Enthalpie, H. Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Teplo, které se uvolňuje za konstantního tlaku.

Rozměr: px
Začít zobrazení ze stránky:

Download "Enthalpie, H. Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Teplo, které se uvolňuje za konstantního tlaku."

Transkript

1 Enthalpie, H U = Q + W Tlak je konstantní- jaké se uvolňuje teplo, koná-li se pouze objemová práce? Q p = U W = U + p V = U + ( pv ) = H H = U + pv nová stavová funkce ENTHALPIE Teplo, které se uvolňuje za konstantního tlaku Standardní slučovací tepla Enthalpie H sluč (H 2 O(g))= -241,8 kj/mol H sluč (H 2 O(l))= -285,8 kj/mol H sluč (H 2 )= 0,0 kj/mol Standardní spalná tepla H spal (C 6 H 12 O 6 )= kj/mol H spal (CH 4 )= -890 kj/mol H spal (H 2 )= -285,8 kj/mol Reakční tepla CH 4 (g) + 2O 2 (g) CO 2 (g) + 2H 2 O(l) 2HN 3 (l) + 2NO(g) H 2 O 2 (l) + 4N 2 (g) H r = -890 kj/mol H r = -896 kj/mol Měrná (nebo molární) skupenská tepla tání, vypařování, sublimace H tání (H 2 O)= 332,4 kj/kg H var (H 2 O)= 2257 kj/kg

2 2. termodynamický zákon nemůžeme vyrobit cyklicky pracující stroj, který by pouze odebíral teplo z rezervoáru a přeměňoval jej na práci, aniž by část tepla nepřešla z teplejšího tělesa na chladnější Důsledky např.: - teplejší těleso se neohřeje o těleso chladnější - plyn rozptýlený z baňky do prostoru se do ní samovolně nevrátí - kolo se neroztočí teplem zahřáté brzdy Entropie, S míra neuspořádanosti systému za rovnováhy dosahuje entropie svého maxima S Q T 2. termodynamický zákon: všechny samovolné procesy probíhají vždy ve směru růstu celkové entropie S celk = S systém + S okolí

3 3. termodynamický zákon Teplota 0 K je nedosažitelná v konečném počtu kroků T = 0 S = 0 T > 0 S > 0 Stav T=0K je referenční stav pro výpočet absolutních entropií Rovnoměrný otáčivý pohyb, kmity, vlny, zvuk

4 Rovnoměrný otáčivý pohyb Konstatní úhlová rychlost ω rychlost přírůstku úhlu otočení polohového vektoru, [ω] = rad.s -1 ϕ t = ωt + ϕ () 0 Poloha jako funkce času r t = rx, ry = r cosϕ t, r sinϕ t = r cos ωt + ϕ0, r sin ωt + ϕ0 () ( ) ( ) ( ) ( ) ( ( ) ( )) Určením polohy v každém čase je pohyb jednoznačně určen rychlost i zrychlení v libovolném čase lze odvodit ϕ 0... počáteční úhel (fáze) = r r v r ϕ v r Rovnoměrný otáčivý pohyb r r r Velikost rychlosti je konstantní v t = ω t ; v = r Vektor rychlosti funkcí času musí působit zrychlení dostředivé zrychlení r a () t r F r r v dv = lim = t' t t dt dostředivá síla: () t a() t = r m = mv r ( t) ( t) () t 2 v( t) = r( t) 2 ( ) ( ) ω F r dost ϕ v r r r v r

5 Rovnoměrný otáčivý pohyb Periodický děj po uplynutí periody T se systém navrátí do libovolného počátečního stavu Rovnoměrný rotační (otáčivý) pohyb Kmitání periodicita v čase Vlnění periodicita v čase i prostoru ϕ ( t + T ) = ϕ ( t ) ω T = + 2π 2π T = 2π / ω Frekvence počet opakování děje za 1s f T doba oběhu, perioda = 1 / T = ω / 2π ω = 2πf [ f ]=1/s=Hz Hertz r r v r ϕ v r Rovnoměrný otáčivý pohyb Jaká je obvodová rychlost otáčení Země kolem vlastní osy na rovníku? Poloměr Země uvažujte R z =6370 km. v = rω ω = 2πf = 2π / T 2 π 2πr v = r = =dráha/čas T T r r v r ϕ v r T = 24 h = s = 86400s v = 3 2π = 463m/s 86400

6 Harmonický kmitavý pohyb Těleso na pružině (model harmonického oscilátoru) Síla úměrná výchylce r r F t = kr t ( ) ( ) m k r ( t) r r () t = max sin( ω t + ϕ0 ); ω = k m r r max... maximální výchylka Pro harmonické kmitání platí stejná rovnice jako pro y-složku v případě rovnoměrného pohybu po kružnici. Obdobné rovnice platí i pro frekvenci a dobu kmitu (periodu). Vlnění všudypřítomné: zvuk, světlo, zemětřesení, vlny na vodě, radiové vlny pohybující se vzruch- přenos energie, příp. informace (k přenosu hmoty nedochází) vlnění vzniká v důsledku výchylky soustavy z rovnovážné polohy- může vzniknout vzruch, který se začne šířit prostorem periodické vlastnosti jak v čase, tak v prostoru interference

7 Druhy vlnění- schopnost přenosu energie skrz vakuum: Elektromagnetické vlnění: fotony šíří se ve vakuu Mechanické vlnění: vlnění, jehož nositelem jsou částice prostředí ve kterém se šířívázáno na látkové prostředí, ve vakuu se nešíří zvuk, vlny na vodě, zemětřesení vlnění je pouze vázáno na hmotu, přenáší však pouze energii Druhy mechanického vlnění: Příčné vlnění: částice prostředí se pohybují kolmo ke směru šíření vlny zvuk v pevných látkách v wave v vlna vlnová délka

