2 LITERÁRNÍ PŘEHLED. 2.1 Pšenice Charakteristika plodiny

Rozměr: px
Začít zobrazení ze stránky:

Download "2 LITERÁRNÍ PŘEHLED. 2.1 Pšenice Charakteristika plodiny"

Transkript

1 1 ÚVOD Pšenice (Triticum L.) je jedna z nejstarších kulturních plodin na světě. Byla pěstována již 8000 let př. n. l. V dnešní době patří spolu s rýží a kukuřicí mezi hlavní druhy zajišťující výživu na celém světě. Její zrno má bohaté využití. Největší využití nachází zrno pšenice v průmyslu mlýnskopekárenském, a proto jsou největší požadavky kladeny právě na pekárenskou a pečivárenskou kvalitu. Technologická jakost zrna pšenice je podmíněna zejména složením bílkovinných frakcí zrna a jejich kvalitou. Nejdůležitějšími proteiny, co se týče technologické kvality, jsou zásobní bílkoviny zrna gliadiny a gluteniny, které ovlivňují vlastnosti lepku. Ten má u pšenice, v porovnání s jinými obilninami, výjimečné vlastnosti a to tažnost, pružnost a bobtnavost. Díky tomu, že odrůdy pšenice jsou reprezentovány různými variantami bílkovin, lze tyto bílkoviny využít jako biochemické markery. Nejvýhodnější je využít evolučně nejmladší bílkoviny a to jsou právě zásobní bílkoviny pšenice. Elektroforetickou analýzou gliadinových a gluteninových bílkovin lze odhadnout fenotypové projevy jednotlivých alel gliadinových a gluteninových genů. Pomocí elektroforézy lze tedy odhadnout pekařskou jakost pšenice. Další využití nachází elektroforetická separace bílkovin ve šlechtění, odrůdovém zkušebnictví, v semenářství a v mnoha dalších oborech. Předmětem bakalářské práce bylo zpracování literárního přehledu na téma využití zásobních bílkovin obilky pšenice pro predikci technologické kvality pšenice. 7

2 2 LITERÁRNÍ PŘEHLED 2.1 Pšenice Pšenice obecná je jednou z nejrozšířenějších plodin na světě, ale i u nás. V našich podmínkách je nejvýznamnější a nejrozšířenější obilninou. Zaujímá téměř čtvrtinu orné půdy a polovinu ploch obilnin. Od počátku padesátých let se začala významněji rozšiřovat i do vyšších poloh, kde nahrazuje stále snižované plochy ovsa a žita. Jako nejdůležitější chlebová plodina představuje základní zdroj lidské výživy. Zrno je využíváno k výrobě chleba, pečiva, těstovin, krup a v cukrářství. Pšeničné šroty a otruby jsou významným krmivem pro všechny druhy hospodářských zvířat. Zvyšuje se i význam průmyslového zpracování zrna na škrob a líh Charakteristika plodiny Pšenice je jednou z nejstarších kulturních plodin. Začátky jejího pěstování jsou spojeny se vznikem zemědělství. Archeologické nálezy dokládají pěstování pšenice již od 8. tisíciletí př. n. l., a to v oblasti tzv. úrodného půlměsíce. Nejstarší nálezy pšenic jednozrnky (Triticum monococcum) a dvouzrnky (Triticum dicoccum) byly zjištěny na lokalitě Jericho 8000 př. n. l. Doklady o pěstování pšenice obecné (Triticum aestivum L.) pochází z doby kolem 6000 př. n. l. ( Foltýn et al., 1970). Pšenici lze dělit podle počtu chromozomů do tří skupin: 1. diploidní pšenice se 14 chromozomy (2n=14), 2. tetraploidní pšenice s 28 chromozomy (2n=28), 3. hexaploidní pšenice se 42 chromozomy (2n=42). Z hospodářského hlediska má největší význam Triticum aestivum a Triticum durum. Triticum aestivum má asi 270 poddruhů s velkým množstvím geneticky odlišných kultivarů. 8

3 2.1.2 Vývoj rodu Triticum L. Ve vývoji druhů hraje významnou roli polyploidie. Tímto pojmem se rozumí zvýšení počtu chromozomů v somatických buňkách nad diploidní počet, což je u mnohých kulturních rostlin jeden z nejdůležitějších zdrojů genetické proměnlivosti v evolučním procesu a je hojně využíván také při šlechtění. Ke vzniku polyploidů lze dojít indukovaně v laboratoři pomocí nízkých a vysokých teplot, mechanického poškození pletiva, chemických látek nebo různých typů záření, ale i samovolně v přírodě. Dle Bednáře (1998), se právě spontání polyploidi ve zvýšené míře nacházejí ve velkých nadmořských výškách, v severnějších zeměpisných šířkách a ve vzdálenějších oblastech od základního centra vývoje druhu. Základní chromozomové číslo x, které udává haploidní počet chromozomů, je u pšenice 7 (Bednář a Vyhnánek, 2004). Diploidní kulturní druh pšenice jednozrnka T. monococcum s pluchatými obilkami se vyvinula z planého druhu T. boeoticum od něhož se odvozuje genom A. Genom B vychází ze samovolného křížení jedinců příbuzného rodu Aegilops (2n=14). Pravděpodobně to byly druhy Aegilops speltoides a Aegilops bicornis. Následným zdvojením počtu chromozomů vznikla alotetraploidní planá dvouzrnka T. dicoccoides (2n=28, genom AABB) (Hraška et al., 1989). Dalším vývojem se postupně z plané formy vyvinula forma kulturní T. dicoccum, od níž se odvozují dnešní tetraploidní pšenice (T. durum, T. turgidum, T. polonicum). Vývoj se však nezastavil u tetraploidních forem a vyvinuly se i formy hexaploidní. Ty vznikly pravděpodobně zkřížením dvouzrnky s druhem Aegilops squarrosa (syn. Aegilops tauschii), ten byl donorem geonomu D. Tím vzniklo alohexaploidní Triticum aestivum ssp. spelta a ssp. macha (2=42, genom AABBDD). Dalším vývojem potom vznikla i dnešní měkká pšenice T. aestivum, ssp. vulgare. Goncharov (2002) uvádí odlišný původ geonomu A hexaploidních pšenic. 9

4 Schéma vývoje hexaploidních druhů pšenice (Hraška et al., 1989) je uvedeno níže. Triticum boeoticum Aegilops bicornis Triticum monococcum X Aegilops speltoides genom AA genom BB 2n = 14 2n = 14 Triticum dicoccoides genom AABB 2n = 28 Triticum dicoccum X Aegilops squarrosa genom AABB genom DD 2n = 28 2n = 14 T. durum T. aestivum, ssp. spelta T. turgidum T. aestivum, ssp. macha T. polonicum genom AABBDD T. persicum 2n = 42 mutace přírodní výběr Triticum aestivum, ssp. vulgare genom AABBDD 2n = 42 Ke vzniku pšenice obecné (T. aestivum, ssp. vulgare ) došlo spojením geonomů A, B a D. Existuje i jiný stupeň příbuznosti mezi chromozomy jednotlivých genomů, který se projevuje určitou mírou homologie mezi chromozomy. Tyto se označují jako homeologní. U pšenice obecné se tedy nachází 7 homeologních skupin, z nichž každá má jeden pár chromozomů genomu A, jeden pár genomu B a jeden genomu C (Bednář, 1998): 10

5 1.homologická skupina I., XIV., XVII. 2.homologická skupina II., XIII., XX. 3.homologická skupina III., XII., XVI. 4.homologická skupina IV., VIII., XV. 5.homologická skupina V., IX., XVIII. 6.homologická skupina VI., X., XIX. 7.homologická skupina VII., XI., XXI. Druhy rodu Triticum se mohou křížit s rody: Secale, Aegilops, Agropyron, Haynaldia a Hordeum. Všech 6 rodů má základní počet chromozomů n=7 (Hraška et al., 1989). Rozdělení pšenic podle počtu chromozomů ukazuje tabulka Základní popis druhů Jednotlivé druhy rodu Triticum se výrazně liší, např. morfotypem klasu, pluchatostí obilky apod. Charakteristiku jednotlivých druhů uvádí Petr et al. (1997): Skupina diploidní 1. Pšenice planá jednozrnka Triticum boeoticum: Klas je úzký, plochý a ve zralosti je rozpadavý. Klásky jsou dvoukvěté, ale pouze spodní je plodný, horní zřídka. 2. Pšenice kulturní jednozrnka Triticum monococcum: Klas je poměrně úzký a ve zralosti je rozpadavý. Klásky jsou dvoukvěté, ale obvykle dozrává jedna obilka, která je úzká a sklovitá. Pravděpodobně vznikla jako mutace z plané jednozrnky. Skupina tetraploidní 3. Pšenice planá dvouzrnka Triticum dicoccoides: Klas je dlouze osinatý. Ve zralosti je rozpadavý a lámavý. Klásky jsou 2-3 květé. Dozrávají pouze dvě okoralé, pluchaté obilky. Existuje ozimá i jarní forma. 4. Pšenice dvouzrnka Triticum dicoccum: Klasy jsou husté a při mlácení rozpadavé. Klásky jsou dvoukvěté, osinaté i bezosinné. Obilky jsou úzké a pluchaté. Většinou se jedná o jarní formu. 11

6 5. Pšenice tvrdá Triticum durum: Klas je již nelámavý a dlouze osinatý. Každá osina je většinou delší než klas. Plevy jsou téměř stejně dlouhé jako pluchy. Obilky jsou sklovité, neoblé ale trojhranné s vpadlým klíčkem. Vyznačuje se lepkem vhodným pro výrobu těstovin. 6. Pšenice polská Triticum polonium: Klas je nelámavý a velmi dlouhý až 15 cm. Je krátce osinatý. Plevy jsou dlouhé a stejně dlouhé jako pluchy. Obilka je nahá a velmi dlouhá. Skupina hexaploidní 7. Pšenice špalda Triticum spelta L. : Klas je při výmlatu lámavý, dlouhý a velmi řídký. Klásky jsou spojeny s články klasového vřetene. Mají čtyři kvítky, ale jen dvě obilky, které jsou pevně uzavřeny v pluchách. 8. Pšenice setá Triticum aestivum L., syn. T. sativum, T. vulgare: Klas je nelámavý, osinatý i bezosinný a různě hustý. Plevy a pluchy jsou vejčité, nebo podlouhle vejčitý kýl. Obilky jsou nahé, buclaté a na průřezu oblé. Jedná se o nejvíce pěstovaný druh ve světě (přes 90%). Morfotypy jednotlivých druhů pšenic jsou zobrazeny na obrázku Jakost pšenice Vyjádření jakosti odrůd jednotlivých plodin vychází z obecně akceptovaných ukazatelů, které jsou geneticky podmíněny. Jakost konkrétní odrůdy však může být významně ovlivněna ročníkem, lokalitou, úrovní hnojení dusíkem, výskytem chorob a poléháním ( Pšenice vhodné pro pekařské zpracování (převážně pro výrobu kynutých těst) jsou členěny dle jakosti na skupiny: - Elitní pšenice (E) dříve označované jako velmi dobré, zlepšující. - Kvalitní pšenice (A) dříve označované jako dobré, samostatně zpracovatelné. - Chlebová pšenice (B) dříve označované jako doplňkové, zpracovatelné ve směsi. - Nevhodné pšenice (C) odrůdy nevhodné pro výrobu kynutých těst. 12

