Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií
|
|
- Antonín Musil
- před 8 lety
- Počet zobrazení:
Transkript
1 Obecná genetika Zesouladení ( sjednocení ) poznatků genetiky a evolucionistických teorií Ing. Roman Longauer, CSc. Ústav zakládání a pěstění lesů, LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/
2 V 19. století se v biologii prosazovali 2 teorie: Lamarckizmus: organismy lze přetvářet alespoň částečně a tedy prostředí může měnit jejich dědičnou podstatu. Darwinova evoluční teorie: dědičné faktory jsou neměnné i takové, které se mění vlivem prostředí ( měkká dedičnost ). ***** * Mendelovy zákonitosti poukazují na diskrétní čili tvrdý přenos dědičných faktorů. Vysvětlují jedno- nebo dvou-genovou kontrolu znaků odpovídajícími štěpným poměrům hybridů a dihybridů
3 * Z Morganovych zákonů plyne, že platnost části Mendelových zobecnění je apriori limitována omezenou rekombinaci genů nacházejících se na stejných chromosomech. * Kvantitativní a adaptivní znaky (s adaptivním významem, tj. znaky ovlivňující fitness jedince nebo populace) jsou zpravidla pod polygenní kontrolou. U lidí, např., je jenom několik vnějších fenotypových znaků, které mají jednoduchou mendelistickou dědičnost. K recidivám Lamarckizmu tak došlo i ve 20. století : Lysenkova genetika příklad jarovizace ječmene, ze kterého se vyvozovalo, že lze ječmen ozimní proměnit v nový druh ječmen jarní vlivem prostředí příklad vyhovující politice prosazující sociální inženýrství a tezím o nekonenčných možnostech přetváření přírody.
4 Genetikou se od 20. let 20. století zajímalo několik vynikajících matematiků a statistiků. Odvodili modely pro polygenně kontrolované znaky, do kterých jsou zakomponovány nejenom dominance, ale i složitější vztahy aditivita (sčitování účinků), epistáze (interakcí), existence genů silného a slabého účinku (major a minor genů). Vytvořili modely pro studium dedičnosti kvantitativních znaků zohledňující dokonce i omezenou rekombinaci jednotlivých genů. Nejvýznamnější osobností v této oblasti byl Roland Aylmer FISHER, který je mimo jiné i autorem Fisherova rozdělení náhodné proměnné.
5 Fisherův postulát propojující genetiku a evolucionismus (Neodarwinistická synteze): Čím vyšší je variance (populace) v adaptivních znacích, tím vyšší je Fitness Kvantitativní znaky jsou polygenní kontrolou a také pod vlivem prostředí >>> Standardizací vnějších podmínek odkryjeme genetickou varianci (viz testování potomstev). O velikosti variance ve vnějším znaku možno usuzovat v konkrétním prostředí a konkrétním čase, a to ve vztahu ke konkrétní populaci nebo výběrovému vzorku druhu.
6 Až použití genetických modelů pro studium kvantitativních znaků a později také genetických markerů umožnilo prokázat na konkrétních příkladech, že vyšší genetická rozmanitost skutečně poskytuje více možností přirozenému výběru a je tedy evoluční výhodou. Fungování strukturních genů, výsledkem jejichž exprese je protein typu enzymu, stavební látky, nebo zásobní látky - na molekulární úrovni, že lamarckizmus platit nemůže. Měkkou dědičnost v širším smyslu slova ovšem pozorovat možno. Projevuje se jako změna vnějších projevů organismu s pamětí ( paměťový efekt): I za tím jsou všem dědičné faktory - jde o interakce regulačních genů. Je prokázáno, že vlivem prostředí dochází k změně nastavení (pře-nastavením) regulačních genů. Tento jev se nazývá epigenetická paměť / epigenetic memory.
