Aplikovaná matematika I, NMAF071

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Aplikovaná matematika I, NMAF071"

Transkript

1 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační počet přednášek věnovaných kapitole] 1. Úvod, čísla, zobrazení, posloupnosti [3] 2. Funkce jedné reálné proměnné [2] 3. Derivace funkce jedné reálné proměnné [1] 4. Neurčitý integrál a primitivní funkce [1.5] 5. Aplikace diferenciálního a integrálního počtu v 1 dimenzi [2.5] 6. Určitý integrál a jeho výpočet, aplikace [1.5] 7. Lineární vektorové prostory [1.5] - podrobněji postupně na webu přednášejícího Literatura 1. J. Kopáček: Matematika (nejen) pro fyziky I.,II. Skripta MFF UK, Matfyzpress. 2. J. Kopáček a kol.: Příklady z matematiky (nejen) pro fyziky I., II. Skripta MFF UK, Matfyzpress. 3. J. Kvasnica: Matematický aparát fyziky. Academia, Praha, I. Černý: Úvod do inteligentního kalkulu, Academia, Praha, B. P. Děmidovič: Sbírka úloh a cvičení z matematické analýzy. Fragment, Praha, J. Bečvář: Lineární algebra. Skripta MFF UK, Matfyzpress, web přednášejícího: poznámky a prezentace.

2 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 2 1 Úvod, čísla, zobrazení, posloupnosti 1.1 Výroky a množiny Logika je věda o formální správnosti myšlení. Při formálně logickém přístupu jde o správnost vyvození závěru z daných předpokladů. Výrokem nazveme jakékoliv tvrzení, o němž má smysl říci, že platí (je pravdivé, má pravdivostní hodnotu 1) nebo že neplatí (je nepravdivé, má pravdivostní hodnotu 0). Definice. Negací A výroku A rozumíme výrok: Není pravda, že platí A. A A Definice. Konjunkcí A&B výroků A a B nazveme výrok: Platí A i B. Definice. Disjunkcí A B výroků A a B nazveme výrok: Definice. Implikací A B nazýváme výrok: Platí A nebo B. Jestliže platí výrok A, potom platí výrok B. Výroku A v implikaci se říká premisa, výrok B se nazývá závěr. Pokud je výrok A B pravdivý, pak říkáme, že "A je postačující podmínkou pro platnost B" a "B je nutnou podmínkou pro platnost A". Definice. Ekvivalencí A B nazýváme výrok: Výrok A platí tehdy a jen tehdy, když platí výrok B. (Platnost výroku) A je nutnou a postačující podmínkou (platnosti výroku) B. Vše je možno shrnout do následující tabulky: A B A & B A B A B A B Intuitivně (bez přesné definice) budeme přijímat pojmy množina (jako soubor objektů), být prvkem množiny ("x je prvkem množiny M" píšeme: x M) a nebýt prvkem množiny ("x není prvkem množiny M" píšeme: x / M). Poznámka. Symboly N, Z, Q, R, C budou vyhrazeny pro množiny (po řadě) přirozených, celých, racionálních, reálných a komplexních čísel.

3 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 3 Výrokovou formou budeme nazývat výraz A(x 1, x 2,...x m ), z něhož vznikne výrok dosazením prvků x 1 M 1,...,x m M m z daných množin M 1,...,M m. Definice. Nyní necht A(x), x M, je výroková forma. Výrok zapisujeme ve tvaru: Pro všechna x M platí A(x). x M : A(x). Symbol nazýváme obecným (velkým) kvantifikátorem. Definice. Nyní necht A(x), x M, je výroková forma. Výrok zapisujeme ve tvaru: Existuje x M, pro které platí A(x). x M : A(x). Symbol nazýváme existenčním (malým) kvantifikátorem. Pro obrat "Existuje právě jeden... " často používáme symbol! Poznámka. Pokud výrok obsahuje několik po sobě jdoucích kvantifikátorů stejného typu, lze jejich pořadí libovolně měnit, například následující dva výroky jsou ekvivalentní pro jakoukoli výrokovou formu V (x, y), x M, y N: x M y N : V (x, y) y N x M : V (x, y) Příklad: x R y R : x 2 + y 4 0. Poznámka. Při záměně pořadí kvantifikátorů různého typu však nový výrok nemusí být ekvivalentní s výrokem původním: x M y N : V (x, y) y N x M : V (x, y) nejsou ekvivalentní výroky. (Jeden z nich však implikuje druhý - rozmyslete si.) Příklad: x N y R : y > x. Tvrzení 1.1 (Negace složených výroků). Platí: (A & B) = A B (A B) = A & B (A B) = A & B (A B) = ( A & B) (A & B) ( x M : A(x)) = x M : A(x) ( x M : A(x)) = x M : A(x)

