Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d

Rozměr: px
Začít zobrazení ze stránky:

Download "Korelační energie. Celkovou elektronovou energii molekuly lze experimentálně určit ze vztahu. E vib. = E at. = 39,856, E d"

Transkript

1 Korelační energe Referenční stavy Energ molekul a atomů lze vyjádřt vzhledem k různým referenčním stavům. V kvantové mechance za referenční stav s nulovou energí bereme stav odpovídající nenteragujícím elementárním částcím, kdy je nterakční potencál v mnohačástcové Schrödngerově rovnc roven nule. To vede k tomu, že ve výrazu pro energ molekuly jsou zahrnuty relatvně velké nterakční energe vntřních elektronů atomů s jádry, jejchž příspěvek k chemcké vazbě mez atomy je zanedbatelný. Důsledkem tohoto je, že př porovnávání energe zolovaných atomů a molekuly odečítáme dvě velm blízká velká čísla a musíme proto počítat celkové energe s vysokou relatvní přesností řádu 0-7 a vyšší. Referenčním stavem s nulovou energí pro molekuly jsou navzájem nenteragující protony a elektrony. Složky celkové energe Celková energe atomu je z expermentálního hledska dána součtem příslušných onzačních potencálů. Celkovou elektronovou energ molekuly lze expermentálně určt ze vztahu E=E at (E at E vb E ) E vb =E at E d E vb, () kde E at je součet celkových energí atomů, E d = E at E vb E je dsocační energe molekuly a E vb je energe nulových kmtů. E d lze expermentálně určt z reakčních tepel a E vb z frekvence nulových kmtů ( E vb = /2 ħ ω, kde se sčítá přes stupně volnost molekuly). Například pro metan CH 4 máme: E= 40,524, E at = 39,856, E d =0,625 a E vb =0,043. Pro čpavek NH 3 : E= 56,578, E at = 56,098, E d =0,447 a E vb =0,033. Pro molekuly obsahující atomy s vyšším atomovým čísly Z je E d vzhledem k E relatvně mnohem menší. Chemcky zajímavé procesy se tedy odehrávají na poměrně velm úzkém ntervalu celkových energí získaných řešením příslušné Schrödngerovy rovnce. Z teoretckého hledska lze celkovou energ v Born-Oppenhemerově aproxmac rozložt na tř část: E E RL =E HFL (E HFL E NRL ) (E NRL E RL )=E HFL E kor E rel, (2) kde E RL označuje celkovou relatvstckou energ, E NRL je celková nerelatvstcká energe a E HFL je energe v tzv. Hartreeho-Fockově lmtě, odpovídající přesnému řešení Hartree-Fockových rovnc. E kor =E HFL E NRL je tzv. korelační energe a E rel =E NRL E RL je relatvstcká korekce k energ.

2 Tabulka : Velkost jednotlvých složek energe pro několk atomů. Relatvstcké korekce jsou důsledkem relatvstckých efektů, které ovlvňují stav elektronů př pohybu okolo jader. Je zřejmé, že velkost relatvstckých korekcí stoupá rychle se Z. Relatvstcké korekce jsou velké zejména pro vntřní elektrony, které se pohybují blízko jader rychlostm, blížícím se u těžkých atomů rychlostí světla (pro základní s stav vodíku podobného atomu platí pro střední rychlost v 2 / 2 =Z e ' 2 /ħ Zc/37 ). Valenční elektrony přspívají k relatvstckým korekcím jen málo. Z tohoto důvodu lze s dost dobrou přesností vypočítat E rel molekuly jako součet relatvstckých korekcí pro atomy. V případě korelačních energí je stuace podstatně složtější a představuje jeden z hlavních problémů kvantové cheme. V Hartree-Fockových rovncích se bere v potaz pouze statcká korelace. Opustíme-l jednodetermnantové přblížení k vlnové funkc, respektujeme dynamckou korelac mez elektrony. Velkost korelační energe souvsí s počtem elektronových párů a jejch prostorovým uspořádáním. Korelační energe atomu vodíku je nulová, neboť jeden elektron nemá s čím být korelován. Z tabulky vdíme, že korelační energe roste s velkostí Z. Kromě závslost na Z závsí korelační energe také na tom, jak jsou elektrony na hladnách uspořádány (tj. na elektronové konfgurac). Například, vzrůst korelační energe př přechodu od He k L nebo od Ne k Na je malý, neboť elektron, který přbude je nepárový a je na energetcky podstatně vyšší hladně. Vzrůst korelační energe od L k Be (nebo od Na k Mg) je větší, protože se vytvářejí nové elektronové páry. Hartreeho-Fockovy lmty dosáhneme přesně vzato jen pro úplnou nekonečnou báz AO. Př reálných výpočtech se této lmtě podle varačního prncpu blížíme shora. Praktcky se odhad této lmty provádí postupným zvětšováním báze a extrapolací. Jako další příklad uvedeme molekulu CO, kde celkovou energ lze z expermentálního a teoretckého hledska získat následujícím způsobem. 2