7 Co se dovídáme z novějšího výzkumu: Narozdíl od dřívějších představ, přinejmenším 80% DNA je funkční a přepisuje se do RNA: kromě 10-20% DNA kódující strukturní geny má tedy většina DNA regulační funkce. Zjišťujeme, že role epigenetických interakcí a genové regulace je mnohem větší (= plasticita neboli schopnost aklimatizace), než jsme se domnívali. Mnohé z reakcí organismů, které jsme dřív (kvůli nedostupnosti analytických nástrojů a znalosti vnitřních mechanismů) paušálně přisuzovali vlivu vnějšího prostředí, řídí geny regulátory a jejich komplexy. Také vazba genů (= omezená rekombinace) je důležitější, než se předpokládalo. V této souvislosti se používá termín evolučně adaptované genové komplexy strukturních i jejich regulačních genů. Narušení integrity takovýchto komplexů poruchou (mutací) nebo nežádoucí rekombinací má často nežádoucí důsledky pro jejich nositele.
Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny
Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Důsledky selekce v populaci - cvičení
Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován
Chromosomy a karyotyp člověka
Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické
Základní pravidla dědičnosti
Mendelova genetika v příkladech Základní pravidla dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Mendelovy zákony dědičnosti
Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky
Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická
Selekce v populaci a její důsledky
Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
INTERAKCE NEALELNÍCH GENŮ POLYGENNÍ DĚDIČNOST
INTERAKCE NEALELNÍCH GENŮ POLYGENNÍ DĚDIČNOST I. ročník, letní semestr 13. týden 14. - 18.5.2007 Aleš Panczak, ÚBLG 1. LF a VFN Krátké opakování: Jednotková dědičnost podíl alel téhož genu (lokusu) při
INTERAKCE NEALELNÍCH GENŮ POLYGENNÍ DĚDIČNOST
INTERAKCE NEALELNÍCH GENŮ POLYGENNÍ DĚDIČNOST I. ročník, letní semestr 13. týden 12. - 16.5.2008 Aleš Panczak, ÚBLG 1. LF a VFN Krátké opakování: Jednotková dědičnost podíl alel téhož genu (lokusu) při
Mutace jako změna genetické informace a zdroj genetické variability
Obecná genetika Mutace jako změna genetické informace a zdroj genetické variability Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)
Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek
Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2
Mendelistická genetika
Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí
MENDELOVSKÁ DĚDIČNOST
MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Biologie - Oktáva, 4. ročník (přírodovědná větev)
- Oktáva, 4. ročník (přírodovědná větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA
RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného
P1 AA BB CC DD ee ff gg hh x P2 aa bb cc dd EE FF GG HH Aa Bb Cc Dd Ee Ff Gg Hh
Heteroze jev, kdy v F1 po křížení geneticky rozdílných genotypů lze pozorovat zvětšení a mohutnost orgánů, zvýšení výnosu, životnosti, ranosti, odolnosti ve srovnání s lepším rodičem = heterózní efekt
Biologie - Oktáva, 4. ročník (humanitní větev)
- Oktáva, 4. ročník (humanitní větev) Biologie Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti
Základní pravidla dědičnosti - Mendelovy a Morganovy zákony
Obecná genetika Základní pravidla dědičnosti - Mendelovy a Morganovy zákony Ing. Roman LONGAUER, CSc. Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je
Výuka genetiky na PřF OU K. MALACHOVÁ
Výuka genetiky na PřF OU K. MALACHOVÁ KATEDRA BIOLOGIE A EKOLOGIE BAKALÁŘSKÉ STUDIJNÍ PROGRAMY Experimentální Systematická Aplikovaná (prezenční, kombinovaná) Jednooborová Dvouoborová KATEDRA BIOLOGIE
Obecná genetika a zákonitosti dědičnosti. KBI / GENE Mgr. Zbyněk Houdek
Obecná genetika a zákonitosti dědičnosti KBI / GENE Mgr. Zbyněk Houdek Důležité pojmy obecné genetiky Homozygotní genotyp kdy je fenotypová vlastnost genotypově podmíněna uplatněním páru funkčně zcela
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života?
