GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

Rozměr: px
Začít zobrazení ze stránky:

Download "GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA"

Transkript

1 GENEROVÁNÍ NÁHODNÝCH ČÍSEL PSEUDONÁHODNÁ ČÍSLA

2 Oblasti využití generátorů náhodných čísel Statistika Loterie Kryptografie (kryptologie) Simulace

3 Simulační modely DETERMINISTICKÉ STOCHASTICKÉ (činnost systému ovlivňovaná náhodnými faktory) KOMBINOVANÉ Význam variability Podnikové procesy (činnosti) nejsou obvykle deterministické - obsahují různé prvky variability (rozdílná délka jejich trvání)

4 K provedení simulace je potřeba získat náhodná čísla tj. numerickou realizaci náhodných veličin A Přímé zakomponování náhodných jevů (do simulačního modelu), jenž byly stanoveny na základě údajů napozorovaných na real. modelu!!! PROBLÉM!!! ŘEŠENÍ B 1. Stanovení pravděpodobnostních zákonitostí (typ rozdělení náhodné veličiny a její parametry) na základě údajů napozorovaných na reálním modelu simulační experimenty běžného rozsahu = několik set tisíc hodnot 2. Generování hodnot náhodných jevů na základě zjištěných pravděpodobnostních zákonitostí v průběhu chodu simulačního modelu

5 Náhoda Nic není náhoda aneb Existuje náhoda nebo je vše předurčeno? Náhoda je blbec, Nehoda není náhoda Náhoda - něco, co může ale nemusí nastat, přičemž existenci či neexistenci daného jevu nelze ovlivnit.

6 Náhodný pokus, náhodný jev, náhodná veličina, rozdělení Náhodný pokus pokus, jehož výsledek se od jednoho provedení pokusu k druhému (při stejných výchozích podmínkách) obecně mění (hod kostkou, mincí, ) Náhodný veličina jeveličina, jejíž hodnota je dána výsledkem náhodného pokusu (např. jednička na kostce). Náhodná veličinajeurčena rozdělením pravděpodobnosti Rozdělení pravděpodobnosti náhodné veličiny pravidlo, kterým každému jevu popisovanému touto veličinou přiřazujeme určitou pravděpodobnost. Rozdělení pravděpodobnosti náhodné veličiny získáme, pokud každé hodnotě diskrétní náhodné veličiny, popř. intervalu hodnot spojité náhodné veličiny, přiřadíme pravděpodobnost.

7 Distribuční funkce Distribuční funkce F(x) popisuje rozložení pravděpodobnosti mezi náhodné jevy, F(x) je rovno pravděpodobnosti, že náhodná veličina X nabude hodnoty menší nebo rovno x Pro každé reálné x je distribuční funkce neklesající Pro každé reálné x platí

8 Hustota pravděpodobnosti, pravděpodobnostní funkce Hustota pravděpodobnosti f(x) derivace spojité distribuční funkce F(x) pro všechna reálná x je Pravděpodobnostní funkce P(x) pro diskrétní veličiny pro všechna reálná x i platí celkový součet f(x i ) je roven 1

9 Hustota pravděpodobnosti, distribuční funkce Normální normované rozdělení N(0,1) Rovnoměrné rozdělení R(0,1)

10 F(x) příklad hod kostkou 1 5/6 2/3 1/2 1/3 1/

11 Střední hodnota, rozptyl, směrodatná odchylka Střední hodnota E(x) charakteristika polohy Rozptyl D(x) je střední hodnota čtverců odchylek hodnot náhodné veličiny od její střední hodnoty E(x). Charakterizuje variabilitu náhodné veličiny. Směrodatná odchylka odmocnina rozptylu