4 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 4 Příklad: Určete, který z výroků je pravdivý: ( x R y R z R : y 2 + z 2 > x) = x R y R z R : y 2 + z 2 x. Definice. Řekneme, že množina A je částí množiny B (nebo A je podmnožinou B), jestliže každý prvek množiny A je rovněž prvkem množiny B. Tomuto vztahu říkáme inkluze a značíme A B. Dvě množiny jsou si rovny (A = B), jestliže mají stejné prvky. Prázdnou množinou nazveme množinu, která neobsahuje žádný prvek. Označíme ji symbolem. Poznámka. Pro libovolné dvě množiny A, B platí: A = B (A B) & (B A). Definice (množinové operace). Necht I je neprázdná množina a A α je množina pro každé α I. Definujeme sjednocení α I A α jako množinu všech prvků, které patří alespoň do jedné z množin A α. Definujeme průnik α I A α jako množinu prvků, které náleží do každé z množin A α. Definice. Mají-li dvě množiny prázdný průnik, řekneme o nich, že jsou disjunktní. Rozdílem množin A a B (značíme A \ B) nazveme množinu prvků, které patří do množiny A a nepatří do množiny B. Kartézským součinem množin A 1,...,A n nazveme množinu všech uspořádaných n-tic A 1 A 2 A n = {[a 1, a 2,...,a n ]; a 1 A 1,...,a n A n }. Věta 1.2 (de Morganova pravidla). Necht I je neprázdná množina, X, A α (α I) jsou množiny. Pak platí X \ A α = \ A α ), α I α I(X X \ A α = \ A α ). α I α I(X 1.2 Zobrazení Definice. Necht X a Y jsou množiny. Je-li každému prvku x X přiřazen nejvýše jeden prvek z Y, řekneme, že je definováno zobrazení z X do Y. Píšeme f : X Y a f(x) = y, případně f : x y. Množinu D(f) := {x X, y Y, f(x) = y} nazýváme definičním oborem zobrazení f. Definice. Necht X, Y jsou neprázdné množiny a f : X Y. Obrazem množiny A X při zobrazení f se nazývá množina f(a) = {f(x); x A}. Je-li A = D(f) definičním oborem zobrazení f : X Y, nazýváme množinu f(a) oborem hodnot zobrazení f. (Značíme R(f) nebo H(f).)

5 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 5 Vzorem množiny B Y při zobrazení f nazveme množinu Definice. Necht X, Y jsou množiny a f : X Y. f 1 (B) = {x X; f(x) B}. Zobrazení f je prosté (injektivní) na A X, jestliže x 1, x 2 A : x 1 x 2 f(x 1 ) f(x 2 ). Zobrazení f je zobrazením množiny A X "na" množinu Y (f je surjektivní), jestliže f(a) = Y. Řekneme, že f je bijekce A na Y, jestliže f je prosté a na Y. Definice. Necht f : A Y je prosté, f(a) = B. Pak zobrazení f 1 : B A definované předpisem f 1 (y) = x, kde y f(a) a f(x) = y, nazýváme inverzním zobrazením k zobrazení f. Definice. Necht f : X Y je zobrazení, A X. Zobrazení f A : A Y takové že f A (x) = f(x) x A nazýváme zúžením zobrazení f na množinu A. Definice. Necht f : X Y a g : Y Z jsou dvě zobrazení. Symbolem g f označíme zobrazení z množiny X do množiny Z definované předpisem (g f)(x) = g(f(x)). Takto definované zobrazení se nazývá složeným zobrazením zobrazení f a g, přičemž f je vnitřní zobrazení a g je vnější zobrazení. 1.3 Reálná čísla Vybudování číselných množin - několik možností: Možnost I: N (intuitivně nebo z teorie množin) Z Q R Možnost II: R (axiomaticky) N Z Q Ad I: Krok Q R obtížný (např. tzv. Dedekindovy řezy) Ad II: Krok R N např. pomocí pojmu tzv. induktivní množiny. V obou možnostech na závěr následuje krok R C. Ad II: Množinu reálných čísel R lze definovat jako množinu, na níž jsou definovány operace sčítání a násobení, které budeme značit obvyklým způsobem, a relace uspořádání ( ), přičemž jsou splněny následující tři skupiny vlastností. I. Vlastnosti sčítání a násobení a jejich vzájemný vztah II. Vztah uspořádání a operací sčítání a násobení III. Axiom o supremu I. Vlastnosti sčítání a násobení a jejich vzájemný vztah x, y, z R : x + (y + z) = (x + y) + z (asociativita sčítání),

6 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 6 x, y R : x + y = y + x (komutativita sčítání), w R x R : w + x = x (prvek w je určen jednoznačně, značíme ho 0 a říkáme mu nulový prvek), x R z R : x + z = 0 (z je tzv. opačné číslo k číslu x, je určeno jednoznačně a značíme ho x), x, y, z R : x (y z) = (x y) z (asociativita násobení), x, y R : x y = y x (komutativita násobení), v R \ {0} x R : v x = x (prvek v je určen jednoznačně, značíme ho 1 a říkáme mu jednotkový prvek), x R \ {0} y R : x y = 1 (prvek y je určen jednoznačně a značíme ho x 1 nebo 1 x ), x, y, z R : (x + y) z = x z + y z (distributivita). II. Vztah uspořádání a operací sčítání a násobení x, y, z R : (x y & y z) x z (tranzitivita), x, y R : (x y & y x) x = y (slabá antisymetrie), x, y R : x y y x, x, y, z R : x y x + z y + z, x, y R : (0 x & 0 y) 0 x y. Označení. Označení x y znamená totéž co y x. Symbolem x < y budeme značit situaci, kdy x y, ale x y (tzv. ostrá nerovnost). Reálná čísla, pro něž x > 0 (resp. x < 0), budeme nazývat kladnými (resp. zápornými). Reálná čísla, pro něž x 0 (resp. x 0), budeme nazývat nezápornými (resp. nekladnými). Definice. Řekneme, že množina M R je omezená zdola, jestliže existuje číslo a R takové, že pro každé x M platí x a. Takové číslo a se nazývá dolní závorou množiny M. Analogicky definujeme pojmy množina omezená shora a horní závora. Řekneme, že množina M R je omezená, je-li omezená shora i zdola. Definice. Necht M R. Řekneme, že a je největší prvek (maximum) množiny M, jestliže a je horní závorou množiny M a přitom a M. Analogicky definujeme nejmenší prvek (minimum) M. Maximum a minimum jsou určeny jednoznačně (pokud existují) a značíme je max M a minm. Minimum a maximum dané množiny reálných čísel nemusí existovat: (0, 1). Definice. Necht M R. Číslo G R splňující x M : x G, G R, G < G x M : x > G,

