Operátory a maticové elementy

Rozměr: px
Začít zobrazení ze stránky:

Download "Operátory a maticové elementy"

Transkript

1 Operátory a matice

2 Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly maticový element operátoru O mezi Slaterovými determinanty K a L K O L cíl: zavedeme notaci a odvodíme pravidla pro vypočet těchto integrálů

3 Dvouelektronový integrál: otace dvouelektronových integrálů ( ) ( ) ( ) ( ) * * x x 2χ x i χ x j 2 χk χl 2 r x x 2 ij kl d d základní vztahy: ij kl = ji lk ij kl = kl ij ij kl ij kl ij lk ij kk = 0 *...Antisymetrizovaný 2-e integrál Pro definici ( ) a [ ] viz. Ostlund&Szabo

4 Systém: dva elektrony plus dvě jádra Hamiltonián: Hamiltonián molekuly H 2 H 2 Z A 2 Z A = = 2 A ra 2 A r2a r2 = h() + h( 2) + r 2 h(i)... jedno-elektronová část Hamiltonián H lze rozdělit na jedno- a dvou- elektronovou část 2 ( ) ( 2) O = h + h O = r 2

5 Maticové elementy H 2 v minimální bázi Jednoelektronová část Hamiltoniánu: jednotlivé termy () x x χ ( x ) χ ( x ) χ ( x ) χ ( x ) Ψ h Ψ = d d h ( ) h() Ψ h 2 Ψ = Ψ Ψ () χ ( x ) χ ( x ) χ ( x ) χ ( x ) ( ) ( ) ( ) ( ) ( ) ( ) = dx χ x h χ x + dx χ x h χ x * * * celkově pro O Hamiltonian Ψ O Ψ = h + 2 h otace pro jednoelektronový integrál: ( ) ( ) ( ) i h j χ h χ dx χ x h r χ x = i j i j

6 Př.: Ukažte, že platí: a Ψ O Ψ = 3 h h Ψ O Ψ = Dvouelektronový Hamiltonián: Ψ O Ψ = dx dx 2 χ x χ x χ x χ x χ( ) χ2( 2) χ2( ) χ( 2) 2 r x x x x ( ) ( ) ( ) ( ) = dx dx χ x χ x χ x χ x ( ) ( ) ( ) ( ) * * r2 dx dx χ x χ x χ x χ x ( ) ( ) ( ) ( ) * * r2 = = 2 2 otace pro dvouelektronový integrál ij kl χχ χ χ dx dx χ x χ x χ x χ x = = ( ) ( ) ( ) ( ) i j k l 2 i j 2 k l 2 r2 *

7 Energie Hartree-Fockova základního stavu: Ψ H Ψ = Ψ O + O Ψ = h + 2 h Př.: Použitím těchto výrazů, ukažte že FCI matice pro H 2 v minimální bázi je ψ FC H ψ FC Dokažte, že je to matice Hermitovská. h + 2 h = 3 h h

8 Slater-Condonova pravidla Popisují základní pravidla maticových elementů pro dva typy operátorů - jedno-elektronový - dvou-elektronový to implikuje čtyři obecné možnosti pro maticové elementy: I. determinanty jsou si rovny II. III. IV. K O L determinanty se liší v jednom spinorbitalu determinanty se liší ve dvou spinorbitalech () determinanty se liší ve více než dvou spinorbitalech, maticový element roven nule O O 2 = = L L L i= h i r i= j> i ij = K = = = χ χ p p χ χ n q m χ χ n

9 SC pravidla, jednoelektronový operátor I. II. III. K = mn K O K = m h m K = mn L = pn K = mn L = pq K O L = m h p K O L = 0 m Pro platnost SC pravidel musí platit maximální shoda determinantů, tj. pořadí a ostatních spinorbitalů musí být stejné u obou Slaterových determinantů.