7 Systém pro hodnocení pekařské kvality zahrnuje přímá i nepřímá hodnocení, které jsou dle významu rozdělena na hlavní (mající vliv na zařazení odrůdy do jakostní kategorie) a doplňková (sloužící k další specifikaci jakosti odrůdy): Hlavní kritéria: 1. Rapid Mix Test (objemová výtěžnost) 2. Obsah hrubých bílkovin (N x 5,7) 3. Sedimentační test (Zelenyho test) 4. Číslo poklesu 5. Objemová hmotnost 6. Vaznost mouky Doplňková kritéria: 1. Obsah mokrého lepku, koreluje s bobtnáním lepku 2. Farinografické údaje (vývin, stabilita a stupeň změknutí těsta) 3. Obsah popele v zrně pšenice 4. Tvrdost zrna 5. Hmotnost tisíce zrn 6. Výtěžnost mouky T-550 Dle dalšího způsobu využití lze začlenit odrůdy pšenice do těchto čtyř kategorií: pšenice pečivárenské (pro výrobu oplatků, sušenek a krakerů) pšenice pro výrobu těstovin (pšenice tvrdá) pšenice pro speciální použití (výroba škrobu a líhu) krmné pšenice Požadavky pro jakost, dodávání a kontrolu pšenice stanovují normy: ČSN , ČSN

8 2.2 Bílkoviny pšenice Polymorfizmus bílkovin a jeho využití k markerování Organismy jsou reprezentovány různými variantami bílkovin. Dle Bednáře (1998) je polymorfizmus bílkovin označení pro výskyt dvou nebo více typů bílkovinné molekuly u různých jedinců téhož druhu, v různých orgánech téhož jedince nebo v různých částech stejné buňky se stejnou funkcí. Tento jev bílkovinného polymorfizmu je předpokladem využití bílkovin jako genetických markerů. Genetické mechanismy vzniku tohoto polymorfizmu jsou genové mutace, zejména pak duplikace bílkovinných genů a nerovnoměrný crossingover těchto genů. V genomové analýze je důležitý výběr bílkoviny. Pro genetické markerování jsou výhodné evolučně mladší bílkoviny, specifické pro nižší taxon než je druh. Přednosti geneticky polymorfních bílkovin definoval Bednář (1998): Představují prvotní genové produkty a vyznačují se nižší fenotypovou, epigenetickou variabilitou. Vyjadřují specifičnost genotypu v důsledku vazby bílkovinných a dalších genů, podmiňující celkový genotyp. Vyznačují se kodominantní dědičností, v případě enzymů někdy i tvorbou hybridních bílkovin, což obojí umožňuje rozlišení homozygotů a heterozygotů. Bílkovinné geny se často dědí vázány do bloků bílkovinných genů (klasterů), ve kterých prakticky nedochází ke crossing-overům a rekombinacím. Vysoký alelomorfizmus klasterů umožňuje markerovat variabilitu hospodářsky významných vlastností. Klastery jsou polymorfní v důsledku odlišné struktury jednotlivých cistronů a v důsledku odlišného počtu alel. Spolupůsobením odlišného počtu alel a odlišné alelické proměnlivosti je podmíněna vysoká úroveň polymorfizmu klasterů Rozdělení bílkovin pšenice Osborn (1907) bílkoviny pšeničné obilky dělí do čtyř tříd podle rozpustnosti: albuminy rozpustné ve vodě globuliny rozpustné v solích neutrálních kyselin gliadiny rozpustné v % etanolu gluteniny rozpustné v roztocích slabých kyselin a zásad 14

9 Dále můžeme rozdělit bílkoviny endospermu z funkčního hlediska (Bednář a Vyhnánek, 2004): metabolické enzymatické bílkoviny účastnící se metabolických procesů zásobní bílkoviny tvořící pool aminokyselin pro syntézu nových bílkovin v procesu klíčení strukturní bílkoviny, které spolu s polysacharidy a lipidy vytvářejí buněčné membrány endospermu Zásobní bílkoviny Velkou skupinou bílkovin využívaných jako genetické markery jsou zásobní proteiny. U pšenice se nejvíce využívají dvě frakce: gliadiny a gluteniny (Černý a Šašek, 1998). Právě tyto dvě frakce jsou základní stavební jednotkou lepku, který je ukazatelem vhodnosti pšenice k pekařskému zpracování Gliadiny Gliadinové proteiny mají relativní molekulovou hmotnost 30 až více než 100 kda, ale obvykle se pohybuje mezi kda. Obsahují velké množství glutaminu (36 45 %), prolinu (14 30 %) a poněkud méně kyseliny asparagové a glutamové. Dále obsahují neobvykle málo bazických aminokyselin argininu, lyzinu a histidinu. To souvisí s malou rozpustností gliadinů (Velíšek, 1999). Gliadinovou molekulu tvoří jeden polypeptidický řetězec, kde se střídají relativně přímé úseky o vysokém obsahu obsahu aminokyselin prolinu (15 30 %) a kyseliny glutamové (38 45 %) s krátkými spirálami (α- helix), které tvoří přibližně 20 % celkové struktury a do jejichž vnitřní strany jsou obráceny hydrofobní zbytky. Woychik et al. (1961) pomocí škrobové analýzy gliadinů v pufru mléčnanu hlinitého odlišily 4 podjednotky α-, β-, γ- a ω- gliadiny. Pro ω- gliadiny je charakteristický vysoký obsah fenylalaninu. Všechny gliadiny mají velmi nízký obsah lyzinu, který je limitující esenciální aminokyselinou z nutričního hlediska. Také mají nízký obsah histidinu a argininu a spolu s nízkými hladinami volných karboxylových kyselin řadí gliadiny mezi nejméně elektricky nabité známé bílkoviny (Černý a Šašek, 1996). Gliadinové bílkoviny lze použít pro rychlou identifikaci odrůd pšenice ve vzorku semen, a to pomocí elektroforetické analýzy. 15

10 Genetická determinace gliadinů Významným poznatkem studia zásobních bílkovin zrna bylo zjištění že gliadiny, mohou být vhodnými markery hospodářsky významných vlastností pšenice. K dělení gliadinů se využívá elektrického náboje gliadinových molekul. Bílkovinné molekuly jsou v elektrickém poli různě pohyblivé a jednorozměrnou elektroforézou lze zjistit 30 i více gliadinových složek. Wrigley (1972) pomocí dvourozměrné elektroforetické separace odhadl počet gliadinových složek na 40 až 50. Žádná pšenice neobsahuje úplný soubor všech gliadinových složek. Kromě polymorfizmu gliadinů uvnitř druhu pšenice obecné existuje i vnitroodrůdový polymorfizmus. Dle vnitroodrůdového polymorfizmu se odrůdy pšenice dělí na homogenní odrůdy typu linie a heterogenní odrůdy, které mají charakter populací. Pomocí monosomatické analýzy bylo zjištěno, že poměrně vysoký počet gliadinových genů řídících biosyntézu gliadinů, je lokalizováno v chromozomech 1A, 1B, 1D, 6A, 6B a 6D (Sozinov a Poperelja, 1979). Bylo zjištěno kodominantní dědění několika gliadinových složek. Skupina společně vázaných a děděných složek se označuje jako gliadinový blok (klaster). Mezi složkami obvykle nedochází k rekombinacím a proto klaster vystupuje jako fenotypová mendelistická jednotka. Vzhledem ke kodominantnímu způsobu dědičnosti klasterů je možné rozlišit, zda jednotlivé rostliny v generaci F 2 či jednotlivá potomstva následujících generací jsou ve zmíněných gliadinových blocích homozygotní či heterozygotní. Jednotlivé gliadinové bloky označujeme symbolem Gld (syn. Gli), potom následuje číslice a písmeno, které určují chromozom obsahující geny podmiňující syntézu gliadinových složek bloku. Konečná číslice uvedená za genovým znakem A, B a D představuje pořadové číslo alelického gliadinového bloku v rámci alelické série daného bloku. Klasifikace gliadinových bloků umožňuje zapsat elektroforeogram gliadinového spektra v podobě genotypového vzorce (Černý a Šašek, 1996). Nejvýznamnější vlastností gliadinových bloků je, že se nacházejí ve vazbě s některými geny podmiňující hospodářsky významné vlastnosti, jako je např. jakost mouky Gluteniny Gluteniny, které tvoří až 40 % z celkového obsahu bílkovin zrna pšenice, jsou vysokomolekulární zásobní bílkoviny. Jsou rozpustné jen ve slabých roztocích kyselin a zásad. Obrovské molekuly gluteninových agregátů mohou být štěpeny na podjednotky účinkem činidel štěpících disulfidické vazby, jako např. 2-merkaptoethanol, za současného 16

11 působení aniontového detergentu dodecylsulfátu sodného (SDS), a tyto podjednotky mohou být děleny pomocí elektroforézy na polyakrylamidovém gelu v přítomnosti SDS (Hamauzu et al., 1972). Tímto způsobem získáme dvanáct podjednotek gluteninů, které jsou podle konvence rozděleny do tří skupin (Payne et al., 1982): A molekulová hmotnost , , a Da, B molekulová hmotnost , , , Da, C molekulová hmotnost , , , Da. Velká molekulová hmotnost podjednotek skupiny A zapříčiňuje,že jejich elektroforetická pohyblivost je menší než pohyblivost ostatních endospermálních proteinů. Proto jsou mnohem lépe prostudovány než podjednotky skupin B a C. Získání čistých gluteninových preparátů, neobsahující svou elektroforetickou mobilitou interferující proteiny, je gelovou filtrací velice náročné. Z toho důvodu nebyly provedeny rozsáhlé screeningové studie lehčích podjednotek gluteninů. Při chemickém rozboru nalézáme v gluteninech velké množství kyseliny glutamové. Obsah gluteninu v povrchových částech zrna činí 0,96 % sušiny nebo 27,1 % z celkového obsahu. Obsah dusíku v pšeničném gluteninu je 17,89 % a je blízký obsahu dusíku v gliadinu (Hampl et al., 1965). Genetická determinace gluteninů Geny, které řídí syntézu gluteninů s vysokou molekulovou hmotností se nacházejí na chromozomech 1A, 1B a 1D. Ty rozdělil Černý a Šašek (1996) do tří vazbových skupin. Chromozom 1B řídí syntézu celkem 12 odlišných podjednotek, zón spektra A gluteninů. Zóny B1 až B6 se vyznačují pomalou mobilitou a molekulovou hmotností v rozpětí 102 až 92kDa, naopak B7 až B12 jsou rychle migrující a mají molekulovou hmotnost v rozpětí 91 až 84 kda. Chromozom 1D podmiňuje celkem šest různých zón gluteninového spektra. D1 až D3 jsou pomalá spektra a jejich molekulová hmotnost kolísá od 108 do 106 kda. Zóny D4 až D6 jsou opět rychle migrující s molekulovou hmotností od 84 do 78 kda. Geny chromozomu 1A je determinován vznik celkem pěti zón. Dvou slabších s molekulovou hmotností od 103 do 100 kda a A1 až A3 s molekulovou hmotností kolísající mezi 114 a 105,5 kda. Společná manifestace gluteninových alelických podskupin v podobě bloků gluteninových zón, podmíněná vazbou odpovídajících gluteninových genů, je analogická jevu gliadinových bloků (Sozinov a Poperejla, 1979). 17