8 Druhy mechanického vlnění: Podélné vlnění: částice prostředí se pohybují ve směru šíření vlny zvuk komprese expanze vlnová délka Druhy mechanického vlnění: Vlny na vodě: kombinace podélného a příčného vlnění Molekuly vody se pohybují po kruhových (nebo eliptických) drahách

9 Vlastnosti vlnění Vlnová délka: vzdálenost λ dvou nejbližších bodů, které kmitají se stejnou fází Amplituda: maximální výchylka vlny Amplituda A Vlnová délka λ A λ Vlastnosti vlnění Perioda: Čas T, za který bod na vlně vykoná jeden kmit Rychlost: Vlna se posune o jednu vlnovou délku λ během jedné periody T její rychlost je tedy v = λ / T. λ v = T

10 Vlastnosti vlnění f = frekvence (počet cyklů za sekundu) ω= 2πf dlouhá vlnová délka krátká vlnová délka nízká frekvence vysoká frekvence λ. f = konst.= v v = λ / T Vlastnosti vlnění Rychlost šíření vlnění je konstanta, která závisí pouze na prostředí, ve kterém se šíří. Nezávisí na amplitudě, vlnové délce ani na periodě: λ = v T = v / f = 2π v / ω (T = 2π / ω = 1/ f ) s o vt -s o Pozn.: rychlost kmitající částice zúčastněné ve vlnění: v=a ω sin ωt

11 Příklad: Jaká je vlnová délka zvukové vlny, jetliže její frekvence je 262 Hz (střední C na klavíru)? Rychlost zvuku = 344 m/s λ v f 344ms 262s 1 = = 1 = 1.31m Rovnice postupné vlny kmitání: y( t) = Asinωt výchylka je pouze funkcí času vlnění: kmitání bodu X ve vzdálenosti x od zdroje vlnění je opožděno oproti kmitání zdroje o dobu τ = x/v y 2 v λ x 2πx t x ( x, t) = Asinω( t ) = Asin ωt = Asin π λ = vt 2π T = ω λ λω v = = T 2π veličiny popisující vlnění jsou funkcemi polohy a času T λ

12 Pohyb vlny vs. pohyb částice Pohyb částic t 1 Hmota je přemísťována t 2 v particle částice v částice v částice v částice x2 x 1 v částice x Pohyb vlny Hmota není přemísťována v wave v wave v wave v wave v wave v vlna V obou případech dochází k přenosu energie Interference Jestliže se prostředím šíří vlnění ze dvou nebo více zdrojů, tak v místech, kde se potkávají, dochází k jejich skládáníinterferenci Výsledné vlnění je určeno jednoduchým součtem původních vlnění- skládání (superpozice) vln

13 Vlnění se sčítají: Skládání vlnění y(x,t) = y 1 (x,t) + y 2 (x,t) výsledné vlnění dvě původní,zcela nezávislá vlnění Vlnění mohou vzájemně skrz sebe prostupovat, aniž by došlo ke změně jejich vlastností Interferenční maximum Potkala se vlnění se stejnou fází interferenční maximum

14 Interferenční minimum Potkala se vlnění s opačnou fází interferenční minimum (v našem případě se vlny právě vyrušily) Skládání 2 vlnění o stejné frekvenci červená + modrá

15 Skládání 2 vlnění s různými frekvencemi interferenční maximum interferenční minimum interferenční maximum červená + modrá Skládání vlnění- Fourierova analýza Fourierova věta libovolná periodická funkce s periodou T může být vytvořena superpozicí jednoduchých sinusových funkcí. Tyto funkce mají různé amplitudy a frekvence a tvoří tzv. Fourierovu řadu.

16 Odraz a lom vlnění Odraz: úhel odrazu se rovná úhlu dopadu, α = α α α Lom: sinα = sin β v 1 = v 2 n n 2 1 β Odražený i lomený paprsek zůstává v rovině dopadu Zvuk je mechanické vlnění pružného prostředí vytvořené vibrujícími objekty Šíří se pouze prostřednictvím kmitů hmotného prostředí, neexistuje ve vakuu. Tekutiny: podélné vlnění: střídavé zhušťování a zřeďování částic ve směru šíření Pevné látky: podélné i příčné vlnění

17 Šíření zvuku ve vzduchu vibrující membrána reproduktoru Hustota (tlak) vzduchu atmosférický tlak Zhušťování a Zřeďování Zvuk Periodické zvuky = hudební zvuky, tóny jednoduché tóny harmonický průběh jejich frekvence určuje absolutní výšku tónu složené tóny periodické zvuky složitějšího průběhu např. zvuky hudebních nástrojů, souhlásky Neperiodické zvuky: hluk, šum

18 Slyšitelnost zvuku je závislá na frekvenci: zvuk infrazvuk ultrazvuk 16 Hz Hz < 20 Hz >20000 Hz nejlepší citlivost ucha: 700 Hz 6kHz Rychlost šíření zvuku Fázová rychlost (c) je rychlost šíření zvukové vlny závisí na fyzikálních vlastnostech prostředí (hlavně pružnost, hustota a teplota) ve vzduchu 330 m/s v(vzduch) = (331,7 + 0,61.t) m.s -1 (t= o C) ve vodě 1400 m/s v(mořská voda) (1449,05 + 4,57T-0,0521T 2 + 0,00023T 3 ) m/s v ledu 3200 m/s

19 Intenzita zvuku Množství akustické energie, které projde za sekundu jednotkovou plochou: P I = jednotka: W.m -2 S Lidské ucho: Práh slyšení: I 0 = W.m -2 (pro 1 khz) Práh bolesti: I = 1 W.m -2 (pro 1kHz) dokážeme zachytit zvuky o intenzitách v rozmezí 12 řádů Subjektivní a objektivní veličiny kvantifikující zvuk Subjektivní zvukový vjem vzniká podrážděním smyslových buněk vnitřního ucha dopadem zvukových vln, které jsou objektivní příčinou. Zvyšuje-li se objektivní intenzita tónu geometrickou řadou, vnímá lidské ucho subjektivně zvyšování síly zvuku v řadě aritmetické. Weber-Fechnerův (logaritmický) zákon: INTENZITA VJEMU ROSTE S LOGARITMEM RELATIVNÍ INTENZITY PODNĚTU