12 Základní druhy rozdělení DISKRÉTNÍ ROZDĚLENÍ SPOJITÁ ROZDĚLENÍ Rovnoměrné rozdělení Binomické rozdělení Poissonovo rozdělení Negativně binomické rozdělení Pascalovo rozdělení Geometrické rozdělení Hypergeometrické rozdělení Logaritmické rozdělení Rovnoměrné rozdělení Normální rozdělení Exponenciální rozdělení Laplaceovo rozdělení Logistické rozdělení Maxwellovo rozdělení Studentovo rozdělení Fischer-Snedecorovo rozdělení Χ² rozdělení (Chí kvadrát)

13 Exponenciální rozdělení nejčastěji používané rozdělení v simulaci generování intervalů mezi po sobě následujícími příchody požadavků, délka trvání činností, výskyty poruch λ intenzita příchodů, tj.počet příchodů za jednotku času 1/ λ interval mezi po sobě následujícími příchody Hustota pravděpodobnosti Distribuční funkce Střední hodnota Hustota pravděpodobnosti pro parametry λ = 2 Rozptyl

14 Rovnoměrné rozdělení R(0,1) základ pro generování dalších náhodných veličin simulace délky trvání činností Hustota pravděpodobnosti Distribuční funkce Střední hodnota Hustota pravděpodobnosti rovnoměrného rozdělení R(4,8) Rozptyl

15 Normální rozdělení zachycení chyby při fyzikálních měřeních a ekonomických pozorováních generování dob trvání činností (! správná volba střední hodnoty, jinak záporné a vybočující hodnoty!) Hustota pravděpodobnosti Střední hodnota Rozptyl Hustota pravděpodobnosti pro parametry μ = 5, σ 2 = 1

16 Poissonovo rozdělení generování počtu příchozích entit do systému, počtu vadných výrobků, počtu vad na jeden výrobek, počet přerušení provozu za danou časovou jednotku λ intenzita příchodů, tj. průměrný počet příchodů za jednotku času Pravděpodobnostní funkce Střední hodnota Rozptyl Pravděpodobnostní funkce pro λ =3 a λ =8

17 Binomické rozdělení náhodná veličina X popisuje rozdělení počtu nastoupení jevu příznivého v n nezávislých realizacích náhodného pokusu dva parametry: n a p pravděpodobnost nastoupení příznivého jevu Pravděpodobnostní funkce Střední hodnota Rozptyl Pravděpodobnostní funkce s parametry n = 10 a p = 0,2

18 Jaký typ rozdělení vůbec generovat? data známé z reálného systému stanovení jaké hodnoty proces generuje: spojité nebo diskrétní stanovení jestli je proces stacionární nebo nestacionární oční testy analýza základních charakteristik rozdělení aplikace statistických testů testy dobré shody data neznámé hledání analogie s jinými procesy odhady expertů na daný problém

19 Postup generování náhodných čísel PRIMÁRNÍ GENERÁTORY generování posloupnosti náhodných čísel s rovnoměrným rozdělením SEKUNDÁRNÍ GENERÁTORY transformace rovnoměrně rozdělených veličin na veličiny s libovolným rozdělením

20 Generování náhodných čísel Nezávislé hodnoty rovnoměrného rozdělení na intervalu (0,1) R(0,1) R(0,1): f(x) = 1 pro x (0,1) jinak f(x) = 0 F(x) = 0 pro x 0 F(x) = x pro x (0,1) F(x) = 1 pro x 1

21 Jak generovat náhodná čísla 1. Tabulky náhodných čísel 2. Mechanické generátory 3. Fyzikální generátory 4. Aritmetické generátory

22 Tabulky náhodných čísel pro výpočty malého rozsahu (Tippetove tabulky čísel, atd ). po převedení do elektronické podoby počítač z ní načítá náhodná čísla. Příklad tabulky náhodných čísel: Výhoda: kvalitní data Nevýhoda: i nejrozsáhlejší tabulky jsou již malé

23 Mechanické generátory (TRN generátory) nejvíce známé hrací kostka při hře, nebo házení mincí. tam, kde na výsledku hodně záleží, jsou pro účely losování zhotoveny speciální přístroje (např. pro sázkové hry podniku SAZKA). Nevýhoda: pro simulaci na počítači nepoužitelné