7 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 7 nazýváme supremem množiny M. Poznámka. Necht M R. Má-li množina M supremum, je toto určeno jednoznačně a značíme jej sup M. III. Axiom suprema Každá neprázdná shora omezená podmnožina R má supremum. Definice. Necht M R. Číslo g R splňující x M : x g, g R, g > g x M : x < g, nazýváme infimem množiny M. Poznámka. Necht M R. Má-li množina M infimum, je toto určeno jednoznačně a značíme jej inf M. Věta 1.3. Necht M R je neprázdná zdola omezená množina. Pak existuje infimum množiny M. Poznámka. Klademe sup M := + pro shora neomezenou množinu, a inf M := pro zdola neomezenou množinu. Klademe sup := a inf := +. Z axiomu o supremu plynou některé důležité vlastnosti R: Věta Pro každé r R existuje právě jedno číslo k Z takové, že k r < k Ke každému x R existuje n N splňující x < n. 3. Necht a, b R, a < b. Pak existuje q Q takové, že a < q < b. 4. Pro každé n N a x R, x 0, existuje právě jedno y R, y 0, splňující y n = x. Věta 1.5 (Základní nerovnosti mezi reálnými čísly). platí tzv. Bernoulliho nerovnost 1. Pro každé x R, x 2 a pro každé n N (1 + x) n 1 + nx. 2. Pro všechna reálná čísla a 1,...,a n, b 1,...,b n platí tzv. Cauchy-Schwarzova nerovnost ( n ) 2 n n a j b j a j2 b 2 j. j=1 j=1 j=1 3. Pro všechna nezáporná reálná čísla a 1,...,a n platí tzv. A-G (aritmeticko-geometrická) nerovnost a a n n n a 1 a n.

8 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti Komplexní čísla Množinu komplexních čísel C definujeme jako množinu všech uspořádaných dvojic (a, b), kde a, b R, přičemž pro komplexní čísla x = (a, b), y = (c, d) definujeme operace sčítání a násobení takto x + y = (a + c, b + d), x y = (ac bd, ad + bc). Dále ztotožňujeme x = (x, 0) pro x R, a definujeme i = (0, 1). Potom (a, b) = (a,0) + (0, b) = (a,0) + b(0, 1) = a + bi, (0, 1) (0, 1) = ( 1, 0) = 1, tj. i 2 = 1, a tedy C = {a + bi; a, b R} kde i 2 = 1. Necht x = a + bi C. Prvek a nazýváme reálnou částí x, prvek b nazýváme imaginární částí x. Absolutní hodnotou komplexního čísla x rozumíme x = a 2 + b 2. Komplexně sdruženým číslem k x rozumíme číslo x = a bi; symbol x značí číslo a bi a symbol 1/x značí pro x 0 (jednoznačně určené) číslo splňující x 1 x = Mohutnost množin Definice. Říkáme, že množiny A, B mají stejnou mohutnost a píšeme A B, jestliže existuje bijekce A na B. Říkáme, že množina A má mohutnost menší nebo rovnou mohutnosti množiny B a píšeme A B, jestliže existuje prosté zobrazení A do B. Symbol A B značí situaci, kdy A B a neplatí A B. Definice. Řekneme, že množina A je konečná, jestliže je bud A = nebo existuje n N takové, že platí A {1,...,n}. Řekneme, že množina A je spočetná, jestliže platí A N. Řekneme, že množina A je nespočetná, jestliže A není ani konečná ani spočetná. Tvrzení 1.6. Množiny N, Z, Q jsou spočetné, množiny R, C jsou nespočetné. 1.6 Posloupnosti a jejich limity Definice. Necht A je neprázdná množina. Zobrazení přiřazující každému přirozenému číslu n prvek a n z množiny A nazýváme posloupnost prvků množinya. Prvek a n nazveme n-tým členem této posloupnosti. Značíme {a n } n=1. Příklad. Posloupnosti zadané explicitně: a n := (1 + 1/n) n ; popisem: a n := n-té prvočíslo; rekurentně: a 1 = a 2 := 1, a n+2 := a n+1 + a n n N.