10 SC pravidla, dvouelektronový operátor I. II. III. K = mn K O K = mn mn K = mn L = pn K = mn L = pq 2 2 K O L = mn pn 2 K O L = mn pq 2 n m n

11 Př.: Mějme determinant a Hamiltonián H. Ukažte, že K = χ χχ 2 3 K H K = h + 2 h h Př.: Ukažte, že platí tyto vztahy = 0 a b, r s = r h s a = b, r s r s Ψ O Ψ = b h a a b, r = s a b = c h c a h a + r h r a= b, r = s c

12 Slater-Condonova pravidla, příklady Př.: Porovnej energii základního stavu -elektronového systému E = Ψ H Ψ s energií ionizovaného systému, kde je odstraněn elektron - z spinorbitalu χ a, Ψ = χ χ χ χ χ a 2 a a+ E a = Ψ a H Ψ a Př.: Pomocí Slater-Condonových pravidel ukažte, že energie potřebná k procesu ionizace je 0 a = + b E E a h a ab ab

13 Přechod od spinorbitalů k prostorovým orbitalům Ve většině praktických odvození je vhodné spinovou komponentu vyintegrovat a ve výpočtech uvažovat jen prostorovou část spinorbitalů. - spinorbitaly - energie molekuly H 2 -! chemická notace! [ ] ij kl = ik jl ( x) ( x) = ( x) ( ) ( x) ( x) = ( x) ( ) χ ψ ψ α ω i i i χ ψ ψ β ω i+ i+ i+ E0 = h + 2 h = h + h + dx dx χ ( x ) χ ( x ) χ ( x ) χ ( x ) * * 2 i j k 2 l 2 r2 (...operátor /r2 se chová jako násobení číslem můžu přeházet pořadí funkcí...) -přechod k prostorovým orbitalům [ ψψ ψψ ] ( ψψ ψψ ) [ ψψ ψψ ] = 0

14 0 0 ( h ) ( ) * ( i h j) drψi ( r ) h( r) ψ j( r ) Molekula vodíku HF energie molekuly vodíku v minimální bázi: E = h + h + po vyintegrování spinové části E = 2 + * * ( ij kl ) dr drψ ( r ) ψ ( r ) ψ ( r ) ψ ( r ) ( x) ( x) = ( r) ( ) ( x) ( x) = ( r) ( ) χ ψ ψ α ω χ ψ ψ β ω 2 2 i j k 2 l 2 r2 Př.: apište FCI matici pro H 2 (v min. bázi) pomocí prostorových funkcí. Mělo by vyjít: 2 ( h ) + ( ) ( 2 2) H = ( 2 2) 2( 2 h 2) + ( 22 22) ( ) ( ) h = h = h = = 0

15 Rectricted closed-shell vlnová funkce Systém -elektronů, /2 α-elektronů, /2 β-elektronů Rectricted model = α a β elektrony mají stejné energetické hladiny Closed-shell model = stejný počet elektronů s opačnými spiny Ψ = χχχχ χ χ = ψψψψ ψ ψ 2 2 /2 /2

16 Rectricted closed-shell Vlnová funkce -elektronového systému: odpovídající energie Ψ = χχχχ χ χ = ψψψψ ψ ψ 2 2 /2 /2 S využitím identity prostorových funkcí pro různé spiny, lze od spin-orbitalů přejít k orbitalům /2 /2 χ = ψ + ψ a výraz pro energii přejde do tvaru 0 /2 E0 = a h a + ab ab 2 a a a a a a a a, b ( ) ( ) ( ) E = 2 a h a + 2 aa bb ab ba a a, b

17 Příklad Př.: Přepište výraz E ( 2) 0 = ab rs 4 abrs a + b r s ε ε ε ε 2 ukažte, že pro systém s uzavřenými slupkami přejde výraz na E (platí ε = ε ) i i /2 K ( ) ( 2) ab rs 2 rs ab rs ba 0 = ε + ε ε ε ab, = rs, = ( /2+ ) a b r s

18 Coulombický a výměnný integrál Hartree Fockova energie systému v základním stavu s uzavřenými slupkami Dvouelektronové integrály: 0 Coulombický integrál klasická coulombická repulze mezi nábojovými oblaky 2 2 J = d r d r ψ r r ( aa bb) Výměnný integrál nemá klasickou analogii K ( ) ( ) ( ) E = 2 a h a + 2 aa bb ab ba a ( ) ψ ( ) ij 2 a b 2 r2 = ab ab = d r d r ψ r ψ r ψ r ψ r ( ) ( ) ( ) ( ) * * ij 2 a b b 2 a 2 r2 ( ab ba) a, b = ab ba