24 Fyzikální generátory (TRN generátory) využití jistých fyzikálních pochodů, které mají náhodný charakter, např. počítání intervalů mezi rádioaktivními rozpady jednotlivých atomů, šumové generátory využívající vlastnosti polovodičového přechodu, atd. princip připojení zařízení, které registruje určité fyzikální pochody k počítači Výhoda: jsou náhodné Nevýhoda: nelze je reprodukovat, opakovat simulaci za stejných podmínek

25 Fyzikální generátory (TRN generátory) lávové lampy 60. a 70. léta, obrazy probublávajících barevných kuliček kapaliny v osvětlené zúžené žárovce snímány několika kamerami, tzv. lavarand. SG , komerční hardwarový generátor, generování na základě tepelného šumu připojeného rezistoru HotBit server, kde lze objednat náhodná čísla, generování na základě časového průběhu radioaktivního rozpadu částic, jak je zaznamenáván Geiger- Müllerovou trubicí.

26 Aritmetické generátory (PRN generátory) nejpoužívanějšími generátory pro účely počítačové simulace, náhodná čísla tvořena aritmetickými procedurami pomocí rekurentních výpočtů v nichž následující číslo deterministicky závisí na jednom či více předchozích číslech. čísla takto získaná označujeme jako čísla pseudonáhodná (jde o výpočet, nikoliv o náhodu) vlastnosti odpovídající RN: nezávislost a rovnoměrné rozložení na požadovaném intervalu Generování náhodných čísel spočívá v paradoxu, že náhoda může být vypočtena!

27 Kongruenční generátory Lineární kongruenční generátory (Lehmer, 1948) A) Smíšený x n+1 = a x n + c (mod m) B) Multiplikativní x n+1 = a x n (mod m) C) Aditivní, např. x n+1 = x n + x n-1 (mod m) x 0, a, c, m vhodně zvolená čísla x 0 násada, semínko, tzv. seed modulo m (celé číslo, m 0, zbytek po celočíselném dělení) Proměnná x může nabývat pouze konečného počtu hodnot P (perioda generátoru), platí že

28 Smíšený lineární kongruenční generátor n x n 11x n +9 (11x n +9)(mod 13) Výpočet x 2

29 Vliv nastaveni konstant x, c, a, m na periodu P x n+1 = a x n + c 1,4,0,3,6,2,5, 1,4,0,3,6,2,5, 1,4,0,3,6,2,5,

30 Vliv nastaveni konstant x, c, a, m na periodu P x n+1 = a x n + c

31 Vliv nastaveni konstant x, c, a, m na periodu P x n+1 = a x n + c

32 Testování náhodných čísel Ověření, zda generátor poskytuje hodnoty, které lze považovat za nezávislé hodnoty rozdělení R(0,1). tzv. empirické testy náhodnosti (hodnocení na základě statistik získaných z generovaných posloupnosti a jejich porovnání s hodnotami statistik vypočtenými za předpokladu náhodnosti) testy teoretické, vycházející z teorie čísel, zkoumání parametrů generátoru. žádný test nedává definitivní jistotu, úspěšnost v několika testech zvyšuje důvěru v náhodnost čísel. čísla generovaná počítačem jsou prohlášena za náhodná, jestliže testy nemohou odhalit rozdíl mezi čísly získané aritmetickým generátorem a skutečně náhodnou posloupností.