9 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 9... Poznámka. Posloupností budeme nadále až do odvolání rozumět (nekonečnou) posloupnost reálných čísel. Definice. Řekneme, že posloupnost {a n } je shora omezená, jestliže množina všech členů této posloupnosti je shora omezená, zdola omezená, jestliže množina všech členů této posloupnosti je zdola omezená, omezená, jestliže množina všech členů této posloupnosti je omezená. Definice. Řekneme, že posloupnost reálných čísel {a n } je neklesající, je-li a n a n+1 pro každé n N, rostoucí, je-li a n < a n+1 pro každé n N, nerostoucí, je-li a n a n+1 pro každé n N, klesající, je-li a n > a n+1 pro každé n N. Posloupnost {a n } je monotónní, pokud splňuje některou z výše uvedených podmínek. Posloupnost {a n } je ryze monotónní, pokud je rostoucí či klesající. Definice. Řekneme, že posloupnost (reálných čísel) {a n } má limitu rovnou reálnému číslu A, jestliže platí ε R, ε > 0 n 0 N n N, n n 0 : a n A < ε. Poznámka. Necht K R, K > 0, A R. Jestliže posloupnost {a n } splňuje podmínku potom lima n = A. ε R, ε > 0 n 0 N n N, n n 0 : a n A < Kε, Definice. Řekneme, že posloupnost {a n } má limitu +, jestliže L R n 0 N n N, n n 0 : a n L. Řekneme, že posloupnost {a n } má limitu, jestliže K R n 0 N n N, n n 0 : a n K. Věta 1.7 (jednoznačnost limity). Každá posloupnost má nejvýše jednu limitu. Definice. Má-li posloupnost {a n } limitu rovnou číslu A R, pak píšeme lim a n = A nebo jenom n lima n = A.Podobně píšeme lim a n = lima n =, resp. lim a n = lima n =. Řekneme, že n n posloupnost {a n } je konvergentní, pokud existuje A R takové, že lima n = A. Není-li posloupnost konvergentní, říkáme, že je divergentní. Věta 1.8. Každá konvergentní posloupnost je omezená. Definice. Necht {a n } n=1 je posloupnost reálných čísel. Jestliže {n k} k=1 je rostoucí posloupnost přirozených čísel, pak {a nk } k=1 se nazývá vybranou posloupností z {a n} n=1. Věta 1.9. Necht {a nk } k=1 je vybraná posloupnost z posloupnosti {a n} n=1. Jestliže platí lim a n = A n R { } { }, pak také lim a n k = A. k

10 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 10 Definice. Necht {a n } n=1 je posloupnost reálných čísel. Pak A R { } { } nazýváme hromadnou hodnotou posloupnosti {a n } n=1, jestliže existuje vybraná posloupnost {a n k } k=1 taková, že lim a n k = A. k Rozšířená reálná osa: Uspořádání: a R {+ }: < a, a { } R: a < + Absolutní hodnota: = + = + Sčítání a odčítání: R := R { } {+ } (+ ) =, +( ) =, a R: a R: + a = a + ( ) =, + + a = a + (+ ) = +, ( ) + ( ) =, (+ ) + (+ ) = + Násobení a dělení: a R, a > 0: a R, a < 0: a (± ) = (± ) a = ±, a (± ) = (± ) a =, 1 + = 1 = 0 NEDEFINUJEME: ( ) + (+ ), 0 (± ), ± ±, cokoli 0 Věta 1.10 (aritmetika limit). Necht lima n = A R a limb n = B R. Potom platí: (i) lim (a n ± b n ) = A ± B, pokud je pravá strana definována, (ii) lim (a n b n ) = A B, pokud je pravá strana definována, (iii) lima n /b n = A/B, pokud je pravá strana definována. Věta Necht lima n = 0 a necht posloupnost {b n } je omezená. Potom lima n b n = 0. Věta Necht lima n = A R. Potom lim a n = A. Věta 1.13 (limita a uspořádání). Necht lima n = A R a limb n = B R. (i) Necht existuje n 0 N takové, že pro každé přirozené n n 0 je a n b n. Potom A B. (ii) Necht A < B. Potom existuje n 0 N takové, že pro každé přirozené n n 0 je a n < b n.

11 M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 11 Věta 1.14 (o dvou strážnících). Necht {a n }, {b n }, {c n } jsou posloupnosti splňující: (i) n 0 N n N, n n 0 : a n c n b n, (ii) existují lima n, limb n, a navíc lima n = limb n. Potom existuje limc n a platí limc n = lima n. Poznámka. Pokud existuje lima n =, není nutné uvažovat žádnou posloupnost {b n } a tvrzení věty zůstává v platnosti. Podobně je tomu v případě limb n =, kdy "nepotřebujeme" posloupnost {a n }. Věta 1.15 (Limita monotónní posloupnosti). Každá monotónní posloupnost má limitu. Tvrzení Pro a > 0 je lim n a = 1. Platí lim n n = 1. Posloupnost a n := ( n) n je neklesající a shora omezená; posloupnost bn := ( ) n n je nerostoucí a zdola omezená, přičemž existují lima n = limb n. Tuto společnou limitní hodnotu označujeme e Věta Necht lima n = A R, A > 0, limb n = 0 a existuje n 0 N, že pro každé n N, n n 0, platí b n > 0. Pak lima n /b n =. 1.7 Hlubší vlastnosti posloupností Poznámka (Komplexní případ). Zobrazení přiřazující každému přirozenému číslu n prvek a n C nazveme komplexní posloupností. Evidentně {a n } je komplexní posloupnost právě tehdy, když existují reálné posloupnosti {x n }, {y n } takové, že a n = x n + iy n pro všechna přirozená n. Pro komplexní posloupnost nedefinujeme (nemají smysl) pojmy jako "rostoucí", "klesající", apod., ale také pojem "shora resp. zdola omezená" posloupnost. Řekneme, že komplexní posloupnost {a n } je omezená, pokud existuje K > 0 taková, že a n K pro všechna přirozená n. Poznámka (Komplexní limita). Je-li a n = x n + iy n komplexní posloupnost, a existují limx n, limy n vlastní, klademe lima n = limx n + ilimy n. Výrazy tvaru "a ± i ", "± ± ib", resp. "± ± i " nedefinujeme. Věta 1.18 (Bolzano-Weierstrassova věta). Z každé omezené posloupnosti lze vybrat konvergentní podposloupnost. má vlastní limitu právě tehdy, když splňuje Bolzano-Cauchyovu pod- Věta Posloupnost {a n } n=1 mínku, tj. ε R, ε > 0 n 0 N n N, n n 0 m N, m n 0 : a n a m < ε.