19 Coulombický a výměnný integrál - příklady Hartree-Fockova energie základního stavu systému s uzavřenými slupkami pak lze přehledněji napsat: ( ) = + E0 2 h 2J K a aa ab ab ab Př.: Potvrďte vlastnosti Coulombického a výměnného integrálu * * ij ij ij ij Př.: V případě, že máme reálné prostorové funkce, dokažte J ii = K J = J K = K J = J K = K ij ji ij ji ij ii ( ) ( ) K = ij ij = ji ji = ii jj = jj ii

20 Př.: Ukažte, že FCI matice pro minimální bázi molekuly vodíku je 2h + J K2 K 2h + J Pozn.: Molekulové orbitaly v tomto modelu jsou reálné, protože jsou zkonstruovány jako lineární kombinace reálných atomových orbitalů.

21 Korelace pohybu dvou elektronů Interakční energie dvou elektronů závisí na jejich spinech. Pohyb elektronů se stejným spinem je korelován, pro opačné spiny nikoliv. S T = ψψ P( r, r) 0 = ψψ P( r, r) = energie obou stavů musí být rozdílné S ( ) T E > E ( ) ( ) E = ψ h ψ + ψ h ψ + ψψ ψψ ψψ ψψ = ( ) = h + h + J 22 2 E = ψ h ψ + ψ h ψ + ψψ ψψ ψψ ψψ = K = h + h + J K > 0, J > 0

22 Měli jsme Vlastnosti Slaterova determinantu Korelace pohybu elektronů Pravděpodobnost výskytu dvou elektronů v prostoru: a) Pokud mají opačný spin Ψ ( x,x 2) = χ( x) χ2( x2) χ( x) = ψ( x) α( ω) χ2( x2) = ψ2( x2) β( ω2) 2 ( ) = ω ω Ψ P r,r dr dr d d dr dr Pokud = [ ψ (r ) ψ (r ) + ψ (r ) ψ (r ) ] dr dr (smíšené členy vypadnou při integraci přes spinovou část, dva členy v [ ] díky nerozlišitelnosti el. průměrované /2) Antisymetrizace exchange efekt ψ = ψ P(r, r ) = ψ (r ) ψ (r ) Pohyb dvou elektronů s opačnými spiny není korelován.!

23 Měli jsme b) Pokud mají stejný spin: ( ) { P r,r = ψ (r ) ψ (r ) + ψ (r ) ψ (r ) [ ψ (r ) ψ (r ) ψ (r ) ψ (r ) + ψ (r ) ψ (r ) ψ (r ) ψ (r )] * * * * Je-li r = r, pak P(r,r ) = ( x ) = ( x ) ( ) ( x ) = ( x ) ( ) χ ψ β ω χ ψ β ω Fermiho díra ulová pravděpodobnost překryvu elektronů. Závěr: I. Slaterův determinant zahrnuje výměnnou ( exchange ) korelaci a to pouze v případě paralelních spinů. II. Pohyb elektronů s opačnými spiny není korelován. }

24 Př.: Ukažte, že energie vlnových funkcí Hartreeho produktů HP HP jsou stejné a navíc rovné E( ). Proč? ( r ) ( ) ( r ) ( ) ( r ) ( ) ( r ) ( ) Ψ = ψ α ω ψ β ω Ψ = ψ α ω ψ α ω 2 2 2

25 Pseudoklasická interpretace energie stavu popsaného Slaterovým determinantem Platí pro systémy popsané restricted determinanty. Separace příspěvků podle typu integrálů integrálů: bez ohledu na spin: χ h χ i i ii pro opačné spiny: ij ij = J,{( i, j) nebo (, i j)} pro shodné spiny: ij ij = J K Celková energie je daná příspěvky h ii plus J ij pro opačné spiny plus (J ij -K ij ) pro paralelní spiny. Pozor! Tyto separátní příspěvky neříkají nic o fyzikální povaze interakce; ta je daná H. Pro ilustraci, mějme systém 4 elektronů. ij ij = h ij ψψψψ E = h + 2h + h + 2J + J + J + 2J K K K tot