20 Hladina intenzity zvuku pro srovnání intenzit dvou zvuků byl zaveden pojem hladina intenzity. Místo lineárního poměru dvou intenzit, který pro slyšitelné zvuky může kolísat v rozmezí (t.j. 12 řádů) byl zaveden logaritmický poměr s jednotkou bel (B). V praxi se však užívá jednotka 10x menší, nazvaná decibel (db). I L( db ) = 10. log 1 decibel = 1dB = belu I I 0 = W.m -2 Intenzita běžných zvuků letadlo sbíječka provoz na ulici řeč šepot šumění listí tikot hodinek práh slyšení 120 db 100 db 80 db 60 db 30 db 20 db 10 db 0 db

21 Hluk = každý nežádoucí, rušivý a škodlivý zvuk, který svým působením vyvolává biologickou reakci člověka nebo jiných živočichů. = každý nežádoucí zvuk, který vyvolá nepříjemný nebo rušivý vjem nebo má škodlivý účinek (... co je pro jednoho příjemným hudebním zážitkem, může být pro jiného rozčilujícím stresem) Hluk- legislativa Zákon č. 258/2000 Sb. O ochraně veřejného zdraví a změně některých souvisejících zákonů Nařízení vlády č. 148/2006 O ochraně zdraví před nepříznivými účinky hluku a vibrací, ze dne Metodický návod Hlavního hygienika pro měření a hodnocení hluku v mimopracovním prostředí (z r.2001) č.j.hem

22 Hladina hlasitosti Hlasitost je subjektivně vnímaná intenzita.ta se může od fyzikální intenzity značně lišit, protože lidské ucho je různě citlivé pro různě vysoké tóny (frekvenční závislost citlivosti ucha). Nejcitlivější je pro frekvenční oblast 700 Hz - 6 khz, směrem k nižším i vyšším frekvencím citlivost klesá. Hladinu hlasitosti nelze vyjádřit v db, jelikož je potřeba různého rozdílu intenzit, proto byla zavedena jednotka, jež respektuje frekvenční závislost v citlivosti sluchového analyzátoru. Touto jednotkou je: fón (Ph) Hladina hlasitosti 1 fón odpovídá hladině intenzity 1 db pro frekvenční tón o frekvenci 1kHz. Prahová křivka slyšitelnosti Schopnost lidského ucha zachytit zvuk je závislá na frekvenci zvuku- konstrukce tzv. prahové křivky slyšitelnosti, kdy práh slyšitelnosti odpovídá hladině hlasitosti 0 fonů. Horní mez ohraničuje práh bolestivosti, kdy ucho již místo zvuku vnímá pocit bolesti.

23 Infrazvuk f<16 Hz - Vzniká např. v točivých strojích (motorech, ventilátorech), při explozích a nadzvukovém třesku, při zemětřeseních. - 7 Hz infrazvuk odpovídající frekvenci mozkových vln - Působí-li při hodnotách nad 130 db (tlakem a vibracemi), bývá spojen s vestibulárními příznaky, poruchami dýchání, motoriky a vidění. - Při hodnotách nad 140 db vyvolává vibraci hrudníku, nad 160 db trhá plicní alveoly. Ultrazvuk f>16000 Hz generován pohyblivými částmi strojů, piezoelektricky Na živé organizmy působí na buněčné úrovni, účinek závisí na intenzitě, frekvenci, délce expozice, citlivosti tkání, celkovém stavu organizmu Využití: měření hloubky moří, homogenizace heterogenních soustav, vyšetřovací médium (lékařství, defektoskopie aj.) 1 až 16 MHz: diagnostika 0,8 až 5 MHz: terapie Vibrodiagnostika

24 Ultrazvuk- vlastnosti ultrazvuková energie se šíří v prostoru podélně ve formě paralelních svazků UZ se odráží na rozhraní dvou prostředí UZ se lomí na rozhraní dvou prostředí, nedopadá-li vlnění na toto rozhraní kolmo průchodem hmotným prostředím UZ postupně ztrácí svou energii a předává ji do okolí ve formě tepla Akustická impedance AI = veličina určující vzájemný vztah ultrazvukového vlnění a prostředí, ve kterém se vlnění šíří AI = součin hustoty prostředí a rychlosti šíření UZ tímto prostředím (Z=ρ. c) ekvivalent k indexu lomu v optice

25 Akustická impedance Ultrasonografie modifikací průmyslové defektoskopie se během půl století vyvinula v nejrozšířenější a nejdostupnější zobrazovací diagnostickou metodu je založena na detekci a obrazovém zpracování amplitudového a frekvenčního obsahu UZ vln, rozptýlených strukturami vyšetřovaných tkání PRINCIP: elektroakustický měnič vyšle do zobrazované tkáně krátký ultrazvukový impuls. Část energie tohoto impulsu se na tkáňových rozhraních odrazí. Velikost odrazu (ECHA) závisí na akustických impedancích zobrazovaných tkání. Odražený signál je měničem zachycen a transformován a obraz.