3 Vdíme, že velkost korelační energe je v tomto případě větší než dsocační energe. Podobně, velkost relatvstcké korekce k energ je větší než energe nulových kmtů. Pokud nám jde o absolutní hodnotu energí, nelze se zřejmě spokojt s vyřešením Hartree-Fockových rovnc. Pokud nám však jde pouze o relatvní změny celkové energe, lze se v případech, kdy se korelační energe přílš nemění, omezt na řešení Hartree-Fockových rovnc. To nastává v případech kdy jsou splněny následující podmínky. Počet elektronových párů zůstává zachován. Zůstává přblžně zachováno prostorové uspořádání sousedních elektronových párů. V případech kdy se mění korelace mez elektrony (např. př exctac, dsocac) je nutné korelační energ započítat a jít za Hartree-Fockovo přblížení. Původ korelační energe Jednoelektronová hustota (hustota pravděpodobnost nalézt lbovolný z elektronů v místě r ; obecněj vzato dagonální element matce hustoty. řádu) normovaná na počet částc N se dostane jako střední hodnota operátoru N ρ(r)= δ(r r ), (3) = počítaná s pomocí mnohaelektronové vlnové funkce Ψ (r,..., r N ). Podobně lze zavést dvouelektronovou hustotu pravděpodobnost (dagonální element matce hustoty druhého řádu) jako střední hodnotu operátoru N ρ(r,r ' )= δ(r r )δ(r ' r j ) (4) < j normovanou na počet párů částc N (N )/ 2. V případě Hartreeho metody dostaneme pro střední hodnoty těchto operátorů a ρ(r)= ψ (r) 2 (5) ρ(r,r ' )= ψ (r) 2 ψ j (r ') 2. (6) < j V souladu s předpokládaným tvarem mnohačástcové vlnové funkce není vzájemný pohyb dvou elektronů, navzdory jejch coulombovské repulz, vůbec korelován. Dvoučástcová hustota ρ(r, r ' ) ja dána prostým součny odpovídajících jednoelektronových hustot, jako by šlo o nezávslé částce. Pravděpodobnost nalézt dva elektrony v témže místě je nenulová ρ(r, r ' ) 0. (7) 3

4 Pro Hartree-Fockovu metodu s vlnovou funkcí Ψ (r,..., r N )= N! P ϵ P P { ψ (r )χ (σ z )... ψ N (r N )χ N (σ zn )} (8) dostaneme analogcky a ρ(r)= ψ (r) 2 (9) ρ(r, r ' )= [ ψ (r) 2 ψ j (r ') 2 δ (σ z, σ z j )ψ * (r)ψ j (r) ψ * j (r' )ψ (r ' )]. (0) < j Z (0) vdíme, že v Hartree-Fockově metodě je korelován pohyb elektronů s paralelním spnem a že pro paralelní spny ψ (r) 2 ψ j (r' ) 2 δ(σ z,σ z j )ψ * (r)ψ j (r)ψ j * (r ' )ψ (r ' )=0. () To odpovídá exstenc tzv. Fermho díry pro elektrony s paralelním spnem. Tento výsledek je důsledkem antsymetre vlnové funkce, tj. respektování statcké korelace. Nejsou-l spny elektronů paralelní, dostaneme stejný výsledek jako u Hartreeho metody, tzn. že v takovém případě není pohyb elektronů korelován. Zanedbání dynamcké korelace elektronů je závažným nedostatkem, který je v rozporu s exstencí coulombovské repulze elektronů, která jejch vzájemný pohyb koreluje bez ohledu na jejch spn. Přblížení elektronů není energetcky výhodné, což vede k exstenc tzv. coulombovské díry okolo elektronů. Ta musí být v přesném výpočtu respektována. Přímé započtení korelace Přímý způsob jak zahrnout korelac do vlnové funkce je zahrnout explctně do vlnové funkce závslost na vzájemné vzdálenost elektronů r j. Například pro dva elektrony můžeme vzít dvouelektronovou vlnovou funkc ve tvaru ψ=ψ HF f (r 2 ), (2) kde ψ HF je Hartree-Fockova vlnová funkce a f (r 2 ) vyjadřuje závslost na r 2. Pro mnohaelektronové systémy je takový postup nepraktcký a používají se jné metody. Møllerova-Plessetova metoda Møllerova-Plessetova metoda je poruchová metoda k započtení korelační energe, přčemž výchozí aproxmací je řešení Hartree-Fockových rovnc. Celkový elektronový hamltonán s napíšeme ve tvaru 4

5 H = h + 2 j r j, (3) kde h (r )= 2 Δ A Z A r r A (4) je jednoelektronová část hamltonánu. Podobně, hamltonán odpovídající Hartree-Fockovým rovncím zapíšeme ve tvaru H HF = (h +v ), (5) kde formální záps v (r )= ψ j(r ' ) 2 j r r ' d r ' zahrnuje coulombovské operátory. j δ(σ z, σ j z ) ψ j(r ) ψ * j(r ' )ψ (r ') d r ' (6) ψ (r ) r r ' Vlnovou funkc v nultém přblížení položíme rovnu Hartree-Fockově vlnové funkc ψ 0 =ψ HF. (7) Hamltonán v nultém přblížení zvolíme v takovém tvaru, aby celková energe v nultém přblížení byla rovna Hartree-Fockově energ H 0 = (h +v ) ψ 0 2 j r j ψ 0. (8) Druhý člen, který představuje střední hodnotu coulombovské nterakce elektronů, odečítáme proto, že v součtu jednoelektronových energí, na který vede první člen rovnce (8), je tato nterakce započtena dvakrát. Pro energ v nultém přblížení tedy platí E 0 = ψ 0 (h +v ) ψ 0 ψ 0 2 j Pro korekc k energ v prvním přblížení máme kde r j ψ 0 =E HF. (9) Δ E () = ψ 0 W ψ 0, (20) W = 2 j r v + ψ 0 j 2 j r j ψ 0, (2) 5