26 Př.: Využijte uvedené označení energií determinantů a ukažte, že pro jednotlivé systémy platí: a. b. c. d. E = h + h + J K E = h + h + J 22 2 E = 2h + J E = 2h + h + J + 2J K

Ab initio výpočty v chemii a biochemii

Ab initio výpočty v chemii a biochemii Ab initio výpočty v chemii a biochemii Doc. RNDr. Ing. Jaroslav Burda, CSc., jaroslav.burda@mff.cuni.cz Dr. Vladimír Sychrovský vladimir.sychrovsky@uochb.cas.cz Studijní literatura Szabo A., Ostlund N.S.

Více

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při

Více

Modelové výpočty na H 2 a HeH +

Modelové výpočty na H 2 a HeH + Modelové výpočty na H 2 a HeH + Minimální báze Všechny teoretické poznatky je užitečné ilustrovat modelovým výpočtem. Budeme aplikovat Hartree-Fockovy výpočty na uzavřených slupkách systémů H 2 a HeH +.

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

Od kvantové mechaniky k chemii

Od kvantové mechaniky k chemii Od kvantové mechaniky k chemii Jan Řezáč UOCHB AV ČR 19. září 2017 Jan Řezáč (UOCHB AV ČR) Od kvantové mechaniky k chemii 19. září 2017 1 / 33 Úvod Vztah mezi molekulovou strukturou a makroskopickými vlastnostmi

Více

Druhé kvantování. Slaterův determinant = χ χ

Druhé kvantování. Slaterův determinant = χ χ Druhé kvntování Druhé kvntování žádná nová fyzk! jný formlsmus upltnění prncpu ntsymetre bez použtí Slterových determnntů. Antsymetrcké vlstnost vlnových funkcí jsou přeneseny n lgebrcké vlstnost dných

Více

Přehled Ab Initio a semiempirických metod

Přehled Ab Initio a semiempirických metod Přehled Ab Initio a semiempirických metod Pokud se vám bude zdát, že je v tom nějaký blud, tak tam asi je. Budu rád, když mě na něj upozorníte. Ab initio metody - od počátku, z prvotních principů, tzn.

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

Mul$determinantální metody: CASSCF

Mul$determinantální metody: CASSCF Mul$determinantální metody: CASSCF Mul%konfiguračni (mnohadeterninantálni MC SCF) metody použivají narozdíl od metody Hartreeho- Focka pro popis N- elektronového systému větší počet Slaterových determinantů.

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Mezimolekulové interakce

Mezimolekulové interakce Mezimolekulové interakce Interakce molekul reaktivně vzniká či zaniká kovalentní vazba překryv elektronových oblaků, mění se vlastnosti nereaktivně vznikají molekulové komplexy slabá, nekovalentní, nechemická,

Více

METODY VÝPOČETNÍ CHEMIE

METODY VÝPOČETNÍ CHEMIE METODY VÝPOČETNÍ CHEMIE Metody výpočetní chemie Ab initio metody Semiempirické metody Molekulová mechanika Molekulová simulace Ab initio metody Ab initio - od počátku Metody kvantově-mechanické vycházejí

Více

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Vlnění o frekvenci v se může chovat jako proud částic (kvant - fotonů) o energii E = h.v Částice pohybující se s hybností p se může chovat jako vlna o vlnové délce λ = h/p Kde h

Více

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti.

