v oboru žádné řešení. Poznámka 2: Podle výše uvedeného vztahu lze řešit libovolnou kvadratickou rovnici. Existují však speciální typy kvadratických rovnic, které lze řešit i jiným (zpravidla jednodušším) způsobem. Mezi tyto speciální typy řadíme nejčastěji tzv. neúplné kvadratické rovnice: a) Rovnice 0 se nazývá rovnice bez absolutního členu a s výhodou ji řešíme převedením na součinový tvar vytknutím. b) Rovnice 0 se nazývá ryze kvadratická rovnice a výhodou ji řešíme převedením na součinový tvar pomocí vzorce (pokud je to možné).

45 Lineární rovnice a nerovnice 45 Kvadratická rovnice Řešte kvadratickou rovnici bez absolutního členu Výraz na levé straně upravíme na součin vytknutím na tvar: Výraz na levé straně rovnice je roven nule právě tehdy, když: c) 0, nebo d) Řešení této rovnice se tedy rozpadá na řešení dvojice lineárních rovnic. Řešením první lineární rovnice je číslo 0, řešením druhé lineární rovnice číslo. Množinu řešení dané rovnice lze tedy zapsat ve tvaru 0;. Výsledek řešení: 0; 5 4 Příklady k procvičení: 1) Řešte kvadratickou rovnici bez absolutního členu [ 0; ] 2) Řešte kvadratickou rovnici bez absolutního členu 0. [ 0; ] 3) Řešte kvadratickou rovnici bez absolutního členu 20. [ 0; ] 4) Řešte kvadratickou rovnici bez absolutního členu 0,1 1,50. [ 0; 15]

46 46 Lineární rovnice a nerovnice Kvadratická rovnice Řešte ryze kvadratickou rovnici Výraz na levé straně rovnice lze rozložit na součin podle vzorce do následujícího tvaru: Je roven nule právě tehdy, když: c) 2 5 0, nebo d) Řešení této rovnice se tedy rozpadá na řešení dvojice lineárních rovnic. Řešením první lineární rovnice je číslo, řešením druhé lineární rovnice číslo. Množinu řešení dané rovnice lze tedy zapsat ve tvaru ;. Výsledek řešení: 5 2 ; 5 2 Příklady k procvičení: 5) Řešte ryze kvadratickou rovnici [ ; ] 6) Řešte ryze kvadratickou rovnici [ ; ] 7) Řešte ryze kvadratickou rovnici [ ; ] 8) Řešte ryze kvadratickou rovnici 490. [NŘ, výraz nelze rozložit na součin podle vzorce]

47 Lineární rovnice a nerovnice 47 Kvadratická rovnice Řešte kvadratickou rovnici Srovnáním s obecným tvarem kvadratické rovnice dostáváme: 1, 7, 30. Dosazením do vzorce pro řešení kvadratické rovnice dostáváme:, , ; Množinu řešení dané rovnice lze tedy zapsat ve tvaru 10; 3. Výsledek řešení: 10; 3 Příklady k procvičení: 9) Řešte kvadratickou rovnici [ 12; 10] 10) Řešte kvadratickou rovnici [NŘ] 11) Řešte kvadratickou rovnici 0. [ 5; 5; 1; 3] 12) Řešte kvadratickou rovnici 210. [ 1]

48 48 Lineární rovnice a nerovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Základní pojmy Definice: Kvadratickou rovnicí s neznámou x nazýváme každou rovnici ve tvaru: 0, kde,, ; 0. Kvadratickou rovnicí dále nazýváme každou rovnici, kterou lze pomocí ekvivalentních úprav převést na rovnici ve výše uvedeném tvaru. Výraz nazýváme kvadratický člen, výraz nazýváme lineární člen a člen absolutní člen. Věta 1: Pro kořeny, kvadratické rovnice 0 platí následující vztahy:,. Věta 2: Jsou-li čísla, kořeny kvadratické rovnice 0, pak platí:. Uvedenému výrazu na pravé straně rovnosti říkáme rozklad kvadratického trojčlenu na kořenové činitele.