6 Je zřejmé, že neboť H =H 0 +W. (22) Δ E () =0, (23) E 0 +Δ E ( ) = ψ 0 H 0 +W ψ 0 = E HF = E 0. (24) Pro korekc k energ v druhém přblížení dostáváme ψ Δ E (2) = 0 W ψ n 2, (25) n 0 E 0 E n kde E n a ψ n označuje energ a vlnovou funkc exctovaných Hartree-Fockových stavů. Je-l E 0 energe základního stavu, platí E n E 0 <0 a tedy Δ E (2) <0. V druhém řádu teore poruch Møllerovy-Plessetovy metody (označované jako MP2) tedy vždy dochází ke snížení celkové energe základního stavu. Vzhledem k tomu, že W je dvoučástcový a předpokládáme ortonormaltu jednočástcových funkcí ψ (r), mohou se ve vzorc (25) uplatnt jen monoexctované a bexctované konfgurace ψ n. Monoexctované konfgurace ψ n ale dávají nulové příspěvky vzhledem k tomu, že ψ 0 W ψ n = ψ 0 H ψ n ψ 0 H 0 ψ n =0. (26) První člen na pravé straně je rove nule díky Brllounově větě a druhý člen je nulový díky ortonormaltě ψ (r). Do druhého řádu Møllerovy-Plessetovy poruchové metody tedy přspívají jen bexctované konfgurace. Další metody započtení korelační energe Mez další důležté metody započtení korelační energe patří Metoda konfgurační nterakce a Metoda vázaných klastrů. Ty sou však součástí jných otázek vz. otázky Metoda konfgurační nterakce a otázka Přehled ab nto a sememprckých metod Lteratura [] L. Skála: Kvantová teore molekul, Karolnum, Praha, 994 6

ESR, spinový hamiltonián a spektra

ESR, spinový hamiltonián a spektra ER, spnový hamltonán a spektra NMR k k získávání důležtých nformací o struktuře látky využívá gyromagnetckých vlastností atomových jader. Podobně ER (EPR) využívá k obdobným účelům gyromagnetckých vlastností

Více

Operátory a maticové elementy

Operátory a maticové elementy Operátory a matice Operátory a maticové elementy operátory je výhodné reprezentovat maticemi maticové elementy operátorů jsou dány vztahy mezi Slaterovými determinanty obsahujícími ortonormální orbitaly

Více

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ.

CHYBY MĚŘENÍ. uvádíme ve tvaru x = x ± δ. CHYBY MĚŘENÍ Úvod Představte s, že máte změřt délku válečku. Použjete posuvné měřítko a získáte určtou hodnotu. Pamětlv přísloví provedete ještě jedno měření. Ale ouha! Výsledek je jný. Co dělat? Měřt

Více

Energie elektrického pole

Energie elektrického pole Energe elektrckého pole Jž v úvodní kaptole jsme poznal, že nehybný (centrální elektrcký náboj vytváří v celém nekonečném prostoru slové elektrcké pole, které je konzervatvní, to znamená, že jakýkolv jný

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI

í I - 13 - Průchod a rozptyl záření gama ve vrstvách materiálu Prof. Ing. J. Šeda, DrSc. KDAIZ - PJPI - 13 - í Průchod a rozptyl záření gama ve vrstvách materálu Prof. ng. J. Šeda, DrSc. KDAZ - PJP Na našem pracovšt byl vypracován program umožňující modelovat průchod záření gama metodou Monte Carlo, homogenním

Více

ÚVOD DO KVANTOVÉ CHEMIE

ÚVOD DO KVANTOVÉ CHEMIE ÚVOD DO KVANTOVÉ CHEME. Navození kvantové mechanky Postuláty kvantové mechanky, základy operátorové algebry, navození kvantové mechanky, jednoduché modely.. Vodíkový atom 3. Základní aproxmace používané

Více

MODELOVÁNÍ A SIMULACE

MODELOVÁNÍ A SIMULACE MODELOVÁNÍ A SIMULACE základní pojmy a postupy vytváření matematckých modelů na základě blancí prncp numerckého řešení dferencálních rovnc základy práce se smulačním jazykem PSI Základní pojmy matematcký

Více

Monte Carlo metody Josef Pelikán CGG MFF UK Praha.