6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných. Operátor momentu hybnosti a kvadrátu momentu hybnosti. 6 PŘEDNÁŠKA 6: Stav kvantového systému, úplná množina pozorovatelných Operátor momentu hybnosti a kvadrátu momentu hybnosti Víme už tedy téměř vše o operátorech Jsou to vlastně měřící přístroje v kvantové

Více

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli:

Hamiltonián popisující atom vodíku ve vnějším magnetickém poli: Orbitální a spinový magnetický moment a jejich interakce s vnějším polem Vše na příkladu atomu H: Elektron (e - ) a jádro (u atomu H pouze p + ) mají vlastní magnetický moment (= spin). Tyto dva dipóly

Více

13 Elektronová struktura molekul

13 Elektronová struktura molekul 13 Elektronová struktura molekul Ústředním úkolem kvantové chemie po zavedení Bornovy-Oppenheimerovy aproximace je výpočet elektronové energie molekul Ĥ e ψ e ( r, R) = E e ( R)ψ e ( r, R), (13.1) kde

Více

16 Semiempirické přístupy

16 Semiempirické přístupy 16 Semiempirické přístupy V této kapitole se podíváme na skupinu semiempirických metod. Ačkoli semiempirické metody také vycházejí z řešení elektronové Schrödingerovy rovnice, jejich rovnice obsahují dodatečné

Více

2. Elektrotechnické materiály

2. Elektrotechnické materiály . Elektrotechnické materiály Předpokladem vhodného využití elektrotechnických materiálů v konstrukci elektrotechnických součástek a zařízení je znalost jejich vlastností. Elektrické vlastnosti materiálů

Více

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)

Definice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1) 14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový

Více

5. Maticová algebra, typy matic, inverzní matice, determinant.

5. Maticová algebra, typy matic, inverzní matice, determinant. 5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Vazby v pevných látkách

Vazby v pevných látkách Vazby v pevných látkách Hlavní body 1. Tvorba pevných látek 2. Van der Waalsova vazba elektrostatická interakce indukovaných dipólů 3. Iontová vazba elektrostatická interakce iontů 4. Kovalentní vazba

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus.

(2) [B] Nechť G je konečná grupa tvořena celočíselnými maticemi roměru 2 2 s operací násobení. Nalezněte všechny takové grupy až na izomorfizmus. (1 [B] Nechť A : R 6 R 6 je lineární zobrazební takové, že A 26 = I. Najděte lineární prostory V 1, V 2 a V 3 takové, že R 6 = V 1 V 2 V 3 dim V 1 = dim V 2 = dim V 3 AV 1 V 1, AV 2 V 2 a AV 3 V 3 (2 [B]

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

6.3.2 Periodická soustava prvků, chemické vazby

6.3.2 Periodická soustava prvků, chemické vazby 6.3. Periodická soustava prvků, chemické vazby Předpoklady: 060301 Nejjednodušší atom: vodík s jediným elektronem v obalu. Ostatní prvky mají více protonů v jádře i více elektronů v obalu změny oproti

Více

ATOMOVÁ SPEKTROMETRIE

ATOMOVÁ SPEKTROMETRIE ATOMOVÁ SPEKTROMETRIE Atomová spektrometrie valenčních e - 1. OES (AES). AAS 3. AFS 1 Atomová spektra čárová spektra Tok záření P - množství zářivé energie (Q E ) přenesené od zdroje za jednotku času.

Více

Základy maticového počtu Matice, determinant, definitnost

Základy maticového počtu Matice, determinant, definitnost Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n

Více

Program SMP pro kombinované studium

Program SMP pro kombinované studium Zadání příkladů k procvičení na seminář Program SMP pro kombinované studium Nejdůležitější typy příkladů - minimum znalostí před zkouškovou písemkou 1) Matice 1. Pro matice 1 0 2 1 0 3 B = 7 3 4 4 2 0

Více

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika)

Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Eukleidovský prostor a KSS Eukleidovský prostor je bodový prostor, ve kterém je definována vzdálenost dvou bodů (metrika) Kartézská soustava souřadnic je dána počátkem O a uspořádanou trojicí bodů E x,

Více

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE.

ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE PRO PŘÍPAD POTENCIÁLNÍ ENERGIE. ATOMY + MOLEKULY ATOM VODÍKU MODEL : STOJÍCÍ BODOVÉ JÁDRO A ELEKTRON VZÁJEMNĚ ELEKTROSTATICKY INTERAGUJÍCÍ SCHRÖDINGEROVA ROVNICE H ˆψ = Eψ PRO PŘÍPAD POTENCIÁLNÍ ENERGIE Vˆ = Ze 2 4πε o r ŘEŠENÍ HLEDÁME

Více

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY

VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY VÝPOČETNÍ CHEMIE V ANALÝZE STRUKTURY A VLASTNOSTÍ MOLEKUL Michal Čajan Katedra anorganické chemie PřF UP v Olomouci MOLEKULOVÉ MODELOVÁNÍ V CHEMII MOLEKULOVÉ MODELOVÁNÍ aplikace zobrazení a analýza strukturních

Více

Lambertův-Beerův zákon

Lambertův-Beerův zákon Lambertův-Beerův zákon Intenzta záření po průchodu kavtou se vzorkem: Integrovaný absorpční koecent: I nal = I ntal e ε c L A = ε ( ~ ν ) d~ ν Bezjednotková včna síla osclátoru: v cm -1 = 4.3 10 9 A Síla

Více

10 Více-elektronové atomy

10 Více-elektronové atomy 1 Více-elektronové atomy Atom vodíku je asi nejsložitější soustava, kterou jsme schopni analyticky přesně vyřešit. Tato situace je pro chemika pochopitelně málo uspokojivá. Pomocí kvantové teorie bychom

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

Úvod do lineární algebry

Úvod do lineární algebry Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky

Více

Kvantová mechanika (UFY100)

Kvantová mechanika (UFY100) Cvičení k přednášce Kvantová mechanika (UFY100) Letní semestr 2004/2005, Úterý 12:25-13:55 v M4 Určeno pro 2. ročník učitelství fyziky pro SŠ Následující text obsahuje stručný přehled jednotlivých cvičení

Více

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1.

Diskutujte, jak široký bude pás spojený s fosforescencí versus fluorescencí. Udělejte odhad v cm -1. S použitím modelu volného elektronu (=částice v krabici) spočtěte vlnovou délku a vlnočet nejdlouhovlnějšího elektronového přechodu u molekuly dekapentaenu a oktatetraenu. Diskutujte polohu absorpčního

Více

Kvantová informatika pro komunikace v budoucnosti

Kvantová informatika pro komunikace v budoucnosti Kvantová informatika pro komunikace v budoucnosti Antonín Černoch Regionální centrum pokročilých technologií a materiálů Společná laboratoř optiky University Palackého a Fyzikálního ústavu Akademie věd

Více

Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf

Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf Fyzika atomového jádra (FAJ) Petr Veselý Ústav Jaderné fyziky, Česká Akademie Věd www-ucjf.troja.mff.cuni.cz/~vesely/faj/faj.pdf Letní semestr 2017 Motivace Studium jaderné struktury: - široká škála systémů

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE

MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného

Více

Přednáška IX: Elektronová spektroskopie II.

Přednáška IX: Elektronová spektroskopie II. Přednáška IX: Elektronová spektroskopie II. 1 Försterův resonanční přenos energie Pravděpodobnost (rychlost) přenosu je určená jako: k ret 1 = τ 0 D R r 0 6 0 τ D R 0 r Doba života donoru v excitovaném

Více

2.6. Koncentrace elektronů a děr

2.6. Koncentrace elektronů a děr Obr. 2-11 Rozložení nosičů při poloze Fermiho hladiny: a) v horní polovině zakázaného pásu (p. typu N), b) uprostřed zakázaného pásu (vlastní p.), c) v dolní polovině zakázaného pásu (p. typu P) 2.6. Koncentrace

Více

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j. Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak

Více

Optické spektroskopie 1 LS 2014/15

Optické spektroskopie 1 LS 2014/15 Optické spektroskopie 1 LS 2014/15 Martin Kubala 585634179 mkubala@prfnw.upol.cz 1.Úvod Velikosti objektů v přírodě Dítě ~ 1 m (10 0 m) Prst ~ 2 cm (10-2 m) Vlas ~ 0.1 mm (10-4 m) Buňka ~ 20 m (10-5 m)