Posloupnosti a jejich konvergence POSLOUPNOSTI

Posloupnosti a jejich konvergence POSLOUPNOSTI Posloupnosti a jejich konvergence Pojem konvergence je velmi důležitý pro nediskrétní matematiku. Je nezbytný všude, kde je potřeba aproximovat nějaké hodnoty, řešit rovnice přibližně, používat derivace,

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

1. Množiny, zobrazení, relace

1. Množiny, zobrazení, relace Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

19 Hilbertovy prostory

19 Hilbertovy prostory M. Rokyta, MFF UK: Aplikovaná matematika III kap. 19: Hilbertovy prostory 34 19 Hilbertovy prostory 19.1 Úvod, základní pojmy Poznámka (připomenutí). Necht (X,(, )) je vektorový prostor se skalárním součinem

Více

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.

Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost. Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Matematika. Kamila Hasilová. Matematika 1/34

Matematika. Kamila Hasilová. Matematika 1/34 Matematika Kamila Hasilová Matematika 1/34 Obsah 1 Úvod 2 GEM 3 Lineární algebra 4 Vektory Matematika 2/34 Úvod Zkouška písemná, termíny budou včas vypsány na Intranetu UO obsah: teoretická a praktická

Více

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl

Matematika pro studenty ekonomie. Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Doc. RNDr. Jiří Moučka, Ph.D. RNDr. Petr Rádl Matematika pro studenty ekonomie Vydala Grada Publishing, a.s. U Průhonu 22, 70 00 Praha 7 tel.: +420 234 264 40, fax: +420 234 264 400 www.grada.cz jako svou

Více

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

analytické geometrie v prostoru s počátkem 18. stol.

analytické geometrie v prostoru s počátkem 18. stol. 4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami

Více

Funkce. Definiční obor a obor hodnot

Funkce. Definiční obor a obor hodnot Funkce Definiční obor a obor hodnot Opakování definice funkce Funkce je předpis, který každému číslu z definičního oboru, který je podmnožinou množiny všech reálných čísel R, přiřazuje právě jedno reálné

Více

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA Osmileté studium 1. ročník 1. Opakování a prohloubení učiva 1. 5. ročníku Číslo, číslice, množiny, přirozená čísla, desetinná čísla, číselné

Více

1. 1 P Ř I R O Z E N Á Č Í S L A

1. 1 P Ř I R O Z E N Á Č Í S L A 1. Č Í S E L N É O B O R Y 1. 1 P Ř I R O Z E N Á Č Í S L A Přirozená čísla (definice, značení, množinový zápis) Číslice (cifry 0 9) Číslo (rozvinutý resp. zkrácený zápis přirozeného čísla v desítkové

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika

O FUNKCÍCH. Obsah. Petr Šedivý www.e-matematika.cz Šedivá matematika O FUNKCÍCH Obsah Nezbytně nutná kapitola, kterou musíte znát pro studium limit, derivací a integrálů. Základ, bez kterého se neobejdete. Nejprve se seznámíte se všemi typy funkcí, které budete potřebovat,

Více

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016

Jaromír Kuben. Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04.1.03/3.2.15.1/0016 VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA DIFERENCIÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ Jaromír Kuben Petra Šarmanová Vytvořeno v rámci projektu Operačního programu Rozvoje lidských zdrojů CZ.04..03/3..5./006

Více

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1

Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1. Funkce pro UO 1 Poznámky pro žáky s poruchami učení z matematiky 2. ročník 2005/2006 str. 1 Funkce pro UO 1 Co je to matematická funkce? Mějme dvě množiny čísel. Množinu A a množinu B, které jsou neprázdné. Jestliže přiřadíme

Více

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací

Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména

Více

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z

Více

CZ 1.07/1.1.32/02.0006

CZ 1.07/1.1.32/02.0006 PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI

Více

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává. 1 Základní pojmy matematické logiky Výrokový počet... syntaktické hledisko Predikátový počet... sémantické hledisko 1.1 VÝROKOVÝ POČET výrok-každésdělení,uněhožmásmyslseptát,zdaječinenípravdivé, aproněžprávějednaztěchtodvoumožnostínastává.