26 způsoby zobrazení způsob A (amplituda) jednotlivé odrazy jsou zobrazovány na monitoru osciloskopu jako samostatné impulsy na časové ose X způsob B (jas) odrazy jsou na monitoru zobrazovány jako body na časové ose X (stejně jako u zobrazování A) a intenzita odražených vln je interpretována v různých odstínech šedi

27 zobrazení Obraz žlučníku s kamenem

28 Dopplerův jev jev poprvé popsaný Christianem Dopplerem v roce 1842 fyzikální jev, který se projevuje změnou vlnové délky vlnění v závislosti na vzájemném pohybu přijímače a vysílače vlnění. zvuk přijíždějící sanitky je pozorovatelem slyšen jako vyšší, po minutí pozorovatele je zvuk naopak slyšen s nižší vlnovou délkou a frekvencí jeví se jako nižší Dopplerův jev- výpočet f výsledná frekvence f 0 frekvence zdroje v rychlost vlnění (zvuku) v daném prostředí v z rychlost pohybu zdroje rychlost pohybu detektoru v d

29 zjišťování směru a rychlosti proudění krve ultrazvukový měnič vysílá pod úhlem jiným než kolmým ultrazvukové kmity směrem k cévě. krvinky v proudící krvi působí jako odrazná plocha a stávají se tak vlastně pohyblivými zdroji signálu, který je zachycován piezoelektrickým přijímačem kmitočet přijímaného signálu je pak porovnáván s kmitočtem signálu vysílaného a ze zjištěného Dopplerovského posunu je pak vypočítávána rychlost pohybu krve a její směr změna frekvence f: f = v f 2 0 cosα c v rychlost krve (červených krvinek) f 0 frekvence vyslané UZ vlny, c.. rychlost šíření UZ 2 0 v f cosα f = c α úhel tepna UZ vlna (max. 60 )

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí)

Vlnění. vlnění kmitavý pohyb částic se šíří prostředím. přenos energie bez přenosu látky. druhy vlnění: 1. a. mechanické vlnění (v hmotném prostředí) Vlnění vlnění kmitavý pohyb částic se šíří prostředím přenos energie bez přenosu látky Vázané oscilátory druhy vlnění: Druhy vlnění podélné a příčné 1. a. mechanické vlnění (v hmotném prostředí) b. elektromagnetické

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0

ω=2π/t, ω=2πf (rad/s) y=y m sin ωt okamžitá výchylka vliv má počáteční fáze ϕ 0 Kmity základní popis kmitání je periodický pohyb, při kterém těleso pravidelně prochází rovnovážnou polohou mechanický oscilátor zařízení vykonávající kmity Základní veličiny Perioda T [s], frekvence f=1/t

Více

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění

Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Mechanické kmitání a vlnění Kmitání mechanického oscilátoru Mechanické vlnění Zvukové vlnění Kmitání mechanického oscilátoru Kmitavý pohyb Mechanický oscilátor = zařízení, které kmitá bez vnějšího působení

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Vlnění Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Vlnění Vhodíme-li na klidnou vodní hladinu kámen, hladina se jeho dopadem rozkmitá a z místa rozruchu se začnou

Více

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

ZVUKOVÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie ZVUKOVÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Odraz zvuku Vznik ozvěny Dozvuk Několikanásobný odraz Ohyb zvuku Zvuk se dostává za překážky Překážka srovnatelná s vlnovou délkou Pružnost Působení

Více

1.8. Mechanické vlnění

1.8. Mechanické vlnění 1.8. Mechanické vlnění 1. Umět vysvětlit princip vlnivého pohybu.. Umět srovnat a zároveň vysvětlit rozdíl mezi periodickým kmitavým pohybem jednoho bodu s periodickým vlnivým pohybem bodové řady. 3. Znát

Více

Zvuk. 1. základní kmitání. 2. šíření zvuku

Zvuk. 1. základní kmitání. 2. šíření zvuku Zvuk 1. základní kmitání - vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin - podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění elastického

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz. weisz@vsb.cz. E-mail:

Přednáší Kontakt: Ing. Michal WEISZ,Ph. Ph.D. Experimentáln. michal.weisz. weisz@vsb.cz. E-mail: AKUSTICKÁ MĚŘENÍ Přednáší a cvičí: Kontakt: Ing. Michal WEISZ,Ph Ph.D. CPiT pracoviště 9332 Experimentáln lní hluková a klimatizační laboratoř. Druhé poschodí na nové menze kl.: 597 324 303 E-mail: michal.weisz

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas!

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. x m. Ne čas! MECHANICKÉ VLNĚNÍ I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í uveďte rozdíly mezi mechanickým a elektromagnetickým vlněním zdroj mechanického vlnění musí. a to musí být přenášeno vhodným prostředím,

Více

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K

Akustika. Rychlost zvukové vlny v v prostředí s hustotou ρ a modulem objemové pružnosti K zvuk každé mechanické vlnění v látkovém prostředí, které je schopno vyvolat v lidském uchu sluchový vjem akustika zabývá se fyzikálními ději spojenými se vznikem zvukového vlnění, jeho šířením a vnímáním

Více

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie

Obsah. 1 Vznik a druhy vlnění. 2 Interference 3. 5 Akustika 9. 6 Dopplerův jev 12. přenosu energie Obsah 1 Vznik a druhy vlnění 1 2 Interference 3 3 Odraz vlnění. Stojaté vlnění 5 4 Vlnění v izotropním prostředí 7 5 Akustika 9 6 Dopplerův jev 12 1 Vznik a druhy vlnění Mechanické vlnění vzniká v látkách

Více

Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění

Akustické vlnění. Akustická výchylka: - vychýlení objemového elementu prostředí ze střední polohy při vlnění Zvukové (akustické) vlny: Akustické vlnění elastické podélné vlny s frekvencí v intervalu 16Hz-kHz objektivní fyzikální příčina (akustická vlna) vyvolá subjektivní vjem (vnímání zvuku) člověk tyto vlny

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku

4. Akustika. 4.1 Úvod. 4.2 Rychlost zvuku 4. Akustika 4.1 Úvod Fyzikálními ději, které probíhají při vzniku, šíření či vnímání zvuku, se zabývá akustika. Lidské ucho je schopné vnímat zvuky o frekvenčním rozsahu 16 Hz až 16 khz. Mechanické vlnění

Více

Taje lidského sluchu

Taje lidského sluchu Taje lidského sluchu Markéta Kubánková, ČVUT v Praze, Fakulta biomedicínského inženýrství Sluch je jedním z pěti základních lidských smyslů. Zvuk je signál zprostředkovávající informace o okolním světě,