49 Lineární rovnice a nerovnice 49 Vztahy mezi kořeny a koeficienty kvadratické rovnice Pomocí vztahů mezi kořeny a koeficienty kvadratické rovnice určete řešení kvadratické rovnice 560. Srovnáním s obecným tvarem kvadratické rovnice dostáváme:,,. Dosazením do vztahů mezi kořeny a koeficienty kvadratické rovnice dostáváme: b c Hledáme tedy dvě čísla, jejichž součet je 5 a součin 6. Takovým podmínkám vyhovují čísla 2 a 3. Množinu řešení dané rovnice lze tedy zapsat ve tvaru 2; 3. Výsledek řešení: 2; 3 Příklady k procvičení: 1) Pomocí vztahů mezi kořeny a koeficienty kvadratické rovnice určete řešení kvadratické rovnice [5; 6] 2) Pomocí vztahů mezi kořeny a koeficienty kvadratické rovnice určete řešení kvadratické rovnice 20. [1; 2] 3) Pomocí vztahů mezi kořeny a koeficienty kvadratické rovnice určete řešení kvadratické rovnice [3; 4] 4) Pomocí vztahů mezi kořeny a koeficienty kvadratické rovnice určete řešení kvadratické rovnice 560. [2; 3]

50 50 Lineární rovnice a nerovnice Vztahy mezi kořeny a koeficienty kvadratické rovnice Sestavte kvadratickou rovnici s kořeny 2 3. Dosazením do vztahů mezi kořeny a koeficienty kvadratické rovnice dostáváme: b 23b Úpravou uvedených vztahů dostáváme: c 2 3c a b 1b 11 1 c 6c 6 1 Prostým srovnáním zlomků na levé a pravé straně obou rovností dostáváme:,, Kvadratickou rovnici tedy můžeme psát ve tvaru: 60. Výsledek řešení: 60 Příklady k procvičení: 5) Sestavte kvadratickou rovnici s kořeny 5. [ ] 6) Sestavte kvadratickou rovnici s kořeny 0. [3 20] 7) Sestavte kvadratickou rovnici s kořeny 2 2. [ 40] 8) Sestavte kvadratickou rovnici s kořeny [ 410]

51 Lineární rovnice a nerovnice 51 Vztahy mezi kořeny a koeficienty kvadratické rovnice Kvadratický trojčlen 730 rozložte na součin kořenových činitelů. Srovnáním kvadratického trojčlenu s obecným tvarem kvadratické rovnice dostáváme:,,. Dosazením do vzorce pro řešení příslušné kvadratické rovnice dostáváme:, , Kvadratický trojčlen lze tedy psát ve tvaru: Po úpravě: ; Výsledek řešení: Příklady k procvičení: 9) Kvadratický trojčlen rozložte na součin kořenových činitelů. [ ] 10) Kvadratický trojčlen 720 rozložte na součin kořenových činitelů. [nelze rozložit] 11) Kvadratický trojčlen 0 5 rozložte na součin kořenových činitelů. [ ] 12) Kvadratický trojčlen 21 rozložte na součin kořenových činitelů. [ ]

52 52 Lineární rovnice a nerovnice Grafické řešení kvadratické rovnice a nerovnice Základní pojmy Definice: Kvadratickou rovnicí s neznámou x nazýváme každou rovnici ve tvaru: 0, kde,, ; 0. Kvadratickou rovnicí dále nazýváme každou rovnici, kterou lze pomocí ekvivalentních úprav převést na rovnici ve výše uvedeném tvaru. Výraz nazýváme kvadratický člen, výraz nazýváme lineární člen a člen absolutní člen. Vydělíme-li kvadratickou rovnici číslem a, dostáváme kvadratickou rovnici v tzv. normovaném tvaru. Definice: Kvadratickou rovnicí v normovaném tvaru s neznámou x nazýváme každou rovnici ve tvaru: 0, kde,. Takovou rovnici pak lze psát v následujícím tvaru: Jedná se vlastně o rovnost dvou funkcí, funkce kvadratické na straně levé a funkce lineární na straně pravé. Znázorníme-li grafy obou funkcí do jednoho obrázku, je řešením původní kvadratické rovnice x-ová souřadnice průsečíků obou grafů. Uvedený postup je návodem na grafické řešení kvadratické rovnice.

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Řešení slovních úloh pomocí lineárních rovnic

Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh pomocí lineárních rovnic Řešení slovních úloh představuje spojení tří, dnes bohužel nelehkých, úloh porozumění čtenému textu (pochopení zadání), jeho matematizaci (převedení na rovnici)

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1.