12 Symbolika užívaná k označení gluteninových lokusů, genů a jejich alelických forem není dosud ustálená. Vejl (1998) používá k označení lokusu Glu, po kterém následuje označení chromozomu a arabskou číslicí označení daného lokusu. Dále je využíváno označení Glt, za ním název příslušného chromozomu, po kterém následuje římská číslice, která označuje daný lokus. Pro šlechtění odrůd pšenice s vysokou pekařskou jakostí jsou významné poznatky o využití specifických gluteninových podjednotek jako selekčních kritérií pekařské jakosti. Výskyt určitých gluteninových genů a jim odpovídajících gluteninových podjednotek s VMH na elektroforetickém spektru je korelován s vyšší či nižší pekařskou jakostí (Černý et al., 1992) Lepek Tvorba lepku je nejvýznamnější vlastností pšeničných bílkovin a jeho význam pro pekařskou technologii spočívá v tom, že napomáhá vytvářet z těsta tenké blanky, které zadržují kvasný plyn, umožňují nakynutí těsta, jeho propečení a pórovitou strukturu pekařského výrobku. Říkáme, že lepek tvoří kostru těsta a pečiva (Dudáš a Pelikán, 1987). Podstatnou část lepku tvoří zásobní bílkoviny, proto se gliadin a glutenin označují jako lepkové bílkoviny, přičemž gliadin je považován za nositele tažnosti, kdežto glutenin pružnosti a bobtnavosti lepku. Vzájemný poměr gliadinu a gluteninu (zhruba 3 : 2) není však jediným faktorem rozhodující o jakosti. Velmi důležitý je chemický charakter stavby lepkové makromolekuly, prostorové uspořádání řetězců a jejich vzájemné propojení vodíkovými a disulfidickými vazbami (Ingr et al., 1993). Dědivost objemu lepku se odhaduje na %, dědivost pružnosti lepku na %, dědivost množství lepku na pouhých %, avšak dědivost celkové jakosti lepku na % (Lelley, 1976) Metody elektroforetické separace bílkovin Nejrozšířenější a běžně používanými technikami separace bílkovin a izoenzymů jsou elektroforetické metody, které jsou založeny na principu různě rychlého pohybu nabitých makromolekul v elektrickém poli. Náboj makromolekuly určuje ph prostředí, ve kterém dělení probíhá. Obecně mohou nabývat bílkoviny, jejichž stavebními jednotkami jsou aminokyseliny obsahující disociovatelné funkční skupiny COO - a NH + 3, v závislosti od ph 18

13 prostředí různě velký kladný či záporný náboj a podle něj se poté v elektrickém poli různě rychle pohybovat (Bednář, 1998). Elektromigrační techniky se dají rozdělit podle různých kritérií (účel, experimentální uspořádání, prostředí apod.). Běžně se rozlišují na tři základní typy (Vyhnánek, 2001): 1. metody pohyblivého rozhraní provádí se v prostředí volného elektrolytu. Roztok vzorku je umístěn v trubici (kapiláře) mezi elektrodové pufry. V elektrickém poli složky začnou migrovat k příslušným elektrodám, avšak dokonalé separace není dosaženo. V čistém stavu je získán pouze nejpohyblivější kation a anion, proto je tato technika používána jen zřídka, a to pro měření pohyblivosti. 2. Zónová elektroforéza zde je vzorek nadávkován jako úzká zóna, ze které se po aplikaci elektrického pole vydělí zóny jednotlivých komponent. Pro zajištění stability takto vzniklých zón existuje několik způsobů, nejčastěji práce ve stabilním prostředí (gelu), kde se rovněž může uplatňovat síťový efekt (Gaál et al., 1980). 3. Metoda ustáleného stavu po jehož dosažení se šířka zón již nemění. Patří sem dvě techniky, a to izoelektrická fokusace a izotachoforéza. Ustálený stav u izoelektrické fokusace znamená zaostření do oblasti s určitou hodnotou ph. U izotachoforézy to znamená migraci všech zón stejnou rychlostí mezi vedoucím a koncovým elektrolytem. Dále můžeme elektroforézy rozdělit podle (Bednář et al., 2002): a) dimenzí jednorozměrná (1D), dvourozměrná (2D); b) uspořádání aparatury vertikální, horizontální, disková, desková; c) použitého nosiče nosičem může být papír, acetylcelulóza, škrobový gel, agar, agaroza, polyakrylamid. Nosič musí splňovat několik základních požadavků: inertnost, reprodukovatelnost přípravy, stabilitu během elektroforézy, barvení a fixace, mechanickou odolnost; d) prostředí kontinuální stejná koncentrace nosiče v gelu, diskontinuální gel je rozdělen na zaostřovací gel o nižší koncentraci a vlastní dělící gel o vyšší koncentraci nosiče. 19

14 K manifestaci signálních gliadinových genů se většinou používají dva postupy elektroforetické separace gliadinů, a to oficiální metodika ISTA (1984) dělení gliadinů na polyakrylamidovém gelu (PAGE) a postup separace gliadinů ve škrobovém gelu (SGE) (Šašek et al., 1989) Porovnání elektroforetické metody PAGE podle ISTA s metodou SGE Metodika ISTA, tj. PAGE má oficiální charakter a je respektována členskými zeměmi této mezinárodní organizace semenářské kontroly. Její výhodou je používání polyakrylamidu jako nosného média, které svou homogenitou zaručuje vysokou opakovatelnost výsledků separace. Nevýhodou této metody je dosud absence genetické interpretace získaných gliadinových elektroforetických spekter. Postup podle ISTA neumožňuje zatím detekci gliadinových genů, alel, markerujících jak jednotlivé vázané znaky, vlastnosti, tak celkovou strukturu odrůdy, či nového šlechtění. Naopak genetická interpretace gliadinových spekter je předností separace gliadinů na škrobovém gelu. Určitým nedostatkem metody škrobové elektroforézy gliadinů je nižší homogenita jednotlivých šarží škrobu, používaného k separaci (Černý a Šašek, 1998). Šašek a Černý (1995) posuzovali citlivost obou porovnávaných postupů separace gliadinů podle stupně gliadinového polymorfizmu u identického souboru odrůd pšenice obecné. Došli k závěru, že obě metody vykazují stejnou citlivost postižení gliadinového polymorfizmu. Zásadní rozdíl mezi oběma postupy elektroforézy gliadinů nespočívá v jejich citlivosti, schopnosti rozpoznávat vnitrodruhový gliadinový polymorfizmus, ale v možnosti genetické interpretace získaných elektroforetických spekter gliadinů Vyhodnocování elektroforeogramů Vyhodnocení elektroforeogramu provádíme na úrovni kvalitativní a kvantitativní. Kvalitativní hodnocení zahrnuje vyjádření pohyblivosti jednotlivých složek bílkovinného systému. Ukázkový elektroforeogram je na obrázku 2. Kvantitativní hodnocení představuje vyhodnocení intenzity zabarvení jednotlivých složek bílkovinného systému. Používá se bodová stupnice od 1 do 5, kde 1 představuje nejnižší intenzitu a 5 nejvyšší intenzitu (Bednář et al., 2002). 20

15 Nejpoužívanější metodou je vyhodnocení relativní pohyblivosti Rp. Také se v literatuře můžeme setkat s názvem REM (relativní elektroforetická mobilita). Tu vypočteme podle vzorce: vzdálenost středu pruhu od startu elektroforézy (mm) REM = X 100 vzdálenost start až cíl elektroforézy (mm) Takto vypočtená pohyblivost se dá znázornit graficky, buďto ručně, nebo s použitím programu. Takovým programem je např. ŽIŽALA, jehož použití prezentují Vyhnánek a Nesvadba (1998). Pro výpočet podobnosti spekter lze využít index identity ii (Vyhnánek et al., 1998), nebo Jaccardův koeficient (Hadačová et al., 1980). 100 x C ii = A + B C A počet pruhů genotypu A, B - počet pruhů genotypu B, C počet pruhů genotypu C. Nově se využívá počítačových programů analýzy obrazu. Programy mohou být různé např. GelManager for Windows (Čurn et al., 1995) nebo BIO-1D software (Vilber Lourmat), ale vlastní postup analýzy je podobný Genetická interpretace elektroforeogramů Při genetické interpretaci elektroforeogramů se u gliadinů využívá grafického znázornění jednotlivých gliadinových bloků dle Metakovskeho (1991) (obr. 3). U gluteninů se využívá grafické znázornění podle Payne a Lawrence (1983) (obr. 4). 2.3 Predikce technologické jakosti pšenic Předpokladem využití gliadinových a gluteninových genů jako markerů pekařské jakosti v konstrukci odrůd pšenic s vyšší pekařskou jakostí je prokázání významných korelací 21

16 mezi zastoupením gliadinových a gluteninových genů a skutečnou jakostí, vyjádřenou výsledkem Rapid Mix Testu, případně Zelenyho testem (Černý a Šašek, 1996) Technologická jakost pšenice Pšenice se jako průmyslová surovina hodnotí podle chování v průběhu technologického procesu a podle jakostí finálních výrobků. Pojem jakost je dosti široký a rozumíme jím souhrn komplexních znaků a vlastností, které by měly uspokojovat stanovené nebo předpokládané potřeby spotřebitelů. Je tedy souhrnem všech charakteristik produktu, ale v praxi se užívá pouze některých charakteristik důležitých jen pro dané použití. Podle způsobu použití pšenice se liší i parametry hodnocení kvality: 1. Pro pekárenské zpracování, tj. převážně pro výrobu kynutých těst. 2. Pro pečivárenské účely zvláštní jakostní požadavky k výrobě keksů, sušenek, oplatek, pizzy a dalšího jemného pečiva. 3. Pro výrobu těstovin převážně odrůdy pšenice tvrdé (Triticum durum L.) k výrobě makaronů, špaget a dalších těstovin, speciálně mleté na mouku semolinu. Požaduje se vysoký obsah tažného, ale tuhého lepku. 4. Pro výrobu škrobu a lihu obilky by měly obsahovat vyšší podíl zkvasitelných cukrů, vznikajících ze škrobu, kterého by mělo být více než 65 % v sušině. 5. Pro krmení tvoří největší podíl využití pšenice. Tyto nepotravinářské odrůdy by měly obsahovat hodně bílkovin (zejména albuminu a globulinu, protože gliadiny a gluteniny jsou ve vodě nerozpustné a monogastrická zvířata je nevyužívají), vyšší obsah esenciálních aminokyselin (lyzinu, kterého obsahují více albuminy a globuliny), vitaminů a minerálních látek (Chloupek, 2000). Nejdůležitější požadavky u pšenice jsou z hlediska pekárenského průmyslu a proto pod pojmem jakost rozumíme především její pekařskou hodnotu Pekařská jakost pšenice Pod pekařskou jakostí pšeničného zrna, či jeho mouky se rozumí schopnost poskytnout pečivo s požadovanou jakostí. Jakostní pečivo se má vyznačovat maximálním objemem, kyprou, pružnou a jemně pórovitou střídkou, vybavenou dostatečně tlustou kůrkou a příjemnou chutí a vůní. Pro dosažení vysoké technologické jakosti je důležitá souhra mnoha faktorů. Nejdůležitější je obsah bílkovin v pšeničném zrně. Z těch se v procesu hnětení vytváří, jako u jediné obiloviny, tzv. lepkový komplex. Ten díky svým viskoelastickým 22