33 Metody transformace náhodných čísel na hodnoty náhodných veličin Vygenerujeme náhodné číslo z intervalu R (0,1), to pak transformujeme pomocí vhodné metody na náhodnou veličinu zvoleného rozdělení ( exponenciálního, ) Metoda inverzní transformace Zamítací metoda Kompoziční metoda

34 Metoda inverzní transformace Předpoklad: Existuje rostoucí distribuční funkce F(x) pro náhodnou veličinu X a také funkce k ní inverzní F -1 (x) Nalezne se inverzní funkce k distribuční funkci požadovaného rozdělení. Generuji hodnoty R(0,1) a pomocí inverzní funkce získám požadované hodnoty. Příklad: Pokud má požadovaná náhodná veličina distribuční funkci F(x) a máme-li generátor spojitého rozdělení U na intervalu (0,1) lze veličinu X s požadovaným rozdělením získat jako X=F -1 (U) ( kvantilová funkce) b X F -1 a 0 1 U

35 Požadavky na generátory náhodných čísel dlouhá perioda generování "dobré" pseudonáhodné posloupnosti (PP) = délka PP by měla být zlomkem délky periody generátoru lineární kongruenční generátor - délka periody minimálně 2 60, nejlépe volit periodu alespoň o rád vetší, než je druhá mocnina počtu generovaných čísel, někteří autoři doporučují efektivita uspokojující rychlost, využívání paměti počítače v co nejmenší možné míře opakovatelnost vlastnost důležitá především pro simulační úlohy, existence možnosti generovat shodné pseudonáhodné posloupnosti přenositelnost snadná implementace a plná funkčnost generátoru na různých platformách, hardwarových i softwarových nevypočitatelnost z vygenerované posloupnosti by nemělo být možné v rozumném čase určit, jaké číslo bude následovat (kasina, internet) úspěšnost v empirických testech ověřování hypotézy H0: "vygenerované hodnoty jsou nezávislá náhodná čísla z rovnoměrného rozdělení na intervalu (0,1)". skok dopředu je schopnost genetátoru spočítat xn+v na základě znalosti xn popřípadě x0 aníž bychom počítali hodnoty mezi

36 Literatura Hušek, R., Lauber,J. Simulační modely, SNTL/Alfa Praha 1987 Kuneš, J., Vavroch, O., Franta,V. Základy modelování, SNTL Praha 1989 Rábová, Z., Češka, M., Zendulka, J. Modelování a simulace, SNTL Praha 1982 Dlouhý, M., Fábry, J., Kuncová, M., Hladík, T. Simulace podnikových procesů, Computer Press, a.s. Brno, 2007 Keřkovský, M., Moderní přístupy k řízení výroby, C. H. Beck Praha 2001 Havrila, M., Počítačové projektovanie, Prešov, 2008, ISBN Havrila, M., Trendy v počítačovom projektovaní výrobných systémov, online cit. [ ], dostupné z Havrila, M., Tendencie v rozvoji počítačovej simulácie výrobných systémov. Manufacturing Engineering/Výrobné inžinierstvo, FVT TU Prešov, č. 3, 2008, VII, str , ISSN Geta Centrum s.r.o, Optimalizace pracoviště v digitální továrně, Baumbruk, M., Výhody integrace komponent digitální továrny: od PLM až k virtuálnímu ověřování, Siemens PLM software Lacko, B., Navrhování systémů řízení, Studijní text, Brno, 2006 Leeder, E., Digitální továrna mocný nástroj pro průmyslovou výrobu, AUTOMA 7/2008, s.56-58, Mareček, P., Virtuální simulace výroby aneb Digitální továrna, IT SYSTEMS 9/2006, on-line cit. [ ], dostupné z PLM Siemens, online cit. [ ], https://www.plm.automation.siemens.com/en_us/academic/resources/tecnomatix/index.shtml

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD.

POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ. Ing. V. Glombíková, PhD. POČÍTAČOVÁ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. SIMULACE nástroj pro studium chování objektů reálného světa SYSTÉM určitým způsobem uspořádána množina komponent a relací mezi nimi. zjednodušený,

Více

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN? NÁHODNÉ VELIČINY GENEROVÁNÍ SPOJITÝCH A DISKRÉTNÍCH NÁHODNÝCH VELIČIN, VYUŽITÍ NÁHODNÝCH VELIČIN V SIMULACI, METODY TRANSFORMACE NÁHODNÝCH ČÍSEL NA HODNOTY NÁHODNÝCH VELIČIN. JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

SYSTÉMY HROMADNÉ OBSLUHY. Teorie front

SYSTÉMY HROMADNÉ OBSLUHY. Teorie front SYSTÉMY HROMADNÉ OBSLUHY Teorie front Systémy hromadné obsluhy (SHO) Teorie hromadné obsluhy (THO) se zabývá kvantitativním hodnocením soustav schopných uspokojiť požadavky hromadného charakteru na nejakou

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

Pravděpodobnost, náhoda, kostky

Pravděpodobnost, náhoda, kostky Pravděpodobnost, náhoda, kostky Radek Pelánek IV122, jaro 2015 Výhled pravděpodobnost náhodná čísla lineární regrese detekce shluků Dnes lehce nesourodá směs úloh souvisejících s pravděpodobností krátké

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

TRENDY V POČÍTAČOVÉM PROJEKTOVÁNÍ VÝROBNÍCH SYSTÉMŮ ERGONOMICKÉ SIMULACE PODNIKOVÝCH PROCESŮ

TRENDY V POČÍTAČOVÉM PROJEKTOVÁNÍ VÝROBNÍCH SYSTÉMŮ ERGONOMICKÉ SIMULACE PODNIKOVÝCH PROCESŮ TRENDY V POČÍTAČOVÉM PROJEKTOVÁNÍ VÝROBNÍCH SYSTÉMŮ ERGONOMICKÉ SIMULACE PODNIKOVÝCH PROCESŮ Ing. V. Glombíková, PhD. Systémy pro simulaci výrobních systémů Systémy vyznačující se schopností vyhodnocení

Více

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami. 3.1. 3.2. Třikrát vystřelíme na cíl. Pravděpodobnost zásahu při každém výstřelu je p = 0,7. Určete: a) pravděpodobnostní funkci počtu zásahů při třech nezávislých výsledcích, b) distribuční funkci a její

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup

Statistika. Regresní a korelační analýza Úvod do problému. Roman Biskup Statistika Regresní a korelační analýza Úvod do problému Roman Biskup Jihočeská univerzita v Českých Budějovicích Ekonomická fakulta (Zemědělská fakulta) Katedra aplikované matematiky a informatiky 2008/2009

Více

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY 4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY Průvodce studiem V této kapitole se seznámíte se základními typy rozložení diskrétní náhodné veličiny. Vašim úkolem by neměla být

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

y = 0, ,19716x.

y = 0, ,19716x. Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

MATEMATIKA III V PŘÍKLADECH

MATEMATIKA III V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA III V PŘÍKLADECH Cvičení 7 Rozdělení pravděpodobnosti spojité náhodné veličiny Mgr. Petr Otipka Ostrava 2013 Mgr. Petr Otipka

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

Téma 3: Metoda Monte Carlo

Téma 3: Metoda Monte Carlo y Náhodná proměnná D Téma 3: Metoda Monte Carlo Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí 4. ročník bakalářského studia 1,0 1,00 0,80 0,60 0,40 0,0 0,00 0,00 0,0 0,40 0,60 0,80 1,00

Více

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,

1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jestliže opakujeme nezávisle nějaký pokus, můžeme z pozorovaných hodnot sestavit rozdělení relativních četností

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2009/2010 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně

IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně IMOSI - MODELACE A SIMULACE LEARN 2013 správně možná špatně Simulátor označujeme jako kredibilní v případě, že: byla úspěšně završena fáze verifikace simulátoru se podařilo přesvědčit zadavatele simulačního

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Základní pojmy diagnostiky a statistických metod vyhodnocení Učební text Ivan Jaksch Liberec 2012 Materiál vznikl

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor "Management jakosti"

Tématické okruhy pro státní závěrečné zkoušky. bakalářské studium. studijní obor Management jakosti Tématické okruhy pro státní závěrečné zkoušky bakalářské studium studijní obor "Management jakosti" školní rok 2013/2014 Management jakosti A 1. Pojem jakosti a význam managementu jakosti v současném období.