Exponenciální rovnice. Metoda převedení na stejný základ. Cvičení 1. Příklad 1. Eponenciální rovnice Eponenciální rovnice jsou rovnice, ve kterých se neznámá vsktuje v eponentu. Řešíme je v závislosti na tpu rovnice několika základními metodami. A. Metoda převedení na stejný základ

Více

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ

DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ DIGITÁLNÍ ARCHIV VZDĚLÁVACÍCH MATERIÁLŮ Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0963 IV/2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti

Více

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ ANALYTICKÁ GEOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Sbírka úloh z matematiky

Sbírka úloh z matematiky Střední průmyslová škola a Střední odborné učiliště, Trutnov, Školní 101 Sbírka úloh z matematiky v rámci projektu královéhradeckého kraje zavádění inovativních metod výuky pomocí ICT v předmětu matematika

Více

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo

Více

MAT 1 Mnohočleny a racionální lomená funkce

MAT 1 Mnohočleny a racionální lomená funkce MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků Maturitní zkouška z matematiky 2012 požadované znalosti Zkouška z matematiky ověřuje matematické základy formou didaktického testu. Test obsahuje uzavřené i otevřené úlohy. V uzavřených úlohách je vždy

Více

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů

Sbírka. úloh z matematiky. pro 2. ročník. tříletých učebních oborů Sbírka úloh z matematik pro. ročník tříletých učebních oborů Jméno: Třída: Obsah Výraz Člen výrazu Absolutní hodnota Sčítání a odčítání výrazů 6 Násobení výrazů 6 Dělení výrazů jednočlenem 8 Vtýkání před

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3

Matematika I, část I Vzájemná poloha lineárních útvarů v E 3 3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik R4 1. ČÍSELNÉ VÝRAZY 1.1. Přirozená čísla počítání s přirozenými čísly, rozlišit prvočíslo a číslo složené, rozložit složené

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L.

POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Soustavy o jedné rovnici neboli rovnice. Algebraické rovnice: Polynom= 0. POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Rovnice 1. stupně: lineární, ax + b = 0, a 0. Řešení: x = b a. Rovnice 2. stupně:

Více

MATEMATIKA Přijímací zkoušky na ČVUT

MATEMATIKA Přijímací zkoušky na ČVUT Kolektiv MATEMATIKA Přijímací zkoušky na ČVUT Praha 200 Vydavatelství ČVUT Lektoři: doc. RNDr. Čeněk Zlatník, CSc. doc. RNDr. Ludmila Machačová, CSc. Jaroslav Černý, Růžena Černá, František Gemperle, Vladimíra

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Závislosti

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14. 6. 2000,

Více

6. Lineární (ne)rovnice s odmocninou

6. Lineární (ne)rovnice s odmocninou @06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou

Více

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je + +421 +23 = + 444 ARITMETIKA CELÁ ČÍSLA Celá čísla jsou. -6, -5, -4, -3, -2, -1, 0, 1, 2, 3, 4, 5, 6, Celá čísla rozdělujeme na záporná (-1, -2, -3, ) kladná (1, 2, 3,.) nula 0 (není číslo kladné ani záporné) absolutní

Více

7.2.12 Vektorový součin I

7.2.12 Vektorový součin I 7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

STŘEDOŠKOLSKÁ MATEMATIKA

STŘEDOŠKOLSKÁ MATEMATIKA STŘEDOŠKOLSKÁ MATEMATIKA MOCNINY, ODMOCNINY, ALGEBRAICKÉ VÝRAZY VŠB Technická univerzita Ostrava Ekonomická fakulta 006 Mocniny, odmocniny, algebraické výrazy http://moodle.vsb.cz/ 1 OBSAH 1 Informace

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) =

takţe podmínka vypadá takto jmenovatel = 0 jmenovatel 0 něco < 0 něco 0 vnitřek 0 vnitřek > 0 cos(argument) = 0 sin(argument) = ZJIŠŤOVÁNÍ DEFINIČNÍHO OBORU FUNKCÍ Definiční obor funkce f(x) zjišťujeme tímto postupem: I. Vypíšeme si všechny výrazy pro které by mohlo být něco zakázáno a napíšeme podmínky pro to, aby se ty zakázané