17 vlastnostem má schopnost zadržovat oxid uhličitý, vzniklý v procesu fermentace těsta pekařskými kvasnicemi, z kvasitelných cukrů, z části přítomných, ale především uvolněných amylotickými enzymy, a tak umožnit získání maximálního objemu pečiva (Ingr et al., 1993). Na celkové množství lepkových bílkovin a jejich viskoelastické vlastnosti má vliv jak faktor genotypu, tak i vnější agroekologické podmínky. Pro konstrukci odrůd s vyšší pekařskou jakostí jsou důležité poznatky o významu jednotlivých genetických a negenetických faktorů, podílejících se na vytváření pekařské jakosti. Požadavky na pekárenskou a pečivárenskou pšenici jsou uvedeny v tabulce 2. Geny determinující pekařskou jakost byly zjištěny v chromozomech 2A, 3A, 4A, 5A, 2B, 3B, 4B, 6B, 1D, 2D, 3D a 4D. Geny ovlivňující jakost lepku jsou uloženy v chromozomech 1B, 4B, 7B, 5D a 7D. Množství lepku je geneticky podmiňováno geny uložených v chromozomech 1D a 5D (Lelley, 1976). Zjišťování pekařské jakosti Ke stanovení pekařské jakosti pšenice se používá řada metod. Systém pro hodnocení zahrnuje přímá i nepřímá hodnocení, která jsou podle významu rozdělena na hlavní a doplňková. Hlavní kritéria mají vliv na zařazení odrůdy do jakostní kategorie: Rapid Mix Test (objemová výtěžnost) je to objem pečiva po upečení, podle standardní metodiky a z určeného množství mouky, vyjádřený v cm 3 (Petr, 2001). Z hodnocených znaků je nejdůležitější a ve velké míře odpovídá za zařazení odrůd pšenice do kvalitativních skupin. Obsah hrubých bílkovin (N x 5,7) stanovuje se klasickými metodami (Klejdahl), ale také pomocí analytické techniky, která je přesnější. Sedimentační test (Zelenyho test) vyjadřuje množství i kvalitu bílkovinného komplexu. Pomocí tohoto testu lze vyřadit nevhodné odrůdy či partie zrna s nekvalitním lepkem. Číslo poklesu slouží k posouzení stavu sacharido-amylázového komplexu zrna, který je ovlivňován aktivitou amylotických enzymů, syntetizovaných v zrně v důsledku startu procesu klíčení. Nízké číslo poklesu snižuje pekařskou kvalitu zeslabením pružnosti střídy pečiva. Pečivo má obvykle malý objem, nevhodnou vyvázanost, těsto je lepivé a těžko zpracovatelné (Jurečka a Beneš, 2002). Objemová hmotnost stanovuje se jako hmotnost jednoho litru zrna. 23

18 Vaznost mouky je měřítkem výtěžnosti a stability těsta. Doplňková kritéria slouží k další specifikaci jakosti odrůdy: Obsah mokrého lepku koreluje s bobtnáním lepku. Stanovuje se buď ručním vypíráním, nebo na přístroji Glutomatic. Farinografické údaje (vývin, stabilita a stupeň změknutí těsta) princip hodnocení je založen na měření změn odporu těsta při hnětení. Obsah popele v zrně pšenice. Tvrdost zrna má vztah k výtěžnosti krupic a je nepřímým ukazatelem mlynářské jakosti. Hmotnost tisíce zrn je ovlivňována odrůdou, podmínkami ročníku a čištěním. Výtěžnost mouky T-550 stanovuje se mlecím pokusem a je významným mlynářským kritériem Korelační vztahy mezi markery pekařské jakosti a vlastní pekařskou jakostí Šašek et al. (1987) hodnotili, podle dříve uskutečněných elektroforetických analýz gliadinů odrůd pšenice obecné, dvě skupiny odrůd: 1. odrůdy gliadinově jednoliniové či se zastoupením hlavní gliadinové linie vyšším než 90 %, 2. odrůdy gliadinově víceliniové. U souboru odrůd linií první skupiny byla pekařská jakost stanovena na základě komplexního hodnocení, zahrnujícího sedimentační test, stanovení obsahu bílkovin, stanovení mokrého lepku a jeho bobtnavosti a tažnosti, farinografického a extenzografického testu a pekařské zkoušky u vzorků sklizených v letech 1981 až 1984 na šesti odrůdových zkušebnách ÚKZÚZ. Gliadinové linie druhé skupiny odrůd byly v roce 1983 vysety do polní školky ve VÚRV Praha Ruzyně. Markerovací bodovací hodnoty alelických bloků zón, resp. jednotlivých podjednotek gluteninů s VMH, byly stanoveny podle publikovaných poznatků. 24

19 Celkové bodové hodnoty gliadinových a gluteninových markerů pekařské jakosti hodnocených gliadinových linií odrůd byly korelovány s bodovými hodnotami pekařské jakosti a významnost získaných korelačních vztahů byla hodnocena t-testem. V souboru odrůd první skupiny byla zjištěna vysoce významná korelace (r = 0,88**) mezi bodovou hodnotou tříd pekařské jakosti, vyjádřenou stupnicí 1 9, a sedimentační hodnotou těchto tříd, což potvrzuje oprávněnost použití komplexního bodového hodnocení tříd pekařské jakosti sledovaných odrůd pšenice. U stejného souboru byla zjištěna vysoce významná korelace mezi bodovou hodnotou tříd pekařské jakosti a markerovací hodnotou alelických gliadinových bloků (r = 0,71**), nevýznamná kladná korelace s markerovací hodnotou gluteninových alelických bloků těsně pod hranicí významnosti P = 0,05 ( r = 0,50) a vysoce významná kladná korelace se součtem markerovacích hodnot gliadinových a gluteninových markerů ( r = 0,86**). Získaná maximální hodnota korelačního vztahu mezi hodnotou tříd pekařské jakosti a aditivní hodnotou gliadinových a gluteninových markerů pekařské jakosti svědčí o výhodnosti současného použití obou markerovacích kriterií. Zjištěné poznatky umožňují usuzovat o převážně aditivním působení gliadinových a gluteninových genů. Na druhé straně hodnocení gliadinových a gluteninových markerů odrůd zařazených do nižších tříd pekařské jakosti poukazuje na projev silného potlačení markerovací hodnoty gluteninových markerů vyšší pekařské jakosti 1A1, 1B7+9, 1D5+10, právě tak jako gliadinového markeru vyšší pekařské jakosti 1A7 v přítomnosti gliadinového alelického bloku 1B3 markeru velmi nízké pekařské jakosti. V těchto případech pak neodpovídá očekávaná celková markerovací hodnota skutečně zjištěné nízké pekařské jakosti. Zjištěný vnitroodrůdový polymorfizmus v gliadinech a v podjednotkách gluteninů s VMH umožňuje volbu optimálních genetických zdrojů pekařské jakosti, tedy rodičovských forem pro hybridní programy konstrukce odrůd pšenice s vyšší pekařskou jakostí. Získané výsledky současně prokázaly, že znalost vnitrodruhového polymorfizmu gliadinů a podjednotek gluteninů s VMH mohou napomoci racionalizaci hybridizačních programů, zaměřených na vyšlechtění odrůd pšenice pro pekařské účely, neboť umožňuje výběr vhodných gliadinových a gluteninových linií jako rodičovských forem, poskytující transgresi v pekařské jakosti (Černý a Šašek, 1996) Katalog alelických elektroforetických spekter odrůd pšenice seté Předpokladem účelného využívání registrovaných odrůd pšenice obecné ve šlechtění, semenářství, semenářské kontrole a zejména stanovení odrůdové pravosti a čistoty dávek 25

20 merkantilní pšenice pro potřeby obchodu a zpracovatelského průmyslu je používání vzorových elektroforetických spekter gliadinů a VMH podjednotek gluteninů. K elektroforetickým analýzám gliadinů a VMH podjednotek gluteninů bylo použito referenčních vzorků osiva registrovaných odrůd, poskytnutých ÚKZÚZ v Brně. Ke stanovení elektroforetické skladby gliadinů bylo analyzováno z každého ramšového vzorku jednotlivě po 50 zrnech. Elektroforetická skladba VMH podjednotek gluteninů byla orientačně zjišťována hodnocením po 5 náhodně odebraných zrnech z každého ramšového vzorku (Šašek et al., 2000). Elektroforetická spektra gliadinů byla stanovena modifikovaným způsobem vertikální elektroforézy ve sloupcích škrobového gelu v Al-laktátovém pufru při ph 3,1 se 2 moly močoviny na 1l (Šašek a Sýkorová, 1989). Elektroforetická spektra VMH podjednotek gluteninů byla stanovena modifikovaným postupem vertikální diskontinuální elektroforézy v polyakrylamidovém gelu v přítomnosti dodecylsíranu sodného. Alelické bloky zón či jednotlivé alelické zóny elektroforetického spektra byly zjišťovány podle publikovaného katalogu (Payne et al., 1981). Tento katalog lze najít např. v publikaci Šašek et al. (2000). Tento katalog obsahuje rovněž predikční bodové hodnoty pekařské jakosti jednotlivých alelických gliadinových bloků. Predikční bodové hodnoty pekařské jakosti gluteninů s VMH jsou obsaženy v tabulce Konstrukce genotypů pšenice s vyšší pekařskou jakostí V konstrukci nových genotypů byly dosaženy slibné výsledky spojením elektroforézy bílkovin s klasickou metodou hybridizace. Šašek et al. (1989) ověřovali možnosti záměrné konstrukce genotypů s rekombinovanou sestavou gliadinových a gluteninových genů, podmiňující vyšší pekařskou jakost. V generaci F 3 a opakovaně v F 4 byl uskutečněn výběr homozygotních a homogenních genotypů. Rovněž byla zjišťována sedimentační hodnota jednotlivých genotypů, linií homozygotních a homogenních ve skladbě analyzovaných bílkovin. Mezi průměrnou sedimentační hodnotou sloučených variant genotypů generace F 4 a jejich průměrnou predikční markerovací bodovou hodnotou byl zjištěn statisticky významný kladný korelační vztah (r = 0,98**), potvrzující účinnost konstruování transgresních rekombinantních genotypů pomocí elektroforézy zásobních bílkovin (Černý a Šašek, 1996). 26

21 2.2.5 Charakteristika odrůd pšenice registrovaných v letech V letech 2000 až 2003 bylo v ČR nově registrováno 20 odrůd pšenice obecného ozimého typu a 6 odrůd pšenice obecné jarního typu. Z celkového počtu 20-ti odrůd ozimé pšenice představuje 13 odrůd homogenní odrůdy typu čistých linií. Heterogenní odrůdy s několika gliadinovými liniemi jsou většinou dimorfní. Výskytem tří linií označených A, B, C se vyznačuje odrůda Windsdor. Z šesti odrůd jarní pšenice pouze odrůda Corso je heterogenní ve skladbě gliadinů (Bradová et al., 2004). Charakteristiky jednotlivých odrůd pšenice, registrovaných v letech , jsou uvedeny v tabulce 4. Pekařská jakost VMH gluteninové markery např. Glu 1A1, Glu 1B7+8, Glu 1B7+9 a zejména Glu 1D17+18 a Glu 1D5+10 spolu s gliadinovými markery např. Gli 1B1 a Gli 1B4 značkují lepší pekárenskou jakost (Šašek et al., 2000). Maximální kumulace těchto markerů tj. gliadinových a VMH gluteninových alelických bloků s vyšší predikční bodovou hodnotou byla zjištěna u odrůd Sulamit (TPJ E), Banquet (TPJ A), Batis (TPJ A), Ilias (TPJ A) a linie B odrůdy Karolinum (TPJ A). Analogicky u jarní pšenice byla pozorována kumulace markerů lepší pekárenské jakosti u odrůd Triso (TPJ A) a u hlavní linie A odrůdy Corso (TPJ A). Sekalinový blok Gli 1B3 je markerem špatné pekařské jakosti. Ve sledovaném souboru výskyt tohoto bloku u odrůd Windsdor (Gld linie B), Clarus a Rapsodia odpovídá zařazení zmíněných odrůd do třídy C. Výjimkou je odrůda Karolinum, u které vedlejší gliadinová linie nese blok Gli 1B1 tj. marker lepší pekárenské jakosti. Navíc obě gliadinové linie této odrůdy akumulují všechny tři VMH gluteninové alelické bloky markery lepší pekárenské jakosti. Odrůda proto může být zařazena do třídy pekárenské jakosti A (Bradová et al., 2004). Zimovzdornost Některé gliadinové geny markerují zimovzdornost (Šašek et al., 2000). Přítomnost obou hlavních genů zimovzdornosti tj. Gli 1D5 a Gli 6A3, respektive jim odpovídajících alelických bloků, nebyla zjištěna u žádné z hodnocených odrůd. Alelický blok Gld 6A3 se vyskytl u odrůd ozimé pšenice Batis, Windsdor (linie A), Mladka (linie A, B, C), Trend (linie B), Clarus a Karolinum (linie A, B) (Bradová et al., 2004). 27