Monte Carlo metody Josef Pelikán CGG MFF UK Praha. Monte Carlo metody 996-7 Josef Pelkán CGG MFF UK Praha pepca@cgg.mff.cun.cz http://cgg.mff.cun.cz/~pepca/ Monte Carlo 7 Josef Pelkán, http://cgg.ms.mff.cun.cz/~pepca / 44 Monte Carlo ntegrace Odhadovaný

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně

9. Měření kinetiky dohasínání fluorescence ve frekvenční doméně 9. Měření knetky dohasínání fluorescence ve frekvenční doméně Gavolův experment (194) zdroj vzorek synchronní otáčení fázový posun detektor Měření dob žvota lumnscence Frekvenční doména - exctace harmoncky

Více

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly

Molekulová vibrace dvojatomové molekuly. Disociační křivka dvojatomové molekuly Molekulová vbrace dvojatomové molekuly Dsocační křvka dvojatomové molekuly x Potencální energe, E Repulsvní síly x Přtažlvé síly síly x Pro malé odchylky [(x-x ) ] možno aproxmovat parabolou, jak plyne

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Úvod do magnetizmu pevných látek

Úvod do magnetizmu pevných látek Úvod do magnetzmu pevných látek. Úvod. Izolované magnetcké momenty 3. Prostředí 4. Interakce 5. agnetcké struktury 6. Doménová struktura a magnetzace .agnetzmus pevných látek -úvod. Zdroje magnetsmu -

Více

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR

Teorie chemické vazby a molekulární geometrie Molekulární geometrie VSEPR Geometrie molekul Lewisovy vzorce poskytují informaci o tom které atomy jsou spojeny vazbou a o jakou vazbu se jedná (topologie molekuly). Geometrické uspořádání molekuly je charakterizováno: Délkou vazeb

Více

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN.

MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. MOŽNOSTI PREDIKCE DYNAMICKÉHO CHOVÁNÍ LOPAT OBĚŽNÝCH KOL KAPLANOVÝCH A DÉRIAZOVÝCH TURBÍN. Mroslav VARNER, Vktor KANICKÝ, Vlastslav SALAJKA ČKD Blansko Strojírny, a. s. Anotace Uvádí se výsledky teoretckých

Více

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina

3 VYBRANÉ MODELY NÁHODNÝCH VELIČIN. 3.1 Náhodná veličina 3 VBRANÉ MODEL NÁHODNÝCH VELIČIN 3. Náhodná velčna Tato kaptola uvádí stručný pops vybraných pravděpodobnostních modelů spojtých náhodných velčn s důrazem na jejch uplatnění př rozboru spolehlvost stavebních

Více

Spojité regulátory - 1 -

Spojité regulátory - 1 - Spojté regulátory - 1 - SPOJIÉ EGULÁOY Nespojté regulátory mají většnou jednoduchou konstrukc a jsou levné, ale jsou nevhodné tím, že neudržují regulovanou velčnu přesně na žádané hodnotě, neboť regulovaná

Více

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST

ANALÝZA RIZIKA A CITLIVOSTI JAKO SOUČÁST STUDIE PROVEDITELNOSTI 1. ČÁST Abstrakt ANALÝZA ZKA A CTLOST JAKO SOUČÁST STUDE POVEDTELNOST 1. ČÁST Jří Marek Úspěšnost nvestce závsí na tom, jaké nejstoty ovlvní její předpokládaný žvotní cyklus. Pomocí managementu rzka a analýzy

Více

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem

Spinový moment hybnosti /magnetický moment, interakce s magnetickým polem Spnový oent hybnost /anetcký oent, nterakce s anetcký pole Velkost jednoho elektronového spnu: Velkost jednoho jaderného spnu: s s( s ) 3 ( ) Sudé Sudé Z 0 Sudé Lché Z... apř: He, C, 6 O celočíselné apř:

Více

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz

Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla

Více

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teorie ocelářských pochodů studijní opora

TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teorie ocelářských pochodů studijní opora Vysoká škola báňská Techncká unverzta Ostrava Fakulta metalurge a materálového nženýrství TEORIE PROCESŮ PŘI VÝROBĚ ŽELEZA A OCELI Část II Teore ocelářských pochodů studjní opora Zdeněk Adolf Ostrava 2013

Více

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK

OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVSKÁ UNIVERZITA V OSTRAVĚ TERMODYNAMIKA A STATISTICKÁ FYZIKA DALIBOR DVOŘÁK OSTRAVA 004 - Recenzent: Doc RNDr Ladslav Sklenák, CSc Prof RNDr Vlém Mádr, CSc Název: Termodynamka a statstcká fyzka Autor:

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU

ANALÝZA RIZIKA A JEHO CITLIVOSTI V INVESTIČNÍM PROCESU AALÝZA RIZIKA A JEHO CITLIVOSTI V IVESTIČÍM PROCESU Jří Marek ) ABSTRAKT Príspevek nformuje o uplatnene manažmentu rzka v nvestčnom procese. Uvádza príklad kalkulace rzka a analýzu jeho ctlvost. Kľúčové

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Defnce pravděpodobnost 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematckých struktur a algortmů procesy dvojího druhu. Jednodušší jsou determnstcké procesy, které se

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10 SIMULACE numercké řešení dferencálních rovnc smulační program dentfkace modelu Numercké řešení obyčejných dferencálních rovnc krokové metody pro řešení lneárních dferencálních rovnc 1.řádu s počátečním

Více

Vícekriteriální rozhodování. Typy kritérií

Vícekriteriální rozhodování. Typy kritérií Vícekrterální rozhodování Zabývá se hodnocením varant podle několka krtérí, přčemž varanta hodnocená podle ednoho krtéra zpravdla nebývá nelépe hodnocená podle krtéra ného. Metody vícekrterálního rozhodování

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI

ZÁPADOČESKÁ UNIVERZITA V PLZNI ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Semestrální práce z předmětu MM Stanovení deformace soustav ocelových prutů Václav Plánčka 6..006 OBSAH ZADÁNÍ... 3 TEORETICKÁ ČÁST... 4 PRAKTICKÁ ČÁST...