Více

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák

OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA. ve studiu učitelství 1. stupně základní školy. Vilma Novotná, Bohuslav Pisklák OSTRAVSKÁ UNIVERZITA OSTRAVA PEDAGOGICKÁ FAKULTA MATEMATIKA ve studiu učitelství 1. stupně základní školy Vilma Novotná, Bohuslav Pisklák Ostrava 2003 Obsah I. Úvod do teorie množin a matematické logiky

Více

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu

VÝUKOVÝ MATERIÁL. Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632 Číslo projektu VÝUKOVÝ MATERIÁL Identifikační údaje školy Vyšší odborná škola a Střední škola, Varnsdorf, příspěvková organizace Bratislavská 2166, 407 47 Varnsdorf, IČO: 18383874 www.vosassvdf.cz, tel. +420412372632

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004

Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 Diskrétní matematika Roman Čada Tomáš Kaiser Zdeněk Ryjáček Katedra matematiky FAV Západočeská univerzita v Plzni 2004 ii Úvodem Máte před sebou text k přednášce Diskrétní matematika pro první ročník na

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu matematika a ve volitelných předmětech Deskriptivní geometrie,

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 Verze: 20121012 01MA1 2011/12 Obsah Zkouška z předmětu 01MA1.............................. 4 Literatura....................................... 4 Logika........................................

Více

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy

3. Celistvé výrazy a jejich úprava 3.1. Číselné výrazy . Celistvé výrazy a jejich úprava.1. Číselné výrazy 8. ročník. Celistvé výrazy a jejich úprava Proměnná je znak, zpravidla ve tvaru písmene, který zastupuje čísla z dané množiny čísel. Většinou se setkáváme

Více

Diskrétní matematika. Martin Kovár

Diskrétní matematika. Martin Kovár Diskrétní matematika Martin Kovár Tento text byl vytvořen v rámci realizace projektu CZ.1.07/2.2.00/15.0156, Inovace výuky matematických předmětů v rámci studijních programů FEKT a FIT VUT v Brně, realizovaném

Více

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula.

Celá čísla. Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Celá čísla Celá čísla jsou množinou čísel, kterou tvoří všechna čísla přirozená, čísla k nim opačná a číslo nula. Množinu celých čísel označujeme Z Z = { 3, 2, 1,0, 1,2, 3, } Vlastností této množiny je,

Více

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii

MASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou

Více

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015

Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Funkce, funkční závislosti Lineární funkce

Funkce, funkční závislosti Lineární funkce Funkce, funkční závislosti Lineární funkce Obsah: Definice funkce Grafické znázornění funkce Konstantní funkce Lineární funkce Vlastnosti lineárních funkcí Lineární funkce - příklady Zdroje Z Návrat na

Více

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014

Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,

Více

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina Reálná čísla Iracionální číslo je číslo vyjádřené ve tvaru nekonečného desetinného rozvoje, ve kterém se nevyskytuje žádná perioda. Při počítání je potřeba iracionální číslo vyjádřit zaokrouhlené na určitý

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Základy fuzzy logiky 1

Základy fuzzy logiky 1 A Tutorial Základy fuzzy logiky 1 George J. Klir Petr Osička State University of New York (SUNY) Binghamton, New York 13902, USA gklir@binghamton.edu Palacky University, Olomouc, Czech Republic prepared

Více

Maturitní témata od 2013

Maturitní témata od 2013 1 Maturitní témata od 2013 1. Úvod do matematické logiky 2. Množiny a operace s nimi, číselné obory 3. Algebraické výrazy, výrazy s mocninami a odmocninami 4. Lineární rovnice a nerovnice a jejich soustavy

Více

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu:

Negace výroku. Příklad 1. Rozhodněte, zda jsou věty výroky, u výroků určete pravdivostní hodnotu: Základní pojmy výrokové logiky Výrok je každé sdělení, o němž má smysl říci, zda je pravdivé nebo nepravdivé. Přitom může nastat pouze jedna možnost. Výroky označujeme obvykle velkými písmeny A, B, C Pravdivému

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA

TÉMA VÝSTUP UČIVO PRŮŘEZOVÁ TÉMATA Matematika ročník TÉMA G5 VÝSTUP 5.1 Teorie množin, provádí správně operace s množinami, výroková logika množiny vyžívá při řešení úloh; pracuje správně s výroky, užívá správně logické spojky a kvantifikátory;

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0).

Výroková logika II. Negace. Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Výroková logika II Negace Již víme, že negace je změna pravdivostní hodnoty výroku (0 1; 1 0). Na konkrétních příkladech si ukážeme, jak se dají výroky negovat. Obecně se výrok dá negovat tak, že před

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Základní cvičení z matematiky,

Více

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz)

Logický důsledek. Petr Kuchyňka (7765@mail.muni.cz) Logický důsledek Petr Kuchyňka (7765@mail.muni.cz) Úvod P 1 Logický důsledek je hlavním předmětem zájmu logiky. Je to relace mezi premisami a závěry logicky platných úsudků: v logicky platném úsudku závěr

Více

Matematické základy kryptografických algoritmů Eliška Ochodková

Matematické základy kryptografických algoritmů Eliška Ochodková Matematické základy kryptografických algoritmů Eliška Ochodková Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně

Více

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1

Řešení. Hledaná dimenze je (podle definice) rovna hodnosti matice. a 1 2. 1 + a 2 2 1 Příklad 1. Určete všechna řešení následující soustavy rovnic nad Z 2 : 0 0 0 1 1 1 0 1 0 1 1 1 1 1 0 1 0 1 0 1 1 Gaussovou eliminací převedeme zadanou soustavu na ekvivalentní soustavu v odstupňovaném