Více

Ekonomické modelování pro podnikatelskou praxi

Ekonomické modelování pro podnikatelskou praxi pro podnikatelskou praxi Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Vlachý, J. Řízení finančních rizik Scholleová, H. Hodnota flexibility: Reálné opce Sylabus

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých

Více

Diskrétní náhodná veličina

Diskrétní náhodná veličina Lekce Diskrétní náhodná veličina Výsledek náhodného pokusu může být vyjádřen slovně to vede k zavedení pojmu náhodného jevu Výsledek náhodného pokusu můžeme někdy vyjádřit i číselně, což vede k pojmu náhodné

Více

24.11.2009 Václav Jirchář, ZTGB

24.11.2009 Václav Jirchář, ZTGB 24.11.2009 Václav Jirchář, ZTGB Síťová analýza 50.let V souvislosti s potřebou urychlit vývoj a výrobu raket POLARIS v USA při závodech ve zbrojení za studené války se SSSR V roce 1958 se díky aplikaci

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Stochastické signály (opáčko)

Stochastické signály (opáčko) Stochastické signály (opáčko) Stochastický signál nemůžeme popsat rovnicí, ale pomocí sady parametrů. Hodit se bude statistika a pravděpodobnost (umíte). Tohle je jen miniminiminiopáčko, později probereme

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík

Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012. Tutoriál č. 4: Exploratorní analýza. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2011/2012 Tutoriál č. 4: Exploratorní analýza Jan Kracík jan.kracik@vsb.cz Statistika věda o získávání znalostí z empirických dat empirická

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost 1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost Ve světě kolem nás eistují děje, jejichž výsledek nelze předem jednoznačně určit. Například nemůžete předem určit, kolik

Více

Pravděpodobnostní rozdělení v MS Excel

Pravděpodobnostní rozdělení v MS Excel Pravděpodobnostní rozdělení v MS Excel Luboš Marek Vysoká škola ekonomická v Praze, Praha Konzultace 1 Úvod Mezi statistickou obcí se často diskutuje, který statistický program je nejlepší, přičemž se

Více

Pravděpodobnostní rozdělení

Pravděpodobnostní rozdělení Náhodná proměnná Pravděpodobnostní rozdělení Základy logiky a matematiky, ISS FSV UK Martin Štrobl Tento pomocný materiál neobsahuje všechnu látku k danému tématu, pouze se zaměřuje na pochopení důležitých

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

6.1 Normální (Gaussovo) rozdělení

6.1 Normální (Gaussovo) rozdělení 6 Spojitá rozdělení 6.1 Normální (Gaussovo) rozdělení Ze spojitých rozdělení se v praxi setkáme nejčastěji s normálním rozdělením. Toto rozdělení je typické pro mnoho náhodných veličin z rozmanitých oborů

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy

EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy EKONOMETRIE 7. přednáška Fáze ekonometrické analýzy Ekonometrická analýza proces, skládající se z následujících fází: a) specifikace b) kvantifikace c) verifikace d) aplikace Postupné zpřesňování jednotlivých

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7

STATISTIKA. Inovace předmětu. Obsah. 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 Inovace předmětu STATISTIKA Obsah 1. Inovace předmětu STATISTIKA... 2 2. Sylabus pro předmět STATISTIKA... 3 3. Pomůcky... 7 1 1. Inovace předmětu STATISTIKA Předmět Statistika se na bakalářském oboru

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

Základní statistické charakteristiky

Základní statistické charakteristiky Základní statistické charakteristiky Základní statistické charakteristiky slouží pro vzájemné porovnávání statistických souborů charakteristiky = čísla, pomocí kterých porovnáváme Základní statistické