Více

ALGORITMUS SILOVÉ METODY

ALGORITMUS SILOVÉ METODY ALGORITMUS SILOVÉ METODY CONSISTENT DEFORMATION METHOD ALGORITHM Petr Frantík 1, Mchal Štafa, Tomáš Pal 3 Abstrakt Příspěvek se věnuje popsu algortmzace slové metody sloužící pro výpočet statcky neurčtých

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce:

2.POPIS MĚŘENÉHO PŘEDMĚTU Měřený předmětem jsou v tomto případě polovodičové diody, jejich údaje jsou uvedeny v tabulce: REDL 3.EB 8 1/14 1.ZADÁNÍ a) Změřte voltampérovou charakteristiku polovodičových diod pomocí voltmetru a ampérmetru v propustném i závěrném směru. b) Sestrojte grafy =f(). c) Graficko početní metodou určete

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové.

Čísla a aritmetika. Řádová čárka = místo, které odděluje celou část čísla od zlomkové. Příprava na cvčení č.1 Čísla a artmetka Číselné soustavy Obraz čísla A v soustavě o základu z: m A ( Z ) a z (1) n kde: a je symbol (číslce) z je základ m je počet řádových míst, na kterých má základ kladný

Více

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i.

POLYMERNÍ BETONY Jiří Minster Ústav teoretické a aplikované mechaniky AV ČR, v. v. i. Odborná skupna Mechanka kompoztních materálů a konstrukcí České společnost pro mechanku s podporou frmy Letov letecká výroba, s. r. o. a Ústavu teoretcké a aplkované mechanky AV ČR v. v.. Semnář KOMPOZITY

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Rovnováha soustavy hmotných bodů, princip virtuální práce

Rovnováha soustavy hmotných bodů, princip virtuální práce K přednášce NUFY028 Teoretcká mechanka prozatímní učební text, verze 0. Prncp vrtuální práce Leoš Dvořák, MFF UK Praha, 204 Rovnováha soustav hmotných bodů, prncp vrtuální práce V této kaptole nepůjde

Více

Mechatronické systémy s elektronicky komutovanými motory

Mechatronické systémy s elektronicky komutovanými motory Mechatroncké systémy s elektroncky komutovaným motory 1. EC motor Uvedený motor je zvláštním typem synchronního motoru nazývaný též bezkartáčovým stejnosměrným motorem (anglcky Brushless Drect Current

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie

ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL. Obsah. 2. Metody fotoelektronové spektroskopie ZAHRADA FOTOELEKTRONOVÁ SPEKTROSKOPIE VE TŘETÍM TISÍCILETÍ ZDENĚK BASTL Ústav fyzkální cheme J. Heyrovského, Akademe věd České republky, v.v.., Dolejškova 3, 182 23 Praha 8 Došlo 4.8.08, přjato 18.12.08.

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika, cvičení č.1: Větrání stájových objektů vypracoval: Adamovský Daniel Základy větrání stájových objektů Stájové objekty: objekty otevřené skot, ovce, kozy apod. - přístřešky chránící ustájená zvířata pouze před přímým náporem větru, před dešťovým a sněhovým srážkam, v létě

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Molekulová spektroskopie 1. Chemická vazba, UV/VIS

Molekulová spektroskopie 1. Chemická vazba, UV/VIS Molekulová spektroskopie 1 Chemická vazba, UV/VIS 1 Chemická vazba Silová interakce mezi dvěma atomy. Chemické vazby jsou soudržné síly působící mezi jednotlivými atomy nebo ionty v molekulách. Chemická

Více

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová

Vícefázové reaktory. Probublávaný reaktor plyn kapalina katalyzátor. Zuzana Tomešová Vícefázové reaktory Probublávaný reaktor plyn kapalina katalyzátor Zuzana Tomešová 2008 Probublávaný reaktor plyn - kapalina - katalyzátor Hydrogenace méně těkavých látek za vyššího tlaku Kolony naplněné

Více

Teoretické modely diskrétních náhodných veličin

Teoretické modely diskrétních náhodných veličin Teoretcké modely dskrétních náhodných velčn Velčny, kterým se zabýváme, bývají nejrůznější povahy. Přesto však estují skupny náhodných velčn, které mají podobně rozloženou pravděpodobnostní funkc a lze

Více

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ

REAKCE POPTÁVKY DOMÁCNOSTÍ PO ENERGII NA ZVYŠOVÁNÍ ENERGETICKÉ ÚČINNOSTI: TEORIE A JEJÍ DŮSLEDKY PRO KONSTRUKCI EMPIRICKY OVĚŘITELNÝCH MODELŮ RAKC POPTÁVKY DOMÁCNOTÍ PO NRGII NA ZVYŠOVÁNÍ NRGTICKÉ ÚČINNOTI: TORI A JJÍ DŮLDKY PRO KONTRUKCI MPIRICKY OVĚŘITLNÝCH MODLŮ tela Rubínová, Unverzta Karlova v Praze, Centrum pro otázky žvotního prostředí,