6. Kde v DNA nalézáme rozdíly, zodpovědné za obrovskou diverzitu života? Pamatujete na to, co se objevilo v pracích Charlese Darwina a Alfreda Wallace ohledně vývoje druhů? Aby mohl mechanismus přírodního
Sylabus témat ke zkoušce z lékařské biologie a genetiky. Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Sylabus témat ke zkoušce z lékařské biologie a genetiky Buněčná podstata reprodukce a dědičnosti Struktura a funkce prokaryot Struktura, reprodukce a rekombinace virů (DNA viry, RNA viry), význam v medicíně
Degenerace genetického kódu
AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. OBVSB/Obecná virologie Tento projekt je spolufinancován Evropským
Působení genů. Gen. Znak
Genové interakce Působení genů Gen Znak Dědičnost Potomek získává predispozice k vlastnostem z rodičovské buňky nebo organismu. Vlastnosti přenášené do další generace nemusí být zcela totožné s vlastnostmi
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Základy genetiky - Alelové a Genové interakce Intra-alelické interakce = Interakce
GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost
GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální
Těsně před infarktem. Jak předpovědět infarkt pomocí informatických metod. Jan Kalina, Marie Tomečková
Těsně před infarktem Jak předpovědět infarkt pomocí informatických metod Jan Kalina, Marie Tomečková Program, osnova sdělení 13,30 Úvod 13,35 Stručně o ateroskleróze 14,15 Měření genových expresí 14,00
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Molekulární základy genetiky 1/76 GENY Označení GEN se používá ve dvou základních významech: 1. Jako synonymum pro vlohu
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/
Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)
Nauka o dědičnosti a proměnlivosti
Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků
genů - komplementarita
Polygenní dědičnost Interakce dvou nealelních genů - komplementarita Křížením dvou bělokvětých odrůd hrachoru zahradního vznikly v F1 generaci rostliny s růžovými květy. Po samoopylení rostlin F1 generace
Využití DNA markerů ve studiu fylogeneze rostlin
Mendelova genetika v příkladech Využití DNA markerů ve studiu fylogeneze rostlin Ing. Petra VESELÁ Ústav lesnické botaniky, dendrologie a geobiocenologie LDF MENDELU Brno Tento projekt je spolufinancován
Vztah genotyp fenotyp
Evoluce fenotypu II Vztah genotyp fenotyp plán? počítačový program? knihovna? genotypová astrologie (Jablonka a Lamb) Modely RNA - různé vážení: A-U, G-C, G-U interakcí, penalizace za neodpovídající si
PRAKTIKUM Z OBECNÉ GENETIKY
RNDr. Pavel Lízal, Ph.D. Přírodovědecká fakulta MU Ústav experimentální biologie Oddělení genetiky a molekulární biologie lizal@sci.muni.cz 1) Praktikum z obecné genetiky 2) Praktikum z genetiky rostlin
Genetika přehled zkouškových otázek:
Genetika přehled zkouškových otázek: 1) Uveďte Mendelovy zákony (pravidla) dědičnosti, podmínky platnosti Mendelových zákonů. 2) Popište genetický zápis (mendelistický čtverec) monohybridního křížení u
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Vypracované otázky z genetiky
Vypracované otázky z genetiky 2015/2016 Dana Hatoňová 1. Základní zákony genetiky 2. Dihybridismus 3. Aditivní model polygenní dědičnosti 4. Interakce nealelních genů 5. Genová vazba 6. Genotyp a jeho
Tématické okruhy pro státní závěrečné zkoušky
Tématické okruhy pro státní závěrečné zkoušky Obor Povinný okruh Volitelný okruh (jeden ze dvou) Forenzní biologická Biochemie, pathobiochemie a Toxikologie a bioterorismus analýza genové inženýrství Kriminalistické
Vrozené vývojové vady, genetika
UNIVERZITA KARLOVA V PRAZE Fakulta tělesné výchovy a sportu Vrozené vývojové vady, genetika studijní opora pro kombinovanou formu studia Aplikovaná tělesná výchova a sport Doc.MUDr. Eva Kohlíková, CSc.
GENETIKA. zkoumá dědičnost a proměnlivost organismů
GENETIKA zkoumá dědičnost a proměnlivost organismů Dědičnost: schopnost organismů uchovávat informace o své struktuře a funkčních schopnostech a předávat je svým potomkům Proměnlivost (variabilita) je
Geny p řevážně nepůsobí izolovan ě izolovan ale, v kontextu s okolním prostředím (vnitřním i vnějším) ě a v souladu souladu s ostatními g eny geny.