22 Odolnost ke rzím Translokace 1B/1R nese gen rezistence ke rzi travní a sekalinový gen Gli 1B3 marker špatné pekárenské jakosti. Černý et al. (1995) pomocí koeficientů asociace zjistil, že odolnost ke rzi travní mohou markerovat rovněž gliadinové geny Gli 1-1A5, 1A3, 1D5 a Gli 6B1. Lokalizace genů odolnosti Sr18 a Sr33 v chromozomu 1D je v souladu s funkcí gliadinového markeru Gli 1D5 jako markeru odolnosti ke rzi travní. Analogicky bylo zjištěno, že lokalizace genu Sr14 v chromozomu 1A a genu odolnosti Sr11 v chromozomu 6B odpovídá markerům odolnosti ke rzi travní. Pomocí koeficientů asociace zmínění autoři zjistili, že blok Gli 6A2 a blok 1D1 markerují odolnost ke rzi pšeničné a bloky 1B4 a 1D9 odolnost ke rzi žluté. Jako příklad lze uvést odrůdu Sulamit, u které gliadinový blok 1-1A3 markeruje odolnost ke rzi travní, blok 1B4 odolnost ke rzi žluté a blok 6A2 odolnost ke rzi pšeničné (Bradová et al., 2004). 28

23 3 ZÁVĚR Gliadiny a podjednotky gluteninů s VMH představují genetické markery, umožňující rychlou a objektivní genetickou identifikaci odrůdy, stanovení její genetické struktury a markerování některých hospodářsky významných hospodářských znaků a vlastností. Pomocí biochemických markerů pekařské jakosti je možno vybírat rodičovské formy do hybridizačních programů a odhadovat četnosti genotypů nesoucích geny žádané vlastnosti ve štěpících populacích F 2 a F 3. K předpovědi kladné transgrese v pekařské jakosti je nutné znát genetické determinace pekařské jakosti rodičovských odrůd, kterou zjistíme pomocí elektroforetické separace gliadinů a VMH podjednotek gluteninů. K jednotlivým alelickým gliadinovým a gluteninovým blokům je přiřazen bodová hodnota predikce pekařské jakosti. Zvýšení pekařské jakosti je možno dosáhnout vhodným křížením dvou rodičovských komponent, které se navzájem doplňují odlišnými gliadinovými a VMH gluteninovými geny lepší pekařské jakosti. Předpokladem účelného využívání registrovaných odrůd pšenice obecné ke šlechtění je znalost katalogů elektroforetických spekter gliadinů a VMH podjednotek gluteninů. Jako zdroje vyšší pekařské jakosti lze použít odrůdy, které obsahují alelické bloky podjednotek gluteninů s VMH Glu 1A1, Glu 1B7+8, Glu 1B7+9 a zejména Glu 1D17+18 a Glu 1D5+10 a bloky gliadinů Gli 1B1 a Gli 1B4. Naopak sekalinový blok Gli 1B3 je markerem špatné pekařské jakosti. V rámci zpracování bakalářské práce formou literární rešerše jsem si vytvořil základní teoretický přehled a v rámci studia získal první praktické zkušenosti o možnostech využití biochemických markerů technologické kvality pšenice. Tím jsem si vytvořil dobré předpoklady pro úspěšné řešení navazující diplomové práce, kde budu mít možnost prohloubit své znalosti a prezentovat výsledky vlastní experimentální práce. 29

24 4 SEZNAM CITOVANÉ A POUŽITÉ LITERATURY BEDNÁŘ, J.: Vybrané kapitoly z genetiky rostlin. MZLU Brno, 1998: 124 s. BEDNÁŘ, J., VYHNÁNEK, T.: Genetika rostlin. MZLU Brno, 2004: 147 s. BEDNÁŘ, J., VYHNÁNEK, T., JEDLIČKOVÁ, D.: Cvičení z genetiky rostlin. MZLU Brno, 1999, 2002: 140 s. BRADOVÁ, J., ŠAŠEK, A., ČERNÝ, J.: Charakteristika odrůd pšenice registrovaných v letech , pomocí genetických bílkovinných markerů. Konference Nové poznatky v pěstování, šlechtění a ochraně rostlin, Brno, 2004: ČERNÝ, J., ŠAŠEK, A.: Bílkovinné signální geny pšenice obecné. ÚZPI Praha, 1996: 62 s. ČERNÝ, J., ŠAŠEK, A.: Metodiky pro zemědělskou praxi. Stanovení odrůdové pravosti a čistoty pšenice a ječmene elektroforézou genetických markerů. ÚZPI Praha, 1998: 60 s. ČERNÝ, J., ŠAŠEK, A., MALÝ, J.: Ověření metody bílkovinných markerů pekařské jakosti pšenice obecné pomocí nových genotypů zkoušených v SOZ v roce Genetika a šlechtění, 28, 1992, 4: ČSN Obiloviny potravinářské Část 2: Pšenice potravinářská ČURN, V., SÁKOVÁ, L., GRAMAN, J.: Elektroforéza isoenzymů a neenzymatických bílkovin. Metody a aplikace v genetice a šlechtění rostlin. Genetika a Šlechtění, 31, 1995, 3: DUDÁŠ, F., PELIKÁN, M.: Využití produktů rostlinné výroby (Návody do cvičení). VŠZ Brno, 1987: 177 s. FOLTÝN, J. et al.: Pšenice. SZN Praha, 1970, 441 s. 30

25 GAÁL, Ö, MEDGYESI, G. A., VERECZKEY, L.: Electrophoresis in the Separation of Biological Macromolecules. Akadémiai Kiadó, Budapest, 1980: 156 s. GONCHAROV, N. P.: Sravnitelnaja genetika pšenicy i ich roditelnej. Siberian University Press, Novosibirsk, 2002: 251 s. HADAČOVÁ, V., TURKOVÁ, V., HADAČ, E., KLOZOVÁ, E.: Comparison of seed proteins of some representatives of the genus Pisum from the point of view of their relationship. Comparison by disc electrophoresis. Biologia Plantarum, 22, 1980, 1: HAMAZAU, Z., ARAKAWA, T., YONEZAWA, D.: Molecular weights of glutenin and gliadin polypeptides estimated by SDS-polyacrylamide gel electrophoresis. Agricological biology and chemistry, 36, 1972: HAMPL, J. et al.: Biochémia rastlín. VŠP Nitra, 1965: 315 s. HRAŠKA, Š. et al.: Špeciálna genetika poľnohospodárskych rastlín. Príroda Bratislava, 1989: 211 s. CHLOUPEK, O.: Genetická diverzita, šlechtění a semenářství. Academia Praha, 2000: 311 s. INGR, I. a kolektiv: Zpracování zemědělských produktů. VŠZ Brno, 1993: 249 s. JUREČKA, D., BENEŠ, F.: Přehled odrůd obilnin ÚKZÚZ Brno, 2002: 159 s. LELLEY, J.: Wheat breeding. Theory and Practise. Akadémiai kiadó Budapest, MARTINEK, P.: K současné situaci v odrůdové skladbě ozimé pšenice. Obilninářské listy, 10, 2002, 3: METAKOVSKY, E. V.: Gliadin Allene identification in common wheat. II. Catalogue of gliadin alleles in common wheat. Journal Genetics and Breeding, 45, 1991:

26 OSBORNE, T. B.: The protein of the wheat kernels. Carnegie Institut Washington D. C., PAYNE, P. I., HOLT, L. M., LAW, C. M.: Structural and genetical studie of the HMW subunits of wheat glutenin. I. Allelic variation in subunits amongst varieties of wheat (Triticum aestivum L.). Theoretical and Applied Genetics, 60, 1981: PAYNE, P. I.et al.: Cereal Research Communications, 10, 1982: 229. In: ČERNÝ, J., ŠAŠEK, A.: Bílkovinné signální geny pšenice obecné, ÚZPI Praha, 1996: 62 s. PAYNE, P. I., LAWRENCE, G. J.: Cereal Research Communications, 11, 1983, 1: 29. In: ČERNÝ, J., ŠAŠEK, A.: Bílkovinné signální geny pšenice obecné, ÚZPI Praha, 1996: 62 s. PETR., J.: Pěstování pšenice podle užitkových směrů. ÚZPI Praha, Zemědělské informace 2001, 20: 40 s. PETR, J., HÚSKA, J. et al.: Speciální produkce rostlinná I. AF ČZU Praha, 1997: 293 s. SOZINOV, A. A., POPERELJA, F. A.: Polymorfizm prolaminov i selekcija. Vestnik Selskochozjajstvennoj Nauki, 10, 1979: ŠAŠEK, A., ČERNÝ, J.: Vzorová elektroforetická spektra gliadinů a gluteninů s VMH odrůd pšenice obecné, pěstovaných v ČR v roce Rostlinná výroba, 41, 1995, 4: ŠAŠEK, A., ČERNÝ, J., SÝKOROVÁ, S., BRADOVÁ, J.: Inovované katalogy bílkovinných genetických markerů pšenice seté a ječmene. ÚZPI Praha, 2000: 62 s. ŠAŠEK, A., ČERNÝ, J., SÝKOROVÁ, S., KUBÁNEK, J.: Construction of wheat genotypes with higher baking duality by electrophoresis of gliadins and HMW subunits of glutenins. Scientia Agriculturae Bohemica, 21, 1989:

27 ŠAŠEK, A., KUBÁNEK, J., ČERNÝ, J.: Gliadin and glutenin polymorphism of some cultivars populations of common wheat (Triticum aestivum L.). Scientia Agriculturae Bohemica, 1987, 2: ŠAŠEK, A., SÝKOROVÁ, S.: Standardization of vertical electrophoresis in starch gel columns and characterization of gliadin allelic blocks. Scientia Agriculturae Bohemica, 21, 1989: VEJL, P.: Využití genetických markerů pro tvorbu dihaploidní pšenice obecné (Triticum aestivum L.). Doktorská disertační práce, ČZU Praha, 1998: 334 s. VELÍŠEK, J.: Chemie Potravin, 1. díl. Ossis, 1999: VYHNÁNEK, T., NESVADBA, Z., CARDOVÁ, M.: Utilization of protein signal genes in wheat (Triticum aestivum L.). MendelNet 98, Brno, 1998: VYHNÁNEK, T., NESVADBA, Z.: Některé výsledky z využití elektroforézy zásobních bílkovin při stanovení odrůdové čistoty u pšenice. 22. pracovní seminář Problematika N- látek v rostlinných produktech, Kroměříž, 1998: VYHNÁNEK, T.: Využití bílkovinných signálních genů pro hodnocení účinnosti gametocidu GENESIS u pšenice (Triticum aestivum L.). Doktorská disertační práce, MZLU Brno: 2001: 80 s. WOYCHIK, J. H., BOUNDY, J. A., DIMLER, R. J.: Starch gel electrophoresis of wheat gluten proteins with concentrated urea. Arch. Biochem. and Biophys., 100, 1961: WRIGLEY, C. W.: Cereal Science Today, 17, 1972, 12, In: ČERNÝ, J., ŠAŠEK, A.: Bílkovinné signální geny pšenice obecné, ÚZPI Praha, 1996: 62 s. Internet 33

28 5 PŘÍLOHY Tabulky: Tab. 1: Druhy rodu pšenice (Triticum L.) podle počtu chromozomů Tab. 2: Požadavky na pekárenskou a pečivárenskou pšenici Tab. 3: Bodové hodnoty pekařské jakosti pšenic jednotlivých alelických bloků s HMW gluteninů Tab. 4: Charakteristika odrůd pšenice registrovaných v letech Obrázky: Obr. 1: Botanické druhy pšenice Obr. 2: Elektroforeogram elektroforézy gliadinů pšenice Obr. 3: Genetická interpretace gliadinů pšenice Obr. 4: Katalog VMH gluteninových podjednotek pšenice 34

Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz. Kvalita pšenice

Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz. Kvalita pšenice Sedláček Tibor SELGEN, a.s. ŠS Stupice, Stupice 24, Sibřina 25084 laborator@selgen.cz Kvalita pšenice Kvalitou suroviny obecně rozumíme vhodnost pro technologické zpracování při výrobě finálního produktu.