Více

Kmity a mechanické vlnění. neperiodický periodický

Kmity a mechanické vlnění. neperiodický periodický rozdělení časově proměnných pohybů (dějů): Mechanické kmitání neperiodický periodický ne(an)harmonický harmonický vlastní kmity nucené kmity - je pohyb HB (tělesa), při němž HB nepřekročí konečnou vzdálenost

Více

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN

Ultrasonografická diagnostika v medicíně. Daniel Smutek 3. interní klinika 1.LF UK a VFN Ultrasonografická diagnostika v medicíně Daniel Smutek 3. interní klinika 1.LF UK a VFN frekvence 2-15 MHz rychlost šíření vzduch: 330 m.s -1 kost: 1080 m.s -1 měkké tkáně: průměrně 1540 m.s -1 tuk: 1450

Více

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 14 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 14 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 04.05.2014 Ročník: 1. ročník Anotace DUMu: Mechanické vlnění, zvuk Materiály

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

Interference vlnění

Interference vlnění 8 Interference vlnění Umět vysvětlit princip interference Umět vysvětlit pojmy interferenčního maxima a minima 3 Umět vysvětlit vznik stojatého vlnění 4 Znát podobnosti a rozdíly mezi postupnýma stojatým

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední

Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední Jestliže rozkmitáme nějakou částici pevného, kapalného anebo plynného prostředí, tak síly pružnosti přenesou tento kmitavý pohyb na částici sousední a ta jej zase předá svému sousedovi. Částice si tedy

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

Elektromagnetický oscilátor

Elektromagnetický oscilátor Elektromagnetický oscilátor Již jsme poznali kmitání mechanického oscilátoru (závaží na pružině) - potenciální energie pružnosti se přeměňuje na kinetickou energii a naopak. T =2 m k Nejjednodušší elektromagnetický

Více

Akustické vlnění

Akustické vlnění 1.8.3. Akustické vlnění 1. Umět vysvětlit princip vzniku akustického vlnění.. Znát základní rozdělení akustického vlnění podle frekvencí. 3. Znát charakteristické veličiny akustického vlnění a jejich jednotky:

Více

Fyzikální podstata zvuku

Fyzikální podstata zvuku Fyzikální podstata zvuku 1. základní kmitání vzduchem se šíří tlakové vzruchy (vzruchová vlna), zvuk je systémem zhuštěnin a zředěnin podstatou zvuku je kmitání zdroje zvuku a tím způsobené podélné vlnění

Více

(test version, not revised) 16. prosince 2009

(test version, not revised) 16. prosince 2009 Mechanické vlnění (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 16. prosince 2009 Obsah Vznik a druhy vlnění Interference Odraz vlnění. Stojaté vlnění Vlnění v izotropním prostředí Akustika

Více

Druh učebního materiálu Anotace (metodický pokyn, časová náročnost, další pomůcky )

Druh učebního materiálu Anotace (metodický pokyn, časová náročnost, další pomůcky ) Číslo šablony III/2 Číslo materiálu VY_32_INOVACE_F.6.18 Autor Stanislav Mokrý Vytvořeno 8.12.2013 Předmět, ročník Fyzika, 2. ročník Tematický celek Fyzika 2. - Mechanické kmitání a vlnění Téma Zvuk a

Více

Fyzika II, FMMI. 1. Elektrostatické pole

Fyzika II, FMMI. 1. Elektrostatické pole Fyzika II, FMMI 1. Elektrostatické pole 1.1 Jaká je velikost celkového náboje (kladného i záporného), který je obsažen v 5 kg železa? Předpokládejme, že by se tento náboj rovnoměrně rozmístil do dvou malých

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P05 MECHANICKÉ VLNĚNÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH 1 Úvod...5

Více

Zvukové jevy ZVUKOVÉ JEVY. Kmitání a vlnění. VY_32_INOVACE_117.notebook. June 07, 2012

Zvukové jevy ZVUKOVÉ JEVY. Kmitání a vlnění. VY_32_INOVACE_117.notebook. June 07, 2012 Zvukové jevy Základní škola Nový Bor, náměstí Míru 28, okres Česká Lípa, příspěvková organizace e mail: info@zsnamesti.cz; www.zsnamesti.cz; telefon: 487 722 00; fax: 487 722 378 Registrační číslo: CZ..07/.4.00/2.3267

Více

1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno, FYZIKA. Kapitola 8.: Kmitání Vlnění Akustika. Mgr. Lenka Hejduková Ph.D.

1. KŠPA Kladno, s. r. o., Holandská 2531, Kladno,   FYZIKA. Kapitola 8.: Kmitání Vlnění Akustika. Mgr. Lenka Hejduková Ph.D. 1. KŠPA Kladno, s. r. o., Holandská 2531, 272 01 Kladno, www.1kspa.cz FYZIKA Kapitola 8.: Kmitání Vlnění Akustika Mgr. Lenka Hejduková Ph.D. 1 Kmitání periodický pohyb: pohyb který se pravidelně opakuje

Více

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory

DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory DUM označení: VY_32_INOVACE_... Jméno autora výukového materiálu: Ing. Jitka Machková Škola: Základní škola a mateřská škola Josefa Kubálka Všenory Karla Majera 370, 252 31 Všenory. Datum (období) vytvoření:

Více

VY_32_INOVACE_FY.18 ZVUKOVÉ JEVY

VY_32_INOVACE_FY.18 ZVUKOVÉ JEVY VY_32_INOVACE_FY.18 ZVUKOVÉ JEVY Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Jiří Kalous Základní a mateřská škola Bělá nad Radbuzou, 2011 Zvuk je mechanické vlnění v látkovém prostředí,

Více

Fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku sluchem se zabývá akustika.

Fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku sluchem se zabývá akustika. Fyzikálními ději, které jsou spojeny se vznikem zvukového vlnění, jeho šířením a vnímáním zvuku sluchem se zabývá akustika. Zvuk je podélné mechanické vlnění, které vnímáme sluchem. Jeho frekvence je v

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá.

Jednotlivé body pouze kmitají kolem rovnovážných poloh. Tato poloha zůstává stálá. MECHANICKÉ VLNĚNÍ Dosud jsme při studiu uvažovali pouze harmonický pohyb izolované částice (hmotného bodu nebo tělesa), která konala kmitavý pohyb kolem rovnovážné polohy Jestliže takový objekt bude součástí

Více

Izolaní materiály. Šastník Stanislav. 2. týden

Izolaní materiály. Šastník Stanislav. 2. týden Izolaní materiály 2. týden Šastník Stanislav Vysoké uení technické v Brn, Fakulta stavební, Ústav technologie stavebních hmot a dílc, Veveí 95, 602 00 Brno, Tel: +420 5 4114 7507, Fax +420 5 4114 7502,

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

Ultrazvuková defektoskopie. Vypracoval Jan Janský

Ultrazvuková defektoskopie. Vypracoval Jan Janský Ultrazvuková defektoskopie Vypracoval Jan Janský Základní principy použití vysokých akustických frekvencí pro zjištění vlastností máteriálu a vad typické zařízení: generátor/přijímač pulsů snímač zobrazovací

Více

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice

Vysoká škola technická a ekonomická v Českých Budějovicích. Institute of Technology And Business In České Budějovice HLUK A VIBRACE Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů

Více

Radiologická fyzika. Zvuk a ultrazvuk

Radiologická fyzika. Zvuk a ultrazvuk Radiologická fyzika Zvuk a ultrazvuk 1.12.2014 Biofyzikální ústav LF MU Časová střední hodnota Z různých důvodů není zajímavá a mnohdy ani dobře měřitelná okamžitá hodnota fyzikální veličiny F(t), ale

Více

25 - Základy sdělovací techniky

25 - Základy sdělovací techniky 25 - Základy sdělovací techniky a) Zvuk - je mechanické (postupné podélné) vlnění látkového prostředí, které je lidské ucho schopno vnímat. Jeho frekvence je přibližně mezi 16 Hz a 20 khz. Zdroje zvuku

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/02.0012 GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 Vlnění a optika 1. ročník Učební obor: Kuchař číšník Kadeřník 2 mechanické kmitání a vlnění - základní druhy mechanického vlnění a jejich

Více

Vznik a šíření elektromagnetických vln

Vznik a šíření elektromagnetických vln Vznik a šíření elektromagnetických vln Hlavní body Rozšířený Coulombův zákon lektromagnetická vlna ve vakuu Zdroje elektromagnetických vln Přehled elektromagnetických vln Foton vlna nebo částice Fermatův

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTROMAGNETICKÉ KMITÁNÍ A VLNĚNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D18_Z_OPAK_E_Elektromagneticke_kmitani_a_ vlneni_t Člověk a příroda Fyzika Elektromagnetické

Více

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m

Mechanické kmitání. Def: Hertz je frekvence periodického jevu, jehož 1 perioda trvá 1 sekundu. Y m Mehaniké kmitání Periodiký pohyb - harakterizován pravidelným opakováním pohybového stavu tělesa ( kyvadlo, těleso na pružině, píst motoru, struna na kytaře, nohy běžíího člověka ) - nejkratší doba, za

Více

TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC

TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC TEST PRO VÝUKU č. UT 1/1 Všeobecná část QC Otázky - fyzikální základy 1. 25 milionů kmitů za sekundu se dá také vyjádřit jako 25 khz. 2500 khz. 25 MHz. 25000 Hz. 2. Zvukové vlny, jejichž frekvence je nad

Více

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu

Otázky z optiky. Fyzika 4. ročník. Základní vlastnosti, lom, odraz, index lomu Otázky z optiky Základní vlastnosti, lom, odraz, index lomu ) o je světlo z fyzikálního hlediska? Jaké vlnové délky přísluší viditelnému záření? - elektromagnetické záření (viditelné záření) o vlnové délce

Více

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí

Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí Výukové texty pro předmět Měřící technika (KKS/MT) na téma Podklady k principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí Autor: Doc. Ing. Josef Formánek, Ph.D. Podklady k principu

Více

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z.

Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Vlnění, optika mechanické kmitání a vlnění zvukové vlnění elmag. vlny, světlo a jeho šíření zrcadla a čočky, oko druhy elmag. záření, rentgenové z. Mechanické vlnění představte si závaží na pružině, které

Více

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky

Více

Zvukové jevy. Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku

Zvukové jevy. Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku Zvukové jevy Abychom slyšeli jakýkoli zvuk, musí být splněny tři základní podmínky: 1. musí existovat zdroj zvuku 2. musí existovat látkové prostředí, kterým se zvuk šíří - ve vakuu se zvuk nešíří! 3.

Více

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU

MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 6. 2013 Název zpracovaného celku: MECHANICKÉ KMITÁNÍ A VLNĚNÍ VLASTNÍ KMITÁNÍ MECHANICKÉHO OSCILÁTORU Kmitavý pohyb Je periodický pohyb

Více

08 - Optika a Akustika

08 - Optika a Akustika 08 - Optika a Akustika Zvuk je mechanické vlnění v látkovém prostředí, které je schopno vyvolat sluchový vjem. Člověk je schopen vnímat vlnění o frekvenci 16 Hz až 20000 Hz (20kHz). Frekvenci nižší než

Více

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA

Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA Název a číslo materiálu VY_32_INOVACE_ICT_FYZIKA_OPTIKA OPTIKA ZÁKLADNÍ POJMY Optika a její dělení Světlo jako elektromagnetické vlnění Šíření světla Odraz a lom světla Disperze (rozklad) světla OPTIKA

Více

Maturitní témata fyzika

Maturitní témata fyzika Maturitní témata fyzika 1. Kinematika pohybů hmotného bodu - mechanický pohyb a jeho sledování, trajektorie, dráha - rychlost hmotného bodu - rovnoměrný pohyb - zrychlení hmotného bodu - rovnoměrně zrychlený

Více

Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013

Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013 Základní principy ultrazvuku a ovládání UZ přístroje MILAN JELÍNEK ARK, FN U SVATÉ ANNY IVO KŘIKAVA KARIM, FN BRNO 2013 Zdroje www.usra.ca www.neuraxiom.com ÚVOD DO ULTRASONOGRAFIE V OTÁZKÁCH A ODPOVĚDÍCH-Prof.