Více

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β

Překryv orbitalů. Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Překryv orbitalů Vznik vazby překryvem orbitalů na dvou různých atomech A, B Obsazeno dvojicí elektronů Ψ = Ψ A Ψ Β Podmínky překryvu: Vhodná symetrie, znaménko vlnové funkce Vhodná energie, srovnatelná,

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro

2 Vektorové normy. Základy numerické matematiky - NMNM201. Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro Cvičení 1 Základy numerické matematiky - NMNM201 1 Základní pojmy opakování Definice 1 (Norma). Norma je funkcionál splňující pro libovolné vektory x a y a pro libovolný skalár α C následující podmínky:

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx

Příklad 1: Komutační relace [d/dx, x] Příklad 2: Operátor B = i d/dx 1 Příklad 1: Komutační relace [d/, x] Mějme na dva operátory: ˆ d/ a ˆ 5 D X x, například na prvek x působí takto Určeme jejich komutátor ˆ 5 d 5 4 ˆ 5 5 6 D x x 5 x, X x xx x ˆ ˆ ˆ ˆ ˆ ˆ d d [ DX, ] f

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Rayleighova-Schrödingerova stacionární poruchová teorie

Rayleighova-Schrödingerova stacionární poruchová teorie 43 Pokročilé metody kvantové mechaniky Rayleighova-Schrödingerova stacionární poruchová teorie a) Nedegenerovaný případ John William Strutt, 3. Baron Rayleigh (84 99) Mějme libovolný kvantověmechanický

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Teoretická chemie 1. cvičení

Teoretická chemie 1. cvičení Teoretická chemie 1. cvičení Teoretická část Základní úlohou kvantové chemie je nalézt elektronovou vlnovou funkci zkoumané molekuly Ψ a z ní poté odvodit všechny zajímavé vlastnosti této molekuly, např.

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen

přičemž předpokládáme A malé, U zahrnuje coulombické členy. Když roznásobíme závorku, p 2 reprezentuje kinetickou energii nabitých částic, člen Výběrová pravidla Absorpce/stim. emise Kde se výběrová pravidla vezmou? Použijeme semiklasické přiblížení, tzn. s nabitými částicemi (s indexy 1...N) zacházíme kvantově, s vnějším elektromagnetickým polem

Více

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.

MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

2. Atomové jádro a jeho stabilita

2. Atomové jádro a jeho stabilita 2. Atomové jádro a jeho stabilita Atom je nejmenší hmotnou a chemicky nedělitelnou částicí. Je tvořen jádrem, které obsahuje protony a neutrony, a elektronovým obalem. Elementární částice proton neutron

Více

Atomové jádro, elektronový obal

Atomové jádro, elektronový obal Atomové jádro, elektronový obal 1 / 9 Atomové jádro Atomové jádro je tvořeno protony a neutrony Prvek je látka skládající se z atomů se stejným počtem protonů Nuklid je systém tvořený prvky se stejným

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

Operace s maticemi. 19. února 2018

Operace s maticemi. 19. února 2018 Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice

Více

Úvod do kvantového počítání

Úvod do kvantového počítání 2. přednáška Katedra počítačů, Fakulta elektrotechnická České vysoké učení technické v Praze 17. března 2005 Opakování Část I Přehled z minulé hodiny Opakování Alternativní výpočetní modely Kvantové počítače

Více

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X Náhodný vektor Náhodný vektor zatím jsme sledovali jednu náhodnou veličinu, její rozdělení a charakteristiky často potřebujeme vyšetřovat vzájemný vztah několika náhodných veličin musíme sledovat jejich

Více

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Chemie. Mgr. Petra Drápelová Mgr. Jaroslava Vrbková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Chemie Mgr. Petra Drápelová Mgr. Jaroslava Vrbková Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou ELEKTRONOVÝ OBAL ATOMU VY_32_INOVACE_03_3_04_CH Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Elektron je nositelem základního

Více

8 Matice a determinanty

8 Matice a determinanty M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou

Více

4 Přenos energie ve FS

4 Přenos energie ve FS 4 Přenos energie ve FS Petr Ilík KF a CH, PřF UP Přenos energie (excitace) do C - 1-1 molekula chl je i při vysoké ozářenosti excitována max. 10x za sekundu neefektivní pro C - nténní systém s mnoha pigmenty