Více

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A

Látkové množství. 6,022 10 23 atomů C. Přípravný kurz Chemie 07. n = N. Doporučená literatura. Látkové množství n. Avogadrova konstanta N A Doporučená literatura Přípravný kurz Chemie 2006/07 07 RNDr. Josef Tomandl, Ph.D. Mailto: tomandl@med.muni.cz Předmět: Přípravný kurz chemie J. Vacík a kol.: Přehled středoškolské chemie. SPN, Praha 1990,

Více

MĚRENÍ V ELEKTROTECHNICE

MĚRENÍ V ELEKTROTECHNICE EAICKÉ OKHY ĚENÍ V ELEKOECHNICE. řesnost měření. Chyby analogových a číslcových měřcích přístrojů. Chyby nepřímých a opakovaných měření. rmární etalon napětí. Zdroje referenčních napětí. rmární etalon

Více

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o.

1. Kvantové jámy. Tabulka 1: Efektivní hmotnosti nosičů v krystalech GaAs, AlAs, v jednotkách hmotnosti volného elektronu m o. . Kvantové jámy Pokročilé metody růstu krystalů po jednotlivých vrstvách (jako MBE) dovolují vytvořit si v krystalu libovolný potenciál. Jeden z hojně používaných materiálů je: GaAs, AlAs a jejich ternární

Více

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2.

1. Spektrální rozklad samoadjungovaných operátorů 1.1. Motivace Vlastní čísla a vlastní vektory symetrické matice 1 1 A = 1 2. . Spektrální rozklad samoadjungovaných operátorů.. Motvace Vlastní čísla a vlastní vektory symetrcké matce A = A λe = λ λ = λ 3λ + = λ 3+ λ 3 Vlastní čísla jsou λ = 3+, λ = 3. Pro tato vlastní čísla nalezneme

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

radiační ochrana Státní úřad pro jadernou bezpečnost

radiační ochrana Státní úřad pro jadernou bezpečnost Státní úřad pro jadernou bezpečnost radační ochrana DOPORUČENÍ Měření a hodnocení obsahu přírodních radonukldů ve vodě dodávané k veřejnému zásobování ptnou vodou Rev. 1 SÚJB únor 2012 Předmluva Zákon

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku

Úloha 2: Měření modulu pružnosti v tahu a modulu pružnosti ve smyku Úloha 2: Měření modulu pružnost v tahu a modulu pružnost ve smyku FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 19.10.2009 Jméno: Frantšek Batysta Pracovní skupna: 11 Ročník a kroužek: 2. ročník,

Více

Chemické repetitorium. Václav Pelouch

Chemické repetitorium. Václav Pelouch ZÁKLADY OBECNÉ A KLINICKÉ BIOCHEMIE 2004 Chemické repetitorium Václav Pelouch kapitola ve skriptech - 1 Anorganická a obecná chemie Stavba atomu Atom je nejmenší částice hmoty, která obsahuje jádro (složené

Více

Vnitřní energie. Teplo. Tepelná výměna.

Vnitřní energie. Teplo. Tepelná výměna. Vnitřní energie. Teplo. Tepelná výměna. A) Výklad: Vnitřní energie vnitřní energie označuje součet celkové kinetické energie částic (tj. rotační + vibrační + translační energie) a celkové polohové energie

Více

DOBA DOZVUKU V MÍSTNOSTI

DOBA DOZVUKU V MÍSTNOSTI DOBA DOZVUKU V MÍSTNOSTI 1. Úvod Po zapnutí zdroje zvuku v místnost trvá jstou krátkou dobu (řádově vteřny až zlomky vteřn), než dojde k ustálení zvukového pole. Často je v takových případech možné skutečné

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ BAKALÁŘSKÁ PRÁCE FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ENERGETICKÝ ÚSTAV FACULTY OF MECHANICAL ENGINEERING ENERGY INSTITUTE VĚTRACÍ SYSTÉMY OBYTNÝCH DOMŮ VENTILATION

Více

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu

Úvod do moderní fyziky. lekce 3 stavba a struktura atomu Úvod do moderní fyziky lekce 3 stavba a struktura atomu Vývoj představ o stavbě atomu 1904 J. J. Thomson pudinkový model atomu 1909 H. Geiger, E. Marsden experiment s ozařováním zlaté fólie alfa částicemi

Více

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ

VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ VLIV VELIKOSTI OBCE NA TRŽNÍ CENY RODINNÝCH DOMŮ Abstrakt Martn Cupal 1 Prncp tvorby tržní ceny nemovtost je sce založen na tržní nabídce a poptávce, avšak tento trh je značně nedokonalý. Nejvíce ovlvňuje

Více

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul.

Teorie hybridizace. Vysvětluje vznik energeticky rovnocenných kovalentních vazeb a umožňuje předpovědět prostorový tvar molekul. Chemická vazba co je chemická vazba charakteristiky chemické vazby jak vzniká vazba znázornění chemické vazby kovalentní a koordinační vazba vazba σ a π jednoduchá, dvojná a trojná vazba polarita vazby

Více

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz.