Více

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY

Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti ELEKTROMIGRAČNÍ METODY ELEKTROFORÉZA K čemu to je? kritérium čistoty preparátu stanovení molekulové hmotnosti makromolekul stanovení izoelektrického

Více

RELATIONS BETWEEN PROTEIN COMPOSITION AND RHEOLOGICAL CHARACTERISTICS OF WINTER WHEAT FROM ORGANIC AND CONVENTIONAL FARMING

RELATIONS BETWEEN PROTEIN COMPOSITION AND RHEOLOGICAL CHARACTERISTICS OF WINTER WHEAT FROM ORGANIC AND CONVENTIONAL FARMING RELATIONS BETWEEN PROTEIN COMPOSITION AND RHEOLOGICAL CHARACTERISTICS OF WINTER WHEAT FROM ORGANIC AND CONVENTIONAL FARMING VZTAH MEZI SKLADBOU BÍLKOVIN A REOLOGICKÝMI CHARAKTERISTIKAMI OZIMÉ PŠENICE Z

Více

VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ

VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ VYUŽITÍ METOD ELEKTROFORÉZY ZÁSOBNÍCH A ENZYMATICKÝCH BÍLKOVIN K ROZLIŠENÍ REGISTROVANÝCH ODRŮD JARNÍHO JEČMENE A JEJICH UPLATNĚNÍ V SEMENÁŘSTVÍ Use of Storage Protein and Esterase Electrophoresis for

Více

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU

Více

Šlechtění pšenice ozimé v Hrubčicích Ing. Eva Fučíková. Datum: 26. 11. 2014

Šlechtění pšenice ozimé v Hrubčicích Ing. Eva Fučíková. Datum: 26. 11. 2014 Šlechtění pšenice ozimé v Hrubčicích Ing. Eva Fučíková. Datum: 26. 11. 2014 Inovace studijních programů AF a ZF MENDELU směřující k vytvoření mezioborové integrace CZ.1.07/2.2.00/28.0302 Tato prezentace

Více

Kvalita pšenice sklizně 2012 v ČR s bližším pohledem na vybrané odrůdy. Ondřej Jirsa, Ivana Polišenská, Slavoj Palík; Agrotest fyto, s.r.o.

Kvalita pšenice sklizně 2012 v ČR s bližším pohledem na vybrané odrůdy. Ondřej Jirsa, Ivana Polišenská, Slavoj Palík; Agrotest fyto, s.r.o. Kvalita pšenice sklizně 2012 v ČR s bližším pohledem na vybrané odrůdy Ondřej Jirsa, Ivana Polišenská, Slavoj Palík; Agrotest fyto, s.r.o., Kroměříž Souhrn Obsahem příspěvku je vyhodnocení dosažené pekárenské

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí

Více

Genetika kvantitativních znaků

Genetika kvantitativních znaků Genetika kvantitativních znaků Kvantitavní znaky Plynulá variabilita Metrické znaky Hmotnost, výška Dojivost Srstnatost Počet vajíček Velikost vrhu Biochemické parametry (aktivita enzymů) Imunologie Prahové

Více

Odrůdy pšenice seté pro EZ a jejich testování. Alternativní pěstební technologie pro pšenici setou v EZ. Ivana Capouchová, katedra rostlinné výroby

Odrůdy pšenice seté pro EZ a jejich testování. Alternativní pěstební technologie pro pšenici setou v EZ. Ivana Capouchová, katedra rostlinné výroby Odrůdy pšenice seté pro EZ a jejich testování. Alternativní pěstební technologie pro pšenici setou v EZ. Ivana Capouchová, katedra rostlinné výroby Pšenice setá v EZ ČR Pšenice setá nejvýznamnější obilnina

Více

CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION

CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION CLP ANALYSIS OF MOLECULAR MARKERS DIGITAL IMAGE ANALYSIS OF ELECTROPHOEROGRAMS CZECH VERSION DIGITÁLNÍ OBRAZOVÁ ANALÝZA ELEKTROFORETICKÝCH GELŮ *** Vyhodnocování získaných elektroforeogramů: Pro vyhodnocování

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2012 PŠENICE JARNÍ Pšenice jarní patří z pohledu ozimé pšenice a jarního ječmene pouze k doplňkovým plodinám. Její osevní plochy kolísají na

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly

Více

Nauka o dědičnosti a proměnlivosti

Nauka o dědičnosti a proměnlivosti Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2013 PŠENICE JARNÍ Pšenice jarní patří z pohledu ozimé pšenice a jarního ječmene pouze k doplňkovým plodinám. Její osevní plochy kolísají na

Více

MENDELOVSKÁ DĚDIČNOST

MENDELOVSKÁ DĚDIČNOST MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp

Více

Mlýnské výrobky a těstoviny ve školním stravování. doc. Ing. Marie Hrušková, CSc.

Mlýnské výrobky a těstoviny ve školním stravování. doc. Ing. Marie Hrušková, CSc. Mlýnské výrobky a těstoviny ve školním stravování doc. Ing. Marie Hrušková, CSc. Cereální výrobky podle Zákona o potravinách 110/1997 Vyhláška MZe ČR 333/97 Sb. Obsah Rozdělení cereálních výrobků Mlýnské

Více

ZMĚNY JAKOSTNÍCH POŽADAVKŮ NA KRMNOU A POTRAVINÁŘSKOU PŠENICI

ZMĚNY JAKOSTNÍCH POŽADAVKŮ NA KRMNOU A POTRAVINÁŘSKOU PŠENICI ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA Katedra obchodu a financí ZMĚNY JAKOSTNÍCH POŽADAVKŮ NA KRMNOU A POTRAVINÁŘSKOU PŠENICI Teze diplomové práce Vedoucí diplomové práce: Ing.

Více

PŠENICE JARNÍ PŘEHLED ODRŮD Výnos zrna pšenice jarní ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ

PŠENICE JARNÍ PŘEHLED ODRŮD Výnos zrna pšenice jarní ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ PŘEHLED ODRŮD 2015 PŠENICE JARNÍ Sklizňový rok 2014 byl pro jarní pšenici velmi příznivý. Časný nástup jara umožnil setí v ideálním termínu na konci února

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací KBI/GENE: Mgr. Zbyněk Houdek Kvantitativní znak Tyto znaky vykazují plynulou proměnlivost (variabilitu) svého fenotypového projevu. Jsou

Více

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2

Více

Základy genetiky populací

Základy genetiky populací Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém

Více

OBILNINY 2. cvičení ROSTLINNÁ PRODUKCE

OBILNINY 2. cvičení ROSTLINNÁ PRODUKCE OBILNINY 2. cvičení ROSTLINNÁ PRODUKCE Přehled obilnin čeleď: lipnicovité rod: pšenice (obecná, tvrdá, špalda) ječmen žito tritikale žitovec oves kukuřice čirok bér proso rýže dochan klasnatý milička habešská

Více

Cereální chemie a technologie

Cereální chemie a technologie Cereální chemie a technologie doc. Ing. Marie Hrušková, CSc. Ústav sacharidů a cereálií Program výuky Cereální chemie Suroviny a mlýnská technologie Pekařská technologie Trvanlivé pečivo, snack, těstoviny

Více

AGROSALES PORADNÍ KATALOG SEMEN

AGROSALES PORADNÍ KATALOG SEMEN AGROSALES PORADNÍ KATALOG SEMEN Na podzim 2012 AGROSALES s. r. o. Heroltice 65 586 01 JIHLAVA Ing. Jaroslav Hampl Ředitel společnosti mobile +420 725 117 332 fax. +420 567 220 687 e-mail. j.hampl@agrosales.cz

Více

Biologická hodnota krmiv. Biologická hodnota bílkovin

Biologická hodnota krmiv. Biologická hodnota bílkovin Biologická hodnota krmiv Biologická hodnota krmiv je vyjádřena stupněm využití dusíkatých látek organismem zvířete. Čím více dusíku z daného krmiva zvíře asimiluje, a naopak, čím menší množství dusíku

Více

Chromosomy a karyotyp člověka

Chromosomy a karyotyp člověka Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické

Více

Netradiční plodiny s potenciálem zvýšení nutriční hodnoty cereálních výrobků

Netradiční plodiny s potenciálem zvýšení nutriční hodnoty cereálních výrobků Netradiční plodiny s potenciálem zvýšení nutriční hodnoty cereálních výrobků doc. Ing. Marie Hrušková, CSc. Ing. Ivan Švec, Ph.D. Ing. Barbora Babiaková Ing. Michaela Drábková Ing. Kristýna Heroudková

Více

Indikátory pro polní plodiny v rámci výzkumného záměru

Indikátory pro polní plodiny v rámci výzkumného záměru Indikátory pro polní plodiny v rámci výzkumného záměru Výzkumný záměr: Biologické a technologické aspekty udržitelnosti řízených ekosystémů a jejich adaptace na změnu klimatu Studium polních plodin v souvislosti

Více

Označení materiálu: Název materiálu: Tematická oblast: Anotace: Očekávaný výstup: Klíčo č vá v s lova v : Metodika: Obor: Ročník: Autor:

Označení materiálu: Název materiálu: Tematická oblast: Anotace: Očekávaný výstup: Klíčo č vá v s lova v : Metodika: Obor: Ročník: Autor: Označení materiálu: VY_32_INOVACE_VEJPA_POTRAVINY1_10 Název materiálu: Obiloviny Tematická oblast: Potraviny a výživa 1. ročník Anotace: Prezentace slouží k výkladu nového učiva na téma Obiloviny. Očekávaný

Více

Základní genetické pojmy

Základní genetické pojmy Základní genetické pojmy Genetika Věda o dědičnosti a proměnlivosti organismů Používá především pokusné metody (např. křížení). K vyhodnocování používá statistické metody. Variabilita v rámci druhu Francouzský