Více

4.9.70. Logika a studijní předpoklady

4.9.70. Logika a studijní předpoklady 4.9.70. Logika a studijní předpoklady Seminář je jednoletý, je určen pro studenty posledního ročníku čtyřletého studia, osmiletého studia a sportovní přípravy. Cílem přípravy je orientace ve formální logice,

Více

KMA/MDS Matematické důkazy a jejich struktura

KMA/MDS Matematické důkazy a jejich struktura Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 KMA/MDS Matematické důkazy a jejich struktura Seminář 1 Cílem tohoto semináře je efektivní uvedení

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE

Více

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor

Předmluva. (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor 2 Předmluva (ke druhému vydání) Toto skriptum odpovídá současnému obsahu předmětu Teoretická informatika pro obor Výpočetní technika na Elektrotechnické fakultě ČVUT. Jak název napovídá, hlavním cílem

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 11. Lineární zobrazení V celé přednášce pojednáváme o vektorových prostorech nad

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD.

Logika. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Akademie managementu a komunikace, Praha PhDr. Peter Jan Kosmály, PhD. Tematické okruhy: 1. Stručné dějiny logiky a její postavění ve vědě 2. Analýza složených výroků pomocí pravdivostní tabulky 3. Subjekt-predikátová

Více

Základní vlastnosti eukleidovského prostoru

Základní vlastnosti eukleidovského prostoru Kapitola 2 Základní vlastnosti eukleidovského prostoru 2.1 Eukleidovský prostor Eukleidovský prostor a jeho podprostory. Metrické vlastnosti, jako např. kolmost, odchylka, vzdálenost, obsah, objem apod.

Více

12. Determinanty. 12. Determinanty p. 1/25

12. Determinanty. 12. Determinanty p. 1/25 12. Determinanty 12. Determinanty p. 1/25 12. Determinanty p. 2/25 Determinanty 1. Induktivní definice determinantu 2. Determinant a antisymetrické formy 3. Výpočet hodnoty determinantu 4. Determinant

Více

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0.

(ne)závislost. α 1 x 1 + α 2 x 2 + + α n x n. x + ( 1) x Vektoru y = ( 1) y říkáme opačný vektor k vektoru y. x x = 1. x = x = 0. Lineární (ne)závislost [1] Odečítání vektorů, asociativita BI-LIN, zavislost, 3, P. Olšák [2] Místo, abychom psali zdlouhavě: x + ( 1) y, píšeme stručněji x y. Vektoru y = ( 1) y říkáme opačný vektor k

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT) 1. Číselné obory 1.1 Přirozená čísla provádět aritmetické operace s přirozenými čísly rozlišit prvočíslo a

Více

Úvod do informačních technologií

Úvod do informačních technologií Úvod do informačních technologií přednášky Jan Outrata září prosinec 2009 (aktualizace září prosinec 2012) Jan Outrata (KI UP) Úvod do informačních technologií září prosinec 2012 1 / 58 Binární logika

Více

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů...

[1] Vzhledem ke zvolené bázi určujeme souřadnice vektorů... [1] Báze Každý lineární (pod)prostor má svou bázi Vzhledem ke zvolené bázi určujeme souřadnice vektorů... a) base, 4, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l. Viz p.

Více

ZÁKLADNÍ POZNATKY Z MATEMATIKY

ZÁKLADNÍ POZNATKY Z MATEMATIKY ZÁKLADNÍ POZNATKY Z MATEMATIKY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky

Více

Matematika pro informatiku 4

Matematika pro informatiku 4 Matematika pro informatiku 4 Doc. RNDr. Alena Šolcová, Ph. D., KTI FIT ČVUT v Praze 7.března 2011 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Lámejte si hlavu - L1 Určete všechny

Více

Výroková a predikátová logika Výpisky z cvičení Martina Piláta

Výroková a predikátová logika Výpisky z cvičení Martina Piláta Výroková a predikátová logika Výpisky z cvičení Martina Piláta Jan Štětina 1. prosince 2009 Cviˇcení 29.9.2009 Pojem: Sekvence je konečná posloupnost, značíme ji predikátem seq(x). lh(x) je délka sekvence

Více

Vlastní číslo, vektor

Vlastní číslo, vektor [1] Vlastní číslo, vektor motivace: směr přímky, kterou lin. transformace nezmění invariantní podprostory charakteristický polynom báze, vzhledem ke které je matice transformace nejjednodušší podobnost

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Předmět: Matematika. Charakteristika vyučovacího předmětu:

Předmět: Matematika. Charakteristika vyučovacího předmětu: Vzdělávací oblast: Vzdělávací obor: Matematika a její aplikace Matematika a její aplikace Oblast a obor jsou realizovány v povinném předmětu Matematika a ve volitelných předmětech Deskriptivní geometrie

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce

MATEMATIKA B 2. Metodický list č. 1. Název tématického celku: Význam první a druhé derivace pro průběh funkce Metodický list č. 1 Význam první a druhé derivace pro průběh funkce Cíl: V tomto tématickém celku se studenti seznámí s některými základními pojmy a postupy užívanými při vyšetřování průběhu funkcí. Tématický