Model IS-LM Zachycuje současnou rovnováhu na trhu zboží a služeb a trhu peněz. 3 Určení rovnovážné produkce v modelu -LM Teoretcká východska Model -LM je neokeynesánským modelem, jeho autorem je anglcký ekonom J.R. Hcks. Model -LM Zachycuje současnou rovnováhu na trhu zboží a služeb

Více

Základy finanční matematiky

Základy finanční matematiky Hodna 38 Strana 1/10 Gymnázum Budějovcká Voltelný předmět Ekonome - jednoletý BLOK ČÍSLO 6 Základy fnanční matematky ředpokládaný počet : 5 hodn oužtá lteratura : Frantšek Freberg Fnanční teore a fnancování

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ

DYNAMICKÉ MODULY PRUŽNOSTI NÁVOD DO CVIČENÍ DYNAMICKÉ MODUY PRUŽNOSTI NÁVOD DO CVIČNÍ D BI0 Zkušebnctví a technologe Ústav stavebního zkušebnctví, FAST, VUT v Brně 1. STANOVNÍ DYNAMICKÉHO MODUU PRUŽNOSTI UTRAZVUKOVOU IMPUZOVOU MTODOU [ČSN 73 1371]

Více

ANALYTICKÁ GEOMETRIE V ROVINĚ

ANALYTICKÁ GEOMETRIE V ROVINĚ ANALYTICKÁ GEOMETRIE V ROVINĚ Analytická geometrie vyšetřuje geometrické objekty (body, přímky, kuželosečky apod.) analytickými metodami. Podle prostoru, ve kterém pracujeme, můžeme analytickou geometrii

Více

stechiometrický vzorec, platné číslice 1 / 10

stechiometrický vzorec, platné číslice  1 / 10 Základní chemické zákony Chemické zákony, látkové množství, atomová a molekulová hmotnost, stechiometrický vzorec, platné číslice http://z-moravec.net 1 / 10 Zákony zachování Zákon zachování hmoty Lavoisier,

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1

VÝVOJ SOFTWARU NA PLÁNOVÁNÍ PŘESNOSTI PROSTOROVÝCH SÍTÍ PRECISPLANNER 3D. Martin Štroner 1 VÝVOJ SOFWARU NA PLÁNOVÁNÍ PŘESNOSI PROSOROVÝCH SÍÍ PRECISPLANNER 3D DEVELOPMEN OF HE MEASUREMEN ACCURACY PLANNING OF HE 3D GEODEIC NES PRECISPLANNER 3D Martn Štroner 1 Abstract A software for modellng

Více

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES

MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta stavební Ústav stavební mechanky Doc. Ing. Zdeněk Kala, Ph.D. MEZNÍ STAVY A SPOLEHLIVOST OCELOVÝCH KONSTRUKCÍ LIMIT STATES AND RELIABILITY OF STEEL STRUCTURES TEZE

Více

Opakování

Opakování Slabé vazebné interakce Opakování Co je to atom? Opakování Opakování Co je to atom? Atom je nejmenší částice hmoty, chemicky dále nedělitelná. Skládá se z atomového jádra obsahujícího protony a neutrony

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ATOM, ELEKTRONOVÝ OBAL 1) Sestavte tabulku: a) Do prvního sloupce

Více

Ch - Elektronegativita, chemická vazba

Ch - Elektronegativita, chemická vazba Ch - Elektronegativita, chemická vazba Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s využitím odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument

Více

Zavedení a vlastnosti reálných čísel

Zavedení a vlastnosti reálných čísel Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu

Více

Opakování: shrnutí základních poznatků o struktuře atomu

Opakování: shrnutí základních poznatků o struktuře atomu 11. Polovodiče Polovodiče jsou krystalické nebo amorfní látky, jejichž elektrická vodivost leží mezi elektrickou vodivostí kovů a izolantů a závisí na teplotě nebo dopadajícím optickém záření. Elektrické

Více

Struktura elektronového obalu

Struktura elektronového obalu Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Struktura elektronového obalu Představy o modelu atomu se vyvíjely tak, jak se zdokonalovaly možnosti vědy

Více

Elektronový obal atomu

Elektronový obal atomu Elektronový obal atomu Ondřej Havlíček.ročník F-Vt/SŠ Jsoucno je vždy něco, co jsme si sami zkonstruovali ve své mysli. Podstata takovýchto konstrukcí nespočívá v tom, že by byly odvozeny ze smyslových

Více

Ing. Radovan Nečas Mgr. Miroslav Hroza

Ing. Radovan Nečas Mgr. Miroslav Hroza Výzkumný ústav stavebních hmot, a.s. Hněvkovského, č.p. 30, or. 65, 617 00 BRNO zapsaná v OR u krajského soudu v Brně, oddíl B, vložka 3470 Aktivační energie rozkladu vápenců a její souvislost s ostatními

Více

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE

USE OF FUGACITY FOR HEADSPACE METHODS VYUŽITÍ FUGACITNÍ TEORIE PRO METODY HEADSPACE USE OF FUGITY FOR HEDSPE METHODS VYUŽITÍ FUGITNÍ TEORIE PRO METODY HEDSPE Veronka Rppelová, Elška Pevná, Josef Janků Ústav cheme ochrany prostředí, Vysoká škola chemcko-technologcká v Praze, Techncká 5,

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou)

ina ina Diskrétn tní náhodná veličina může nabývat pouze spočetně mnoha hodnot (počet aut v náhodně vybraná domácnost, výsledek hodu kostkou) Náhodná velčna na Výsledek náhodného pokusu, daný reálným číslem je hodnotou náhodné velčny. Náhodná velčna je lbovolná reálná funkce defnovaná na množně elementárních E pravděpodobnostního prostoru S.