Genové interakce Geny převážně nepůsobí izolovaně, ale v kontextu s okolním prostředím (vnitřním i vnějším) a v souladu s ostatními geny. Genové interakce -intraalelické -interalelické A a intraalelické
Genetika kvantitativních znaků
Genetika kvantitativních znaků Kvantitavní znaky Plynulá variabilita Metrické znaky Hmotnost, výška Dojivost Srstnatost Počet vajíček Velikost vrhu Biochemické parametry (aktivita enzymů) Imunologie Prahové
1. Definice a historie oboru molekulární medicína. 3. Základní laboratorní techniky v molekulární medicíně
Obsah Předmluvy 1. Definice a historie oboru molekulární medicína 1.1. Historie molekulární medicíny 2. Základní principy molekulární biologie 2.1. Historie molekulární biologie 2.2. DNA a chromozomy 2.3.
Jak se matematika poučila v biologii
Jak se matematika poučila v biologii René Kalus IT4Innovations, VŠB TUO Role matematiky v (nejen) přírodních vědách Matematika inspirující a sloužící jazyk pro komunikaci s přírodou V 4 3 r 3 Matematika
Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek
Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací KBI/GENE: Mgr. Zbyněk Houdek Kvantitativní znak Tyto znaky vykazují plynulou proměnlivost (variabilitu) svého fenotypového projevu. Jsou
Hardy-Weinbergův zákon - cvičení
Genetika a šlechtění lesních dřevin Hardy-Weinbergův zákon - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním
LINEÁRNÍ MODELY. Zdeňka Veselá
LINEÁRNÍ MODELY Zdeňka Veselá vesela.zdenka@vuzv.cz Genetika kvantitativních vlastností Jednotlivé geny nejsou zjistitelné ani měřitelné Efekty většího počtu genů poskytují variabilitu, kterou lze většinou
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Pohled genetika na racionální vyšetřování v preventivní kardiologii
Pohled genetika na racionální vyšetřování v preventivní kardiologii Tomáš Freiberger Genetická laboratoř, Centrum kardiovaskulární a transplantační chirurgie Brno, ČR Osnova Genetické faktory vzniku KV
Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248
Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM
GENETIKA 1. Úvod do světa dědičnosti. Historie
GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník
Obecná biologie a genetika B53 volitelný předmět pro 4. ročník Charakteristika vyučovacího předmětu Vyučovací předmět vychází ze vzdělávací oblasti Člověk a příroda, vzdělávacího oboru Biologie. Mezipředmětové
Výuka genetiky na Přírodovědecké fakultě UK v Praze
Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený
Genetika populací. Doposud genetika na úrovni buňky, organizmu
Doposud genetika na úrovni buňky, organizmu - jedinec nás nezajímá - pouze jeho gamety a to jako jedny z mnoha = genofond = soubor všech gamet skupiny jedinců Populace mnoho různých definic - skupina organizmů
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B
Doprovodný materiál k práci s přípravným textem Biologické olympiády 2014/2015 pro soutěžící a organizátory kategorie B Níže uvedené komentáře by měly pomoci soutěžícím z kategorie B ke snazší orientaci
7. Regulace genové exprese, diferenciace buněk a epigenetika
7. Regulace genové exprese, diferenciace buněk a epigenetika Aby mohl mnohobuněčný organismus efektivně fungovat, je třeba, aby se jednotlivé buňky specializovaly na určité funkce. Nový jedinec přitom
Atestace z lékařské genetiky inovované otázky pro rok A) Molekulární genetika
Atestace z lékařské genetiky inovované otázky pro rok 2017 A) Molekulární genetika 1. Struktura lidského genu, nomenklatura genů, databáze týkající se klinického dopadu variace v jednotlivých genech. 2.