Více

6. Úhel a jeho vlastnosti

6. Úhel a jeho vlastnosti 6. Úhel a jeho vlastnosti 6.1 Úhel, osa úhlu 6.1.1 Úhel Úhel je část roviny ohraničená dvěma polopřímkami se společným počátkem. Polopřímkám říkáme ramena úhlu. Jejich společný počátek nazýváme vrchol

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty

Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)

Více

15. Goniometrické funkce

15. Goniometrické funkce @157 15. Goniometrické funkce Pravoúhlý trojúhelník Ze základní školy znáte funkce sin a cos jako poměr odvěsen pravoúhlého trojúhelníka ku přeponě. @160 Měření úhlů Velikost úhlů se měří buď mírou stupňovou

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Jiří Neubauer. Katedra ekonometrie FEM UO Brno

Jiří Neubauer. Katedra ekonometrie FEM UO Brno Přednáška č. 11 Katedra ekonometrie FEM UO Brno Jedná se o speciální případ dopravních úloh, řeší např. problematiku optimálního přiřazení strojů na pracoviště. Příklad Podnik má k dispozici 3 jeřáby,

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor Číslo projektu CZ.1.07/1.5.00/34.0743 Název škol Moravské gmnázium Brno s.r.o. Autor Tematická oblast Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika. Funkce. Definice funkce, graf funkce. Tet a příklad.

Více

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose

3. Celá čísla. 3.1. Vymezení pojmu celé číslo. 3.2. Zobrazení celého čísla na číselné ose 3. Celá čísla 6. ročník 3. Celá čísla 3.1. Vymezení pojmu celé číslo Ve své dosavadní praxi jste se setkávali pouze s přirozenými čísly. Tato čísla určovala konkrétní počet (6 jablek, 7 kilogramů jablek,

Více

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy)

Euklidovský prostor. Euklides. Euklidovy postuláty (axiomy) Euklidovský prostor Euklidovy Základy (pohled do historie) dnešní definice kartézský souřadnicový systém vlastnosti rovin v E n speciální vlastnosti v E 3 (vektorový součin) a) eprostor, 16, b) P. Olšák,

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro střední odborné školy s humanitním zaměřením (6 8 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

11.1 Jedna rovnice pro jednu neznámou

11.1 Jedna rovnice pro jednu neznámou 52. ešení rovnic Mathcad je schopen řešit i velmi složité rovnice, kdy hledaná neznámá je obsažena současně v několika různých funkcích apod.. Jedna rovnice pro jednu neznámou.. Funkce root Před vlastním

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ARITMETIKA - SEKUNDA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky ARITMETIKA - SEKUNDA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu

Více

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É

1. 1 P Ř I R O Z E N Á Č Í S L A 1. 2 D Ě L I T E L N O S T 1. 3 P R V O Č Í S L O A Č Í S L O S L O Ž E N É 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4

JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4 ŘEŠENÍ MINITESTŮ JčU - Cvičení z matematiky pro zemědělské obory (doc. RNDr. Nýdl, CSc & spol.) Minitest MT4. Z daných tří soustav rovnic o neznámých x, x vyberte právě všechny ty, které jsou regulární.

Více

Algebraické výrazy pro učební obory

Algebraické výrazy pro učební obory Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy

Více

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy.

Měsíc: učivo:. PROSINEC Numerace do 7, rozklad čísla 1 7. Sčítání a odčítání v oboru do 7, slovní úlohy. Předmět: MATEMATIKA Ročník: PRVNÍ Měsíc: učivo:. ZÁŘÍ Úvod k učivu o přirozeném čísle. Numerace do 5, čtení čísel 0-5. Vytváření souborů o daném počtu předmětů. Znaménka méně, více, rovná se, porovnávání

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám

Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Výukový materiál zpracován v rámci oblasti podpory 1.5 EU peníze středním školám Název školy Obchodní akademie a Hotelová škola Havlíčkův Brod Název OP OP Vzdělávání pro konkurenceschopnost Registrační

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy

K OZA SE PASE NA POLOVINĚ ZAHRADY Zadání úlohy Koza se pase na polovině zahrady, Jaroslav eichl, 011 K OZA E PAE NA POLOVINĚ ZAHADY Zadání úlohy Zahrada kruhového tvaru má poloměr r = 10 m. Do zahrady umístíme kozu, kterou přivážeme provazem ke kolíku