Více

Modelování a simulace Lukáš Otte

Modelování a simulace Lukáš Otte Modelování a simulace 2013 Lukáš Otte Význam, účel a výhody MaS Simulační modely jsou nezbytné pro: oblast vědy a výzkumu (základní i aplikovaný výzkum) analýzy složitých dyn. systémů a tech. procesů oblast

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan

Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan 1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Pravděpodobnost a učení Doc. RNDr. Iveta Mrázová,

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Průzkumová analýza dat

Průzkumová analýza dat Průzkumová analýza dat Proč zkoumat data? Základ průzkumové analýzy dat položil John Tukey ve svém díle Exploratory Data Analysis (odtud zkratka EDA). Často se stává, že data, se kterými pracujeme, se

Více

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě

31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě 31. 3. 2014, Brno Hanuš Vavrčík Základy statistiky ve vědě Motto Statistika nuda je, má však cenné údaje. strana 3 Statistické charakteristiky Charakteristiky polohy jsou kolem ní seskupeny ostatní hodnoty

Více

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace

Více

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK

ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK ANALÝZA DAT V R 3. POPISNÉ STATISTIKY, NÁHODNÁ VELIČINA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz POPISNÉ STATISTIKY - OPAKOVÁNÍ jedna kvalitativní

Více

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Simulace. Simulace dat. Parametry

Simulace. Simulace dat. Parametry Simulace Simulace dat Menu: QCExpert Simulace Simulace dat Tento modul je určen pro generování pseudonáhodných dat s danými statistickými vlastnostmi. Nabízí čtyři typy rozdělení: normální, logaritmicko-normální,

Více

Výpočet pravděpodobností

Výpočet pravděpodobností Výpočet pravděpodobností Pravděpodobnostní kalkulátor v programu STATISTICA Cvičení 5 Statistické metody a zpracování dat 1 (podzim 2016) Brno, říjen 2016 Ambrožová Klára Trocha teorie Náhodné jevy mají

Více

Deskriptivní statistické metody II. Míry polohy Míry variability

Deskriptivní statistické metody II. Míry polohy Míry variability Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které

Více

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II

Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Téma 2 Simulační metody typu Monte Carlo

Téma 2 Simulační metody typu Monte Carlo Spolehlivost a bezpečnost staveb, 4.ročník bakalářského studia Téma 2 Simulační metody typu Monte Carlo Princip simulačních metod typu Monte Carlo Metoda Simulation Based Reliability Assessment (SBRA)

Více

Význam ekonomického modelování

Význam ekonomického modelování Základy ekonomického modelování Ing. Jan Vlachý, Ph.D. vlachy@atlas.cz Dlouhý, M. a kol. Simulace podnikových procesů Hnilica, J., Fotr, J. Aplikovaná analýza rizika Scholleová, H. Hodnota flexibility:

Více

Úvod do analýzy rozptylu

Úvod do analýzy rozptylu Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme

Více

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)*

1 Analytické metody durace a konvexita aktiva (dluhopisu) $)* Modely analýzy a syntézy plánů MAF/KIV) Přednáška 10 itlivostní analýza 1 Analytické metody durace a konvexita aktiva dluhopisu) Budeme uvažovat následující tvar cenové rovnice =, 1) kde jsou současná

Více

Cvičení ze statistiky - 5. Filip Děchtěrenko

Cvičení ze statistiky - 5. Filip Děchtěrenko Cvičení ze statistiky - 5 Filip Děchtěrenko Minule bylo.. Začali jsme pravděpodobnost Klasická a statistická definice pravděpodobnosti Náhodný jev Doplněk, průnik, sjednocení Podmíněná pravděpodobnost

Více

TEMATICKÝ PLÁN VÝUKY

TEMATICKÝ PLÁN VÝUKY TEMATICKÝ PLÁN VÝUKY Studijní obor: 23-41 - M/1 Strojírenství Zaměření: Předmět: Matematika Ročník: 4. Počet hodin týdně: 4 Počet hodin celkem: Tento plán vychází z rámcového vzdělávacího programu pro

Více