Více

Daniel Tokar tokardan@fel.cvut.cz

Daniel Tokar tokardan@fel.cvut.cz České vysoké učení technické v Praze Fakulta elektrotechnická Katedra fyziky A6M02FPT Fyzika pro terapii Fyzikální principy, využití v medicíně a terapii Daniel Tokar tokardan@fel.cvut.cz Obsah O čem bude

Více

Šíření a vlastnosti zvuku

Šíření a vlastnosti zvuku NÁZEV ŠKOLY: Základní škola Javorník, okres Jeseník REDIZO: 600 150 585 NÁZEV: VY_32_INOVACE_189_Akustika AUTOR: Ing. Gavlas Miroslav ROČNÍK, DATUM: 8., 17.11.2011 VZDĚL. OBOR, TÉMA: Fyzika ČÍSLO PROJEKTU:

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma

Výukové texty. pro předmět. Měřící technika (KKS/MT) na téma Výukové texty pro předmět Měřící technika (KKS/MT) na téma Tvorba grafické vizualizace principu měření akustických projevů (hluk, akustický tlak, šíření v prostředí Autor: Doc. Ing. Josef Formánek, Ph.D.

Více

Fyzika_9_zápis_6.notebook June 08, 2015. Akustika = část fyziky, která se zabývá ZVUKEM (vznikem zvuku, vlastnostmi zv., šířením zv., lid.

Fyzika_9_zápis_6.notebook June 08, 2015. Akustika = část fyziky, která se zabývá ZVUKEM (vznikem zvuku, vlastnostmi zv., šířením zv., lid. AKUSTIKA Akustika = část fyziky, která se zabývá ZVUKEM (vznikem zvuku, vlastnostmi zv., šířením zv., lid.sluchem) Obory akusky Fyzikální a. Hudební a. Fyziologická a. Stavební a. Elektroakuska VZNIK A

Více

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky

c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky Harmonický kmitavý pohyb a) vysvětlení harmonického kmitavého pohybu b) zápis vztahu pro okamžitou výchylku c) vysvětlení jednotlivých veličin ve vztahu pro okamžitou výchylku, jejich jednotky d) perioda

Více

Fyziologická akustika. fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí

Fyziologická akustika. fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí Fyziologická akustika anatomie: jak to vypadá fyziologická akustika: jak to funguje psychologická akustika: jak to na nás působí hudební akustika: jak dosáhnout libých počitků Anatomie lidského ucha Vnější

Více

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok

Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok Seznam otázek pro zkoušku z biofyziky oboru lékařství pro školní rok 2014-15 Stavba hmoty Elementární částice; Kvantové jevy, vlnové vlastnosti částic; Ionizace, excitace; Struktura el. obalu atomu; Spektrum

Více

Zvuk a jeho vlastnosti

Zvuk a jeho vlastnosti Tematická oblast Zvuk a jeho vlastnosti Datum vytvoření 3. prosince 2012 Ročník Stručný obsah Způsob využití Autor Kód Komunikace hudebního umění se znakovými systémy uměleckých a společenských oborů 1.

Více

Charakteristiky optického záření

Charakteristiky optického záření Fyzika III - Optika Charakteristiky optického záření / 1 Charakteristiky optického záření 1. Spektrální charakteristika vychází se z rovinné harmonické vlny jako elementu elektromagnetického pole : primární

Více

B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ

B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ B2M31SYN SYNTÉZA AUDIO SIGNÁLŮ zima 2016-2017 Roman Čmejla cmejla@fel.cvut.cz B2, místn.525 tel. 224 3522 36 http://sami.fel.cvut.cz/sms/ A2B31SMS - SYNTÉZA MULTIMEDIÁLNÍCH SIGNÁLŮ zima 2015-2016 http://sami.fel.cvut.cz/sms/

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

Jak se měří rychlost toku krve v cévách?

Jak se měří rychlost toku krve v cévách? Jak se měří rychlost toku krve v cévách? Princip této vyšetřovací metody je založen na Dopplerově jevu, který spočívá ve změně frekvence ultrazvukového vlnění při vzájemném pohybu zdroje a detektoru vlnění.

Více

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník

VLNOVÁ OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník VLNOVÁ OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Optika - 3. ročník Vlnová optika Světlo lze chápat také jako elektromagnetické vlnění. Průkopníkem této teorie byl Christian Huyghens. Některé jevy se dají

Více

Zvuk a hluk MGR. ALEŠ PEŘINA, PH. D.