Více

Minoritní pšenice v ekologickém zemědělství

Minoritní pšenice v ekologickém zemědělství Minoritní pšenice v ekologickém zemědělství Ivana Capouchová Katedra rostlinné výroby Úvodem... Stoupající zájem o tzv. netradiční, maloobjemové, či alternativní plodiny. Zpravidla méně výnosné, avšak

Více

Jihočeská univerzita v Českých Budějovicích Zemědělská fakulta

Jihočeská univerzita v Českých Budějovicích Zemědělská fakulta Jihočeská univerzita v Českých Budějovicích OP Vzdělávání pro konkurenceschopnost CZ.1.072.4.00/12.0045 Koordinátor: Mgr. Martin Šlachta, Ph.D. Metodik: prof. Ing. Jan Frelich, CSc. Finanční manažerka:

Více

Testování Nano-Gro na pšenici ozimé Polsko 2007/2008 (registrační testy IUNG, Pulawy) 1. Metodika

Testování Nano-Gro na pšenici ozimé Polsko 2007/2008 (registrační testy IUNG, Pulawy) 1. Metodika Testování Nano-Gro na pšenici ozimé Polsko 2007/2008 (registrační testy IUNG, Pulawy) Růstový stimulátor Nano-Gro, nanotechnologie vyrobená a dovezená z USA, prošla v letech 2007/2008 mnoho chemickými,

Více

Copyright 2017 Autorské fotografie Všechna práva vyhrazena

Copyright 2017 Autorské fotografie Všechna práva vyhrazena Obilniny Seznam rostlin: čirok dvoubarevný ječmen obecný (Hordeum vulgare) kukuřice setá (Zea mays) oves setý (Avena sativa) pšenice setá (Triticum aestivum) žito seté (Secale cereale) Copyright 2017 Autorské

Více

P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh

P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt

Více

Tato prezentace seznamuje žáky s různými druhy obilovin, jejich složením a využitím ve výživě

Tato prezentace seznamuje žáky s různými druhy obilovin, jejich složením a využitím ve výživě Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělání Vzdělávací obor Tematický okruh Druh učebního materiálu Cílová skupina Anotace Klíčová slova Střední odborná škola Luhačovice

Více

BESTFIBRE 110. Pro pekařské výrobky

BESTFIBRE 110. Pro pekařské výrobky BESTFIBRE 110 Pro pekařské výrobky Inovační rostlinná vláknina Bestfibre 110 pekařské výrobky Fyzikální zpracování (bez chemických látek) Na bázi vybraných frakcí polysacharidů Vlastní technologie společnosti

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ a Komise pro Seznam doporučených odrůd žita ozimého, tritikale ozimého a ovsa pluchatého

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ a Komise pro Seznam doporučených odrůd žita ozimého, tritikale ozimého a ovsa pluchatého ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ a Komise pro Seznam doporučených odrůd žita ozimého, tritikale ozimého a ovsa pluchatého SEZNAM DOPORUČENÝCH ODRŮD 2013 TRITIKALE OZIMÉ Obdobně jako v jiných

Více

DUSÍKATÁ VÝŽIVA JARNÍHO JEČMENE - VÝSLEDKY POKUSŮ V ROCE 2006 NA ÚRODNÝCH PŮDÁCH A MOŽNOSTI DIAGNOSTIKY VÝŽIVNÉHO STAVU

DUSÍKATÁ VÝŽIVA JARNÍHO JEČMENE - VÝSLEDKY POKUSŮ V ROCE 2006 NA ÚRODNÝCH PŮDÁCH A MOŽNOSTI DIAGNOSTIKY VÝŽIVNÉHO STAVU DUSÍKATÁ VÝŽIVA JARNÍHO JEČMENE - VÝSLEDKY POKUSŮ V ROCE 2006 NA ÚRODNÝCH PŮDÁCH A MOŽNOSTI DIAGNOSTIKY VÝŽIVNÉHO STAVU Karel KLEM, Jiří BABUŠNÍK, Eva BAJEROVÁ Agrotest Fyto, s.r.o. Po předplodině ozimé

Více

Genetický polymorfismus

Genetický polymorfismus Genetický polymorfismus Za geneticky polymorfní je považován znak s nejméně dvěma geneticky podmíněnými variantami v jedné populaci, které se nachází v takových frekvencích, že i zřídkavá má frekvenci

Více

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin

laktoferin BSA α S2 -CN α S1 -CN Popis: BSA bovinní sérový albumin, CN kasein, LG- laktoglobulin, LA- laktalbumin Aktivita KA 2340/4-8up Stanovení bílkovin v mléce pomocí SDS PAGE (elektroforéza na polyakrylamidovém gelu s přídavkem dodecyl sulfátu sodného) vypracovala: MVDr. Michaela Králová, Ph.D. Princip: Metoda

Více

Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky

Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická

Více

Využití DNA markerů ve studiu fylogeneze rostlin

Využití DNA markerů ve studiu fylogeneze rostlin Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

Degenerace genetického kódu

Degenerace genetického kódu AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Název aktivity. Číslo vzdělávacího materiálu OBILOVINY

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT. Název aktivity. Číslo vzdělávacího materiálu OBILOVINY Název projektu Registrační číslo projektu Název aktivity Název vzdělávacího materiálu Číslo vzdělávacího materiálu Jméno autora Název školy Moderní škola CZ.1.07/1.5.00/34.0526 III/2 Inovace a zkvalitnění

Více

Hardy-Weinbergův zákon - cvičení

Hardy-Weinbergův zákon - cvičení Genetika a šlechtění lesních dřevin Hardy-Weinbergův zákon - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Hodnocení kvality odrůd ječmene pro registraci a doporučování

Hodnocení kvality odrůd ječmene pro registraci a doporučování Hodnocení kvality odrůd ječmene pro registraci a doporučování Vratislav PSOTA Výzkumný ústav pivovarský a sladařský, a. s. (psota@brno.beerresearch.cz) 2 Co je to sladování? Sladování je komerční využití

Více

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ Komise pro Seznam doporučených odrůd pšenice SEZNAM DOPORUČENÝCH ODRŮD 2018 PŠENICE OZIMÁ

ÚSTŘEDNÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚDĚLSKÝ Komise pro Seznam doporučených odrůd pšenice SEZNAM DOPORUČENÝCH ODRŮD 2018 PŠENICE OZIMÁ ÚSTŘENÍ KONTROLNÍ A ZKUŠEBNÍ ÚSTAV ZEMĚĚLSKÝ Komise pro Seznam doporučených odrůd pšenice SEZNAM OPORUČENÝCH ORŮ 218 PŠENICE OZIMÁ V České republice, obdobně jako v jiných zemích Evropské unie, jsou vytvářeny

Více

EFFECT OF PROTEIN COMPOSITION ON TECHNOLOGICAL QUALITY OF WHEAT IN RELATION TO DIFFERENT WAYS OF UTILIZATION

EFFECT OF PROTEIN COMPOSITION ON TECHNOLOGICAL QUALITY OF WHEAT IN RELATION TO DIFFERENT WAYS OF UTILIZATION EFFECT OF PROTEIN COMPOSITION ON TECHNOLOGICAL QUALITY OF WHEAT IN RELATION TO DIFFERENT WAYS OF UTILIZATION VLIV SKLADBY BÍLKOVIN NA TECHNOLOGICKOU KVALITU PŠENICE S OHLEDEM NA RŮZNÉ SMĚRY VYUŽITÍ Krejčířová

Více

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová

Struktura proteinů. - testík na procvičení. Vladimíra Kvasnicová Struktura proteinů - testík na procvičení Vladimíra Kvasnicová Mezi proteinogenní aminokyseliny patří a) kyselina asparagová b) kyselina glutarová c) kyselina acetoctová d) kyselina glutamová Mezi proteinogenní

Více

Vyhledávání a charakteristika genů zodpovědných za modré zabarvení obilky pšenice seté (Triticum aestivum L.)

Vyhledávání a charakteristika genů zodpovědných za modré zabarvení obilky pšenice seté (Triticum aestivum L.) Předběžná oponentura disertační práce Vyhledávání a charakteristika genů zodpovědných za modré zabarvení obilky pšenice seté (Triticum aestivum L.) Školitel: Prof. RNDr. Ladislav Havel, CSc. Doktorandka:

Více

CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE

CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE CHARACTERISTICS OF WHEAT GENOTYPES USING HIGH MOLECULAR WEIGHT SUBUNITS GLUTENIN ALLELE CHARAKTERISTIKA GENOTYPŮ PŠENICE POMOCÍ ALEL VYSOKOMOLEKULÁRNÍCH PODJEDNOTEK GLUTENINŮ Kocourková Z., Vejl P. Katedra

Více

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing.

Výzkumný ústav rostlinné výroby Praha Ruzyně. Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602. Autor: Ing. Výzkumný ústav rostlinné výroby Praha Ruzyně Optimalizovaná metodika SDS-PAGE pro analýzu LMW podjednotek gluteninů pšenice Metodika byla vypracována jako výstup výzkumného záměru MZe č. 0002700602 Autor:

Více

Aminokyseliny, peptidy a bílkoviny

Aminokyseliny, peptidy a bílkoviny Aminokyseliny, peptidy a bílkoviny Dělení aminokyselin Z hlediska obsahu v živé hmotě Z hlediska významu ve výživě Z chemického hlediska Z hlediska rozpustnosti Dělení aminokyselin Z hlediska obsahu v

Více

Důsledky selekce v populaci - cvičení

Důsledky selekce v populaci - cvičení Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován

Více

Aminokyselinový a bílkovinný profil odrůd potravinářské pšenice pěstované v ČR. Ing. Lenka Nenutilová

Aminokyselinový a bílkovinný profil odrůd potravinářské pšenice pěstované v ČR. Ing. Lenka Nenutilová Aminokyselinový a bílkovinný profil odrůd potravinářské pšenice pěstované v ČR Ing. Lenka Nenutilová Diplomová práce 2013 ABSTRAKT Teoretická část diplomové práce se zabývá charakteristikou pšenice

Více

ANALYTICKÉ ZKUŠEBNICTVÍ

ANALYTICKÉ ZKUŠEBNICTVÍ Ústřední kontrolní a zkušební ústav zemědělský ANALYTICKÉ ZKUŠEBNICTVÍ DEN ZEMĚDĚLSKÉHO ZKUŠEBNICTVÍ, LÍPA, 12.7.2012 Základní legislativa Zákon č. 147/2002 Sb. ze dne 20. března 2002 o Ústředním kontrolním

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

HYGIENA A TECHNOLOGIE VEGETABILNÍCH PRODUKTŮ

HYGIENA A TECHNOLOGIE VEGETABILNÍCH PRODUKTŮ VETERINÁRNÍ A FARMACEUTICKÁ UNIVERZITA BRNO FAKULTA VETERINÁRNÍ HYGIENY A EKOLOGIE Ústav vegetabilních potravin HYGIENA A TECHNOLOGIE VEGETABILNÍCH PRODUKTŮ Hygiena a technologie mlýnských obilných výrobků,

Více

Crossing-over. over. synaptonemální komplex

Crossing-over. over. synaptonemální komplex Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových

Více

Genotypy absolutní frekvence relativní frekvence

Genotypy absolutní frekvence relativní frekvence Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci

Více

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek

IZOLACE, SEPARACE A DETEKCE PROTEINŮ I. Vlasta Němcová, Michael Jelínek, Jan Šrámek IZOLACE, SEPARACE A DETEKCE PROTEINŮ I Vlasta Němcová, Michael Jelínek, Jan Šrámek Studium aktinu, mikrofilamentární složky cytoskeletu pomocí dvou metod: detekce přímo v buňkách - fluorescenční barvení

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Tradice šlechtění šlechtění zlepšování pěstitelsky, technologicky a spotřebitelsky významných vlastností

Více

Hodnocení kvality vybraných odrůd pšenice ozimé na základě reologických analýz. Bc. Zuzana Kyseláková DiS.