Více

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh

Učivo obsah. Druhá mocnina a odmocnina Druhá mocnina a odmocnina Třetí mocnina a odmocnina Kružnice a kruh Výstupy žáka ZŠ Chrudim, U Stadionu Je schopen vypočítat druhou mocninu a odmocninu nebo odhadnout přibližný výsledek Určí druhou mocninu a odmocninu pomocí tabulek a kalkulačky Umí řešit úlohy z praxe

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

53. ročník matematické olympiády. q = 65

53. ročník matematické olympiády. q = 65 53. ročník matematické olympiády! 1. V rovině je dán obdélník ABCD, kde AB = a < b = BC. Na jeho straně BC eistuje bod K a na straně CD bod L tak, že daný obdélník je úsečkami AK, KL a LA rozdělen na čtyři

Více

6.06. Matematika - MAT

6.06. Matematika - MAT 6.06. Matematika - MAT Obor: 36-47-M/01 Stavebnictví Forma vzdělávání: denní Počet hodin týdně za dobu vzdělávání: 12 Platnost učební osnovy: od 1.9.2008 1) Pojetí vyučovacího předmětu a) Cíle vyučovacího

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE

OPERACE S KOMBINAČNÍMI ČÍSLY A S FAKTORIÁLY, KOMBINACE Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol OPERACE

Více

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky

Školní výstupy Učivo Průřezová témata, přesahy, poznámky. Školní výstupy Učivo Průřezová témata, přesahy, poznámky Gymnázium Rumburk (vyšší stupeň osmiletého gymnázia a čtyřleté gymnázium v Rumburku) Předmět:Matematika Charakteristika vyučovacího předmětu 1. Obsahové, časové a organizační vymezení Předmět vzniká Matematika

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika

UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE. Matematika a její aplikace Matematika UČEBNÍ OSNOVY ZŠ a MŠ CHRAŠTICE Vzdělávací oblast : : Cílové zaměření vzdělávací oblasti Učíme žáky využívat matematických poznatků a dovedností v praktických činnostech rozvíjet pamětˇ žáků prostřednictvím

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Matematika a její aplikace - 1. ročník

Matematika a její aplikace - 1. ročník Matematika a její aplikace - 1. ročník počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje a porovnává přirozená čísla do 20 užívá a zapisuje vztah rovnosti a nerovnosti

Více

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [

Více

15. Soustava lineárních nerovnic - optimalizace

15. Soustava lineárních nerovnic - optimalizace @173 15. Soustava lineárních nerovnic - optimalizace Jak jsme se dozvěděli v 3. lekci tohoto kurzu, je obrazem rovnice ax + by + c = 0, a,b,c R (a; b) (0; 0) přímka a obrazem nerovnic ax + by + c 0, a,b,c

Více

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE

FUNKCE NEPŘÍMÁ ÚMĚRNOST A LINEÁRNÍ LOMENÁ FUNKCE 1 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol FUNKCE

Více

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy

y 10 20 Obrázek 1.26: Průměrová rovina válcové plochy 36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem

Více

Vzdálenosti. Copyright c 2006 Helena Říhová

Vzdálenosti. Copyright c 2006 Helena Říhová Vzdálenosti Copyright c 2006 Helena Říhová Obsah 1 Vzdálenosti 3 1.1 Vzdálenostivrovině... 3 1.1.1 Vzdálenostdvoubodů..... 3 1.1.2 Vzdálenostboduodpřímky..... 4 1.1.3 Vzdálenostdvourovnoběžek.... 5 1.2

Více

MO-ME-N-T MOderní MEtody s Novými Technologiemi

MO-ME-N-T MOderní MEtody s Novými Technologiemi Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu

6.6 Matematika. 6.6.1 Charakteristika vyučovacího předmětu 6.6 Matematika 6.6.1 Charakteristika vyučovacího předmětu Obsahové vymezení předmětu: Vyučovací předmět se jmenuje Matematika. Patří do vzdělávací oblasti Matematika a její aplikace z RVP ZV. Vzdělávací

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

II. Nástroje a metody, kterými ověřujeme plnění cílů

II. Nástroje a metody, kterými ověřujeme plnění cílů MATEMATIKA Gymnázium PORG Libeň PORG Libeň je reálné gymnázium se všeobecným zaměřením, matematika je tedy na PORGu pilotním předmětem vyučovaným celých osm let. I. Cíle výuky Naši studenti jsou připravováni

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více