Zvuk a hluk MGR. ALEŠ PEŘINA, PH. D. Zvuk a hluk MGR. ALEŠ PEŘINA, PH. D. Fyziologie slyšení Fyzikální podstata hluku Zvuk mechanické kmitání pružného prostředí Hz (Hertz): počet kmitů za sekundu Frekvenční rozsah slyšení u člověka: 16 Hz

Více

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Ultrazvukové diagnostické přístroje. X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje X31ZLE Základy lékařské elektroniky Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvuková diagnostika v medicíně Ultrazvuková diagnostika diagnostická zobrazovací

Více

Přehled veličin elektrických obvodů

Přehled veličin elektrických obvodů Přehled veličin elektrických obvodů Ing. Martin Černík, Ph.D Projekt ESF CZ.1.7/2.2./28.5 Modernizace didaktických metod a inovace. Elektrický náboj - základní vlastnost některých elementárních částic

Více

I. část - úvod. Iva Petríková

I. část - úvod. Iva Petríková Kmitání mechanických soustav I. část - úvod Iva Petríková Katedra mechaniky, pružnosti a pevnosti Osah Úvod, základní pojmy Počet stupňů volnosti Příklady kmitavého pohyu Periodický pohy Harmonický pohy,

Více

1 Rozdělení mechaniky a její náplň

1 Rozdělení mechaniky a její náplň 1 Rozdělení mechaniky a její náplň Mechanika je nauka o rovnováze a pohybu hmotných útvarů pohybujících se rychlostí podstatně menší, než je rychlost světla (v c). Vlastnosti skutečných hmotných útvarů

Více

Mgr. Aleš Peřina, Ph. D.

Mgr. Aleš Peřina, Ph. D. Mgr. Aleš Peřina, Ph. D. Fyziologie slyšení Fyzikální podstata hluku Zvuk mechanické kmitání pružného prostředí Hz (Hertz): počet kmitů za sekundu Frekvenční rozsah slyšení u člověka: 16 Hz - 16 khz Infrazvuk:

Více

frekvence f (Hz) perioda T = 1/f (s)

frekvence f (Hz) perioda T = 1/f (s) 1.) Periodický pohyb - každý pohyb, který se opakuje v pravidelných intervalech Poet Poet cykl cykl za za sekundu sekundu frekvence f (Hz) perioda T 1/f (s) Doba Doba trvání trvání jednoho jednoho cyklu

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

Měření hlasitosti zvuku. Tematický celek: Zvuk. Úkol:

Měření hlasitosti zvuku. Tematický celek: Zvuk. Úkol: Název: Měření hlasitosti zvuku. Tematický celek: Zvuk. Úkol: 1. Zopakuj si, co je to zvuk a ultrazvuk, jaké jsou jednotky hlasitosti zvuku. 2. Jak funguje zvukový senzor. 3. Navrhni robota pro měření hlasitosti

Více

2. Vlnění. π T. t T. x λ. Machův vlnostroj

2. Vlnění. π T. t T. x λ. Machův vlnostroj 2. Vlnění 2.1 Vlnění zvláštní případ pohybu prostředí Vlnění je pohyb v soustavě velkého počtu částic navzájem vázaných, kdy částice kmitají kolem svých rovnovážných poloh. Druhy vlnění: vlnění příčné

Více

Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz

Ultrazvukové diagnostické přístroje. X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje X31LET Lékařskátechnika Jan Havlík Katedra teorie obvodů xhavlikj@fel.cvut.cz Ultrazvukové diagnostické přístroje 1. Ultrazvuková diagnostika v medicíně 2. Fyzikální

Více

10. Energie a její transformace

10. Energie a její transformace 10. Energie a její transformace Energie je nejdůležitější vlastností hmoty a záření. Je obsažena v každém kousku hmoty i ve světelném paprsku. Je ve vesmíru a všude kolem nás. S energií se setkáváme na

Více

METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN

METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN METROLOGIE VYBRANÝCH KINEMATICKÝCH VELIČIN Milan Prášil Český metrologický institut Laboratoře primární metrologie E-mail: mprasil@cmi.cz Tato prezentace je spolufinancována Evropským sociálním fondem

Více

Laboratorní úloha č. 3 - Kmity I

Laboratorní úloha č. 3 - Kmity I Laboratorní úloha č. 3 - Kmity I Úkoly měření: 1. Seznámení se s měřením na osciloskopu nastavení a měření základních veličin ve fyzice (frekvence, perioda, amplituda, harmonické, neharmonické kmity).

Více

Problematika hluku z větrných elektráren. ČEZ Obnovitelné zdroje s.r.o.

Problematika hluku z větrných elektráren. ČEZ Obnovitelné zdroje s.r.o. Problematika hluku z větrných elektráren ČEZ Obnovitelné zdroje s.r.o. Definice podle legislativy Hlukem se rozumí zvuk, který může být zdraví škodlivý a jehož hygienický limit stanoví prováděcí právní

Více

3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3 Vlny 3.1 Úvod Vlnění můžeme pozorovat například na vodní hladině, hodíme-li do vody kámen. Mechanické vlnění je děj, při kterém se kmitání šíří látkovým prostředím. To znamená, že například zvuk, který

Více

- Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí.

- Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí. P10: NDT metody 3/5 Princip metody - Princip metody spočívá ve využití ultrazvukového vlnění, resp. jeho odrazu od plošných necelistvostí. - Ultrazvukovým vlněním rozumíme mechanické vlnění s frekvencí

Více

Okruhy k maturitní zkoušce z fyziky

Okruhy k maturitní zkoušce z fyziky Okruhy k maturitní zkoušce z fyziky 1. Fyzikální obraz světa - metody zkoumaní fyzikální reality, pojem vztažné soustavy ve fyzice, soustava jednotek SI, skalární a vektorové fyzikální veličiny, fyzikální

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Světlo jako elektromagnetické záření

Světlo jako elektromagnetické záření Světlo jako elektromagnetické záření Základní pojmy: Homogenní prostředí prostředí, jehož dané vlastnosti jsou ve všech místech v prostředí stejné. Izotropní prostředí prostředí, jehož dané vlastnosti

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel

katedra technických zařízení budov, fakulta stavební ČVUT TZ 31: Vzduchotechnika cvičení č.1 Hluk v vzduchotechnice vypracoval: Adamovský Daniel Úvod Legislativa: Nařízení vlády č. 502/2000 Sb o ochraně zdraví před nepříznivými účinky hluku a vibrací + novelizace nařízením vlády č. 88/2004 Sb. ze dne 21. ledna 2004. a) hlukem je každý zvuk, který

Více