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

6 LINEÁRNÍ REGRESNÍ MODELY

6 LINEÁRNÍ REGRESNÍ MODELY 1 6 LINEÁRNÍ REGRESNÍ MODELY Př budování regresních modelů se běžně užívá metody nejmenších čtverců. Metoda nejmenších čtverců poskytuje postačující odhady parametrů jenom př současném splnění všech předpokladů

Více

Ing. Barbora Chmelíková 1

Ing. Barbora Chmelíková 1 Numercká gramotnost 1 Obsah BUDOUCÍ A SOUČASNÁ HODNOTA TYPY ÚROČENÍ JEDNODUCHÉ vs SLOŽENÉ ÚROČENÍ JEDNODUCHÉ ÚROČENÍ SLOŽENÉ ÚROČENÍ FREKVENCE ÚROČENÍ KOMBINOVANÉ ÚROČENÍ EFEKTIVNÍ ÚROKOVÁ MÍRA SPOJITÉ

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony

jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony atom jádro a elektronový obal jádro nukleony obal elektrony, pro chemii významné valenční elektrony molekula Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti seskupení alespoň dvou atomů

Více

Bořka Leitla Bolometrie na tokamaku GOLEM

Bořka Leitla Bolometrie na tokamaku GOLEM Posudek vedoucího bakalářské práce Bořka Letla Bolometre na tokamaku GOLEM Vedoucí práce: Ing. Vojtěch Svoboda, CSc Bořek Letl vpracoval svoj bakalářskou prác na tokamaku GOLEM, jehož rozvoj je závslý

Více

Měření příkonu míchadla při míchání suspenzí

Měření příkonu míchadla při míchání suspenzí U8 Ústav procesní a zpracovatelské technky FS ČVUT v Praze Měření příkonu rotačních íchadel př íchání suspenzí I. Úkol ěření V průyslu téěř 60% všech operacích, kdy je íchání používáno, představuje íchání

Více

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU

2. ELEKTRICKÉ OBVODY STEJNOSMĚRNÉHO PROUDU VŠB T Ostrava Faklta elektrotechnky a nformatky Katedra obecné elektrotechnky. ELEKTCKÉ OBVODY STEJNOSMĚNÉHO POD.. Topologe elektrckých obvodů.. Aktvní prvky elektrckého obvod.3. Pasvní prvky elektrckého

Více

ATOM. atom prvku : jádro protony (p + ) a neutrony (n) obal elektrony (e - ) protonové číslo 8 nukleonové číslo 16 (8 protonů + 8 neutronů v jádře)

ATOM. atom prvku : jádro protony (p + ) a neutrony (n) obal elektrony (e - ) protonové číslo 8 nukleonové číslo 16 (8 protonů + 8 neutronů v jádře) ATOM atom prvku : jádro protony (p + ) a neutrony (n) obal elektrony (e - ) protonové číslo 8 nukleonové číslo 16 (8 protonů + 8 neutronů v jádře) Atom lze rozložit na menší složky, označované jako subatomární

Více

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ

SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULACE ZTRÁTY STABILITY ŠTÍHLÉHO PRUTU PŘI KROUCENÍ SIMULATION OF STABILITY LOSS OF SLENDER BEAM UNDER TORSION Petr Frantík Abstract Paper deals wth the stablty loss of straght shape of slender deal

Více

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah

11. přednáška 10. prosince Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah 11. přednáška 10. prosince 2007 Kapitola 3. Úvod do teorie diferenciálních rovnic. Obyčejná diferenciální rovnice řádu n (ODR řádu n) je vztah F (x, y, y, y,..., y (n) ) = 0 mezi argumentem x funkce jedné

Více

Názvosloví anorganických sloučenin

Názvosloví anorganických sloučenin Chemické názvosloví Chemické prvky jsou látky složené z atomů o stejném protonovém čísle (počet protonů v jádře atomu. Každému prvku přísluší určitý mezinárodní název a od něho odvozený symbol (značka).

Více

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum

Zpracování fyzikálních měření. Studijní text pro fyzikální praktikum Zpracování fyzkálních měření Studjní text pro fyzkální praktkum Mlan Červenka, katedra fyzky FEL-ČVUT mlan.cervenka@fel.cvut.cz 3. ledna 03 ObrázeknattulnístraněpocházízknhyogeometraměřeníodJacobaKöbela(460

Více

1.3. Transport iontů v elektrickém poli

1.3. Transport iontů v elektrickém poli .3. Transport ontů v elektrckém pol Ionty se v roztoku vystaveném působení elektrckého pole pohybují katonty směrem ke katodě, anonty k anodě. Tento pohyb ontů se označuje jako mgrace. VODIVOST Vodvost

Více

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G.

SÍŤOVÁ ANALÝZA. Základní pojmy síťové analýzy. u,. Sjednocením množin { u, u,..., 2. nazýváme grafem G. SÍŤOVÁ ANALÝZA Využívá grafcko-analytcké metody pro plánování, řízení a kontrolu složtých návazných procesů. yto procesy se daí rozložt na dílčí a organzačně spolu souvseící čnnost. yto procesy se nazývaí

Více