Více

Aplikovaná numerická matematika - ANM

Aplikovaná numerická matematika - ANM Aplikovaná numerická matematika - ANM 3 Řešení soustav lineárních rovnic iterační metody doc Ing Róbert Lórencz, CSc České vysoké učení technické v Praze Fakulta informačních technologií Katedra počítačových

Více

1 Determinanty a inverzní matice

1 Determinanty a inverzní matice Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého

Více

Fyzika IV Dynamika jader v molekulách

Fyzika IV Dynamika jader v molekulách Dynamika jader v molekulách vibrace rotace Dynamika jader v molekulách rotační energetické hladiny (dvouatomová molekula) moment setrvačnosti kolem osy procházející těžištěm osa těžiště m2 m1 r2 r1 R moment

Více

Operace s maticemi

Operace s maticemi Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ). Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

12. Křivkové integrály

12. Křivkové integrály 12 Křivkové integrály Definice 121 Jednoduchou po částech hladkou křivkou v prostoru R n rozumíme množinu bodů [x 1,, x n ], které jsou dány parametrickými rovnicemi x 1 = ϕ 1 t), x 2 = ϕ 2 t), x n = ϕ

Více

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: 3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...

Více

3 Posunovací operátory, harmonický oscilátor

3 Posunovací operátory, harmonický oscilátor 3 Posunovací operátory, harmonický oscilátor 3.1 Jednoduchý algebraický systém Mějme operátor  a operátor  k němu sdružený, které mezi sebou splňují komutační relace 1 [Â, = m, m R +. (3.1.1) Definujme

Více

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy

Aproximace posuvů [ N ],[G] Pro každý prvek se musí nalézt vztahy Aproimace posuvů Pro každý prvek se musí nalézt vztahy kde jsou prozatím neznámé transformační matice. Neznámé funkce posuvů se obvykle aproimují ve formě mnohočlenů kartézských souřadnic. Například 1.

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Interpolace Uvažujme třídu funkcí jedné proměnné ψ(x; a 0,..., a n ), kde a 0,..., a n jsou parametry, které popisují jednotlivé funkce této třídy. Mějme dány body x 0, x 1,..., x n, x i x k, i, k = 0,

Více

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku

Protonové číslo Z - udává počet protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Stavba jádra atomu Protonové Z - udává protonů v jádře atomu, píše se jako index vlevo dole ke značce prvku Neutronové N - udává neutronů v jádře atomu Nukleonové A = Z + N, udává nukleonů (protony + neutrony)

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

Základy Mössbauerovy spektroskopie. Libor Machala

Základy Mössbauerovy spektroskopie. Libor Machala Základy Mössbauerovy spektroskopie Libor Machala Rudolf L. Mössbauer 1958: jev bezodrazové rezonanční absorpce záření gama atomovým jádrem 1961: Nobelova cena Analogie s rezonanční absorpcí akustických

Více

21. Úvod do teorie parciálních diferenciálních rovnic

21. Úvod do teorie parciálních diferenciálních rovnic 21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j

Více

Hartreeho-Fockova metoda (HF)

Hartreeho-Fockova metoda (HF) Staonární Shrödngerova rovne H Ψ = EΨ Metoda konfgurační nterake Metoda vázanýh klastrů Poruhová teore Zahrnutí el. korelae Bornova-Oppenhemerova aproxmae Model nezávslýh elektronů Vlnová funke ve tvaru

Více

19 Eukleidovský bodový prostor

19 Eukleidovský bodový prostor 19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma

Více

Balmerova série, určení mřížkové a Rydbergovy konstanty

Balmerova série, určení mřížkové a Rydbergovy konstanty Balmerova série, určení mřížkové a Rydbergovy konstanty V tomto laboratorním cvičení zkoumáme spektrální čáry 1. řádu vodíku a rtuti pomocí difrakční mřížky (mřížkového spektroskopu). Známé spektrální

Více