Více

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky

Ve srovnání s křivkami, kterými jsme se zabývali v Kapitole 5, je plocha matematicky Kapitola 8 Plocha a její obsah 1 efinice plochy Plochu intuitivně chápeme jako útvar v prostoru, který vznikne spojitou deformací části roviny Z geometrického pohledu je plochu možno interpretovat jako

Více

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch

MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch MATEMATIKA 1 pro obory Finance a řízení a Cestovní ruch Marie Hojdarová Jana Krejčová Martina Zámková RNDr. Marie Hojdarová, CSc., RNDr. Jana Krejčová, Ph.D., RNDr. Ing. Martina Zámková, Ph.D. ISBN: 978-80-87035-94-8

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2

Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2 PROJEKT REFIMAT Výstupy ze studia Learning Outcomes v jednotlivých kapitolách předmětu ZMAT2 Tatiana Gavalcová, Pavel Pražák, Iva vojkůvková, Jiří Haviger, 25.5.2011, revize říjen 2012 Téma 1: Množiny

Více

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10.

2. spojitost (7. cvičení) 3. sudost/lichost, periodicita (3. cvičení) 4. první derivace, stacionární body, intervaly monotonie (10. MA. cvičení průběh funkce Lukáš Pospíšil,202 Průběh funkce Pod úkolem vyšetřete průběh funkce budeme rozumět nalezení všech kvalitativních vlastností zadané funkce - tedy bude potřeba zjistit o funkci

Více

CVIČENÍ Z MATEMATIKY I

CVIČENÍ Z MATEMATIKY I Slezská univerzita v Opavě Filozoficko-přírodovědecká fakulta Ústav fyziky CVIČENÍ Z MATEMATIKY I Sbírka příkladů Andrea Kotrlová Opava Obsah Příklady k opakování středoškolské látky. Úprava algebraických

Více

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy

PŘEDMĚT: MATEMATIKA Školní výstupy Učivo Průřezová témata Poznámky, přesahy PŘEDMĚT: MATEMATIKA ROČNÍK: PRVNÍ/KVINTA Školní výstupy Učivo Průřezová témata Poznámky, přesahy Žák určuje číselný obor daného čísla (N, Z, Q, R) a rozlišuje základní vlastnosti číselných oborů pracuje

Více

Obchodní akademie, Náchod, Denisovo nábřeží 673

Obchodní akademie, Náchod, Denisovo nábřeží 673 Název vyučovacího předmětu: MATEMATICKÁ CVIČENÍ (MAC) Obor vzdělání: 63-41-M/02 Obchodní akademie Forma vzdělání: denní Celkový počet vyučovacích hodin za studium: 154 (5 hodin týdně) Platnost: od 1. 9.

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: AD0B01LGR 2015 Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná iff X =

Více

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška

Disjunktivní a konjunktivní lní tvar formule. 2.přednáška Disjunktivní a konjunktivní normáln lní tvar formule 2.přednáška Disjunktivní normáln lní forma Definice Řekneme, že formule ( A ) je v disjunktivním normálním tvaru (formě), zkráceně v DNF, jestliže je

Více

Výroková logika dokazatelnost

Výroková logika dokazatelnost Výroková logika dokazatelnost Ke zjištění, zda formule sémanticky plyne z dané teorie (množiny formulí), máme k dispozici tabulkovou metodu. Velikost tabulky však roste exponenciálně vzhledem k počtu výrokových

Více

Historie matematiky a informatiky Cvičení 2

Historie matematiky a informatiky Cvičení 2 Historie matematiky a informatiky Cvičení 2 Doc. RNDr. Alena Šolcová, Ph. D., KAM, FIT ČVUT v Praze 2014 Evropský sociální fond Investujeme do vaší budoucnosti Alena Šolcová Číselně teoretické funkce (Number-Theoretic

Více

Cvičení z matematiky jednoletý volitelný předmět

Cvičení z matematiky jednoletý volitelný předmět Název předmětu: Zařazení v učebním plánu: Cvičení z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je zaměřen na přípravu studentů gymnázia na společnou část maturitní zkoušky

Více

Rezoluce v predikátové logice

Rezoluce v predikátové logice Rezoluce v predikátové logice Jiří Velebil: X01DML 15. října 2010: Rezoluce v PL 1/16 Základní myšlenky 1 M = ϕ iff X = M { ϕ} nesplnitelná. (M musí být množina sentencí, ϕ sentence.) 2 X nesplnitelná

Více

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé? Jiří Močkoř University of Ostrava Department of Mathematics Institute for Research and Applications of Fuzzy Modeling 30. dubna 22,

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Mirko Navara Centrum strojového vnímání katedra kybernetiky FEL ČVUT Karlovo náměstí, budova G, místnost 104a http://cmp.felk.cvut.cz/ navara/mvt http://cmp.felk.cvut.cz/

Více

Rovnoměrné rozdělení

Rovnoměrné rozdělení Rovnoměrné rozdělení Nejjednodušší pravděpodobnostní rozdělení pro diskrétní náhodnou veličinu. V literatuře se také nazývá jako klasické rozdělení pravděpodobnosti. Náhodná veličina může nabývat n hodnot

Více

1 Mnohočleny a algebraické rovnice

1 Mnohočleny a algebraické rovnice 1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem

Více