Hodnocení kvality vybraných odrůd pšenice ozimé na základě reologických analýz. Bc. Zuzana Kyseláková DiS. Hodnocení kvality vybraných odrůd pšenice ozimé na základě reologických analýz Bc. Zuzana Kyseláková DiS. Diplomová práce 2011 Příjmení a jméno:. Obor:. P R O H L Á Š E N Í Prohlašuji, že beru na vědomí,

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.4.00/21.3149 Šablona: V/2 č. materiálu: Jméno autora: VY_52_INOVACE_018 Irena Prexlová Třída/ročník: IV.(4.)

Více

Potravinářské a biochemické technologie

Potravinářské a biochemické technologie Potravinářské a biochemické technologie část Technologie cukru P.Kadlec, E. Šárka - PTB-cukr 1 P.Kadlec, E. Šárka - PTB-cukr 2 VÝROBA CUKRU V ČR A VE SVĚTĚ Počátky průmyslové výroby cukru u nás - rok 1831

Více

Selekce v populaci a její důsledky

Selekce v populaci a její důsledky Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Genetická diverzita masného skotu v ČR

Genetická diverzita masného skotu v ČR Genetická diverzita masného skotu v ČR Mgr. Jan Říha Výzkumný ústav pro chov skotu, s.r.o. Ing. Irena Vrtková 26. listopadu 2009 Genetická diverzita skotu pojem diverzity Genom skotu 30 chromozomu, genetická

Více

SLEDOVÁNÍ VLIVU PŘÍDAVKŮ

SLEDOVÁNÍ VLIVU PŘÍDAVKŮ MARCELA SLUKOVÁ, JOSEF PŘÍHODA, FRANTIŠEK SMRŽ: SLEDOVÁNÍ VLIVU PŘÍDAVKŮ SUCHÝCH KVASŮ NA VLASTNOSTI MOUK Tradiční využívání kvasu a kvásku ke kypření těsta bylo v historii mnohem starší než využívání

Více

Raná odrůda nejranější v základním sortimentu v ČR

Raná odrůda nejranější v základním sortimentu v ČR novinka pšenice ozimá Judita Raná pekařská kvalita A Registrace: ČR 2016, SR 2016 Nová raná odrůda hrubčická výnosem i E - A parametry vyniká Vynikající a stabilní potravinářská kvalita - Kvalita A v registračních

Více

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13

OBSAH 1 ÚVOD... 7. 1.1 Výrobek a materiál... 7 1.2 Přehled a klasifikace materiálů pro výrobu... 8 2 ZDROJE DŘEVA... 13 OBSAH 1 ÚVOD................................................. 7 1.1 Výrobek a materiál........................................ 7 1.2 Přehled a klasifikace materiálů pro výrobu..................... 8 2

Více

GENIUS E+ Ozimá pšenice. Odrůda v nejvyšší pekařské kvalitě E+. Přednosti: Pěstování: Zkrácený profil:

GENIUS E+ Ozimá pšenice. Odrůda v nejvyšší pekařské kvalitě E+. Přednosti: Pěstování: Zkrácený profil: Přednosti: Mimořádná pekařská kvalita Vysoký výnos kvalitního zrna Zimovzdornost a mrazuvzdornost Vysoká tolerance k různým půdně-klimatickým podmínkám Specialista na pozdní setí Pěstování: POPIS ODRŮDY

Více

Vliv pěstebních postupů na výživovou hodnotu potravin doc. Ing. Lenka Kouřimská, Ph.D.

Vliv pěstebních postupů na výživovou hodnotu potravin doc. Ing. Lenka Kouřimská, Ph.D. Vliv pěstebních postupů na výživovou hodnotu potravin doc. Ing. Lenka Kouřimská, Ph.D. Katedra kvality zemědělských produktů, Česká zemědělská univerzita v Praze Produkční systémy Konvenční Integrované

Více

Cereální chemie od klasu ke kvasu až k chlebu a pečivu. http://www.vscht.cz/

Cereální chemie od klasu ke kvasu až k chlebu a pečivu. http://www.vscht.cz/ Cereální chemie od klasu ke kvasu až k chlebu a pečivu http://www.vscht.cz/ Vysoká škola chemicko-technologická v Praze Fakulta potravinářské a biochemické technologie Ústav sacharidů a cereálií CEREÁLNÍ

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)

Více

Metody studia historie populací. Metody studia historie populací

Metody studia historie populací. Metody studia historie populací 1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně

Více

Elektromigrační metody

Elektromigrační metody Elektromigrační metody Princip: molekuly nesoucí náboj se pohybují ve stejnosměrném elektrickém Arne Tiselius rozdělil proteiny krevního séra na základě jejich rozdílných rychlostí pohybu v elektrickém

Více

Pracovní list č. 1 téma: Úvod do rostlinné produkce

Pracovní list č. 1 téma: Úvod do rostlinné produkce Pracovní list č. 1 téma: Úvod do rostlinné produkce Obsah tématu: 1) Hlavní cíl rostlinné výroby 2) Rozdělení kulturních rostlin dle vlastností sklízených produktů s přihlédnutím k postupům při jejich

Více

Polní den ÚKZÚZ. Užitná hodnota odrůd. ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík Lípa,

Polní den ÚKZÚZ. Užitná hodnota odrůd. ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík Lípa, Polní den ÚKZÚZ Lípa, 18.6.2015 Užitná hodnota odrůd ÚKZÚZ, Národní odrůdový úřad Tomáš Mezlík tomas.mezlik@ukzuz.cz Národní odrůdový úřad Registrace odrůd zkoušky odlišnosti, uniformity a stálosti, zkoušky

Více

Požadavky na množitelské porosty vybraných plodin a jejich přehlídky. Ing. Jaroslav Schenk

Požadavky na množitelské porosty vybraných plodin a jejich přehlídky. Ing. Jaroslav Schenk Požadavky na množitelské porosty vybraných plodin a jejich přehlídky Ing. Jaroslav Schenk Přehled současné legislativy Zákon č. 219/2003 Sb., o uvádění do oběhu osiva a sadby pěstovaných rostlin a o změně

Více

Kroměříž, soutěže technologií 2018

Kroměříž, soutěže technologií 2018 Kroměříž, soutěže technologií 2018 Vyhodnocení kvality pšenice Celkem bylo v souboru Soutěže pěstebních technologií 2018 hodnoceno na kvalitu 63 variant pšenice, z toho 62 pšenice seté (Triticum aestivum)

Více

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií

Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským

Více

Nově registrované odrůdy (2015) Pšenice setá ozimá

Nově registrované odrůdy (2015) Pšenice setá ozimá 1 / 9 Nově registrované odrůdy (2015) Pšenice setá ozimá Balitus Balitus je pekařská poloraná odrůda. Rostliny středně vysoké až nízké, odolné proti poléhání. Zrno středně velké. Středně odolná až odolná

Více

Geny p řevážně nepůsobí izolovan ě izolovan ale, v kontextu s okolním prostředím (vnitřním i vnějším) ě a v souladu souladu s ostatními g eny geny.

Geny p řevážně nepůsobí izolovan ě izolovan ale, v kontextu s okolním prostředím (vnitřním i vnějším) ě a v souladu souladu s ostatními g eny geny. Genové interakce Geny převážně nepůsobí izolovaně, ale v kontextu s okolním prostředím (vnitřním i vnějším) a v souladu s ostatními geny. Genové interakce -intraalelické -interalelické A a intraalelické

Více

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince Genetika Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století DĚDIČNOST Schopnost

Více

Základní pravidla dědičnosti

Základní pravidla dědičnosti Mendelova genetika v příkladech Základní pravidla dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Mendelovy zákony dědičnosti

Více

Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita

Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství

Více

VLIV DÁVKY A FORMY DUSÍKATÉ VÝŽIVY NA VÝNOS A OBSAH DUSÍKATÝCH LÁTEK V ZRNU

VLIV DÁVKY A FORMY DUSÍKATÉ VÝŽIVY NA VÝNOS A OBSAH DUSÍKATÝCH LÁTEK V ZRNU Karel KLEM Agrotest fyto, s.r.o. VLIV DÁVKY A FORMY DUSÍKATÉ VÝŽIVY NA VÝNOS A OBSAH DUSÍKATÝCH LÁTEK V ZRNU Materiál a metodika V lokalitě s nižší půdní úrodností (hlinitopísčitá půda s nízkým obsahem

Více

Sněti rodu Tilletia spp. Ing. Barbora Dobiášová ÚKZÚZ Odbor osiv a sadby

Sněti rodu Tilletia spp. Ing. Barbora Dobiášová ÚKZÚZ Odbor osiv a sadby Sněti rodu Tilletia spp. Ing. Barbora Dobiášová ÚKZÚZ Odbor osiv a sadby Tilletia spp. V ČR se vyskytují nejčastějidva druhy tohoto rodu: Sněť zakrslá - Tilletia controversa Sněť mazlavá pšeničná Tilletia

Více

Kroměříž, soutěže technologií 2016

Kroměříž, soutěže technologií 2016 Kroměříž, soutěže technologií 2016 Vyhodnocení kvality pšenice U 58 vzorků Soutěže pěstebních technologií byly analyzovány tyto kvalitativní parametry: hmotnost tisíce zrn, obsah N-látek, číslo poklesu,

Více

Konzervační genetika INBREEDING. Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.

Konzervační genetika INBREEDING. Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28. Konzervační genetika INBREEDING Dana Šafářová Katedra buněčné biologie a genetiky Univerzita Palackého, Olomouc OPVK (CZ.1.07/2.2.00/28.0032) Hardy-Weinbergova rovnováha Hardy-Weinbergův zákon praví, že

Více

POLYMORPHISMUS OF STORAGE PROTEIN GENES IN WHEAT (T. AESTIVUM L.) WITH DIFFERENT COLOUR OF KERNEL

POLYMORPHISMUS OF STORAGE PROTEIN GENES IN WHEAT (T. AESTIVUM L.) WITH DIFFERENT COLOUR OF KERNEL POLYMORPHISMUS OF STORAGE PROTEIN GENES IN WHEAT (T. AESTIVUM L.) WITH DIFFERENT COLOUR OF KERNEL Musilová M. 1, Trojan V. 1, Vyhnánek T. 1, 2, Havel L. 1 1 Department of Plant Biology, Faculty of Agronomy,

Více

Biologie a genetika, BSP, LS7 2014/2015, Ivan Literák

Biologie a genetika, BSP, LS7 2014/2015, Ivan Literák Biologie a genetika, BSP, LS7 2014/2015, Ivan Literák KVANTITATIVNÍ GENETIKA dědičnost kvantitativních znaků ZNAKY KVALITATIVNÍ: gen znak barva hrachu: žlutá zelená (i komplikovaněji penetrace, epresivita,

Více

SEED VITALITY OF WHEAT AND BREAD MAKING QUALITY

SEED VITALITY OF WHEAT AND BREAD MAKING QUALITY SEED VITALITY OF WHEAT AND BREAD MAKING QUALITY VITALITA OBILEK PŠENICE A KVALITA PEČIVA Both Z., Chloupek O. Ústav 219, Agronomická fakulta, Mendelova zemědělská a lesnická univerzita v Brně, Zemědělská

Více