Tematické okruhy k SZZ v bakalářském studijním oboru Zdravotní laborant bakalářského studijního programu B5345 Specializace ve zdravotnictví
Tematické okruhy k SZZ v bakalářském studijním oboru Zdravotní laborant bakalářského studijního programu B5345 Specializace ve zdravotnictví Dle čl. 7 odst. 2 Směrnice děkana pro realizaci bakalářských
Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr
Osnova přednášky volitelného předmětu Evoluční vývoj a rozmanitost lidských populací, letní semestr Evoluční teorie Základy evoluce, adaptace na životní podmínky - poskytuje řadu unifikujících principů
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ
BIOLOGICKÉ VĚDY EVA ZÁVODNÁ Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století
IMUNOGENETIKA I. Imunologie. nauka o obraných schopnostech organismu. imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány
IMUNOGENETIKA I Imunologie nauka o obraných schopnostech organismu imunitní systém heterogenní populace buněk lymfatické tkáně lymfatické orgány lymfatická tkáň thymus Imunita reakce organismu proti cizorodým
NUKLEOVÉ KYSELINY. Základ života
NUKLEOVÉ KYSELINY Základ života HISTORIE 1. H. Braconnot (30. léta 19. století) - Strassburg vinné kvasinky izolace matiére animale. 2. J.F. Meischer - experimenty z hnisem štěpení trypsinem odstředěním
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy
"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,
AUG STOP AAAA S S. eukaryontní gen v genomové DNA. promotor exon 1 exon 2 exon 3 exon 4. kódující oblast. introny
eukaryontní gen v genomové DNA promotor exon 1 exon 2 exon 3 exon 4 kódující oblast introny primární transkript (hnrna, pre-mrna) postranskripční úpravy (vznik maturované mrna) syntéza čepičky AUG vyštěpení
Evoluce fenotypu II. http://www.natur.cuni.cz/~kratoch1/
Evoluce fenotypu II http://www.natur.cuni.cz/~kratoch1/ Fenotypová plasticita schopnost organismu měnit fenotyp v závislosti na vnějších podmínkách (jeden genotyp odpovídá mnoha fenotypům) - phenotypic
Prokazování původu lesního reprodukčního materiálu pomocí genetických markerů
Genetika a šlechtění lesních dřevin Prokazování původu lesního reprodukčního materiálu pomocí genetických markerů Ing. R. Longauer, CSc. Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů
Epigenetická paměť v ekologii a evoluci rostlin. Vítek Latzel
Epigenetická paměť v ekologii a evoluci rostlin Vítek Latzel Epigenetika Věda zabývající se změnami v expresi genů. Lidské tělo jedna DNA, ale buňky velmi rozdílné Jaterní buňky Kožní buňky Nervové buňky
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)
Metody studia historie populací. Metody studia historie populací
1) Metody studia genetické rozmanitosti komplexní fenotypové znaky, molekulární znaky. 2) Mechanizmy evoluce mutace, přírodní výběr, genový posun a genový tok 3) Anageneze x kladogeneze - co je vlastně
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním
1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,
Výukový materiál zpracován v rámci projektu EU peníze školám
http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;
Biologie a genetika, BSP, LS7 2014/2015, Ivan Literák
Biologie a genetika, BSP, LS7 2014/2015, Ivan Literák KVANTITATIVNÍ GENETIKA dědičnost kvantitativních znaků ZNAKY KVALITATIVNÍ: gen znak barva hrachu: žlutá zelená (i komplikovaněji penetrace, epresivita,
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MBIO1/Molekulární biologie 1 Tento projekt je spolufinancován
Výuka genetiky na Přírodovědecké fakultě MU
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Výuka genetiky na Přírodovědecké fakultě MU Jiří Doškař Ústav experimentální biologie, Oddělení genetiky a molekulární biologie 1 V akademickém roce 1964/1965
Inovace studia molekulární a buněčné biologie
Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
Modelov an ı biologick ych syst em u Radek Pel anek
Modelování biologických systémů Radek Pelánek Modelování v biologických vědách typický cíl: pomocí modelů se snažíme pochopit, jak biologické systémy fungují model zahrnuje naše chápání simulace ukazuje,
- Zákl. metodou studia organismů je křížení (hybridizace)- rozmn. dvou vybraných jedinců, umožnuje vytváření nových odrůd rostlin a živočichů
Otázka: Základní zákonitosti dědičnosti Předmět: Biologie Přidal(a): Kateřina P. - Zákl. zákonitosti dědičnosti zformuloval Johann Gregor Mendel - Na základě svých pokusů křížením hrachu- popsal a vysvětlil
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162
Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)
Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/
I n v e s t i c e d o r o z v o j e v z d ě l á v á n í Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku)
UNIVERZITA KARLOVA V PRAZE 3. LÉKAŘSKÁ FAKULTA (tématické okruhy požadavků pro přijímací zkoušku) B I O L O G I E 1. Definice a obory biologie. Obecné vlastnosti organismů. Základní klasifikace organismů.
Mgr. et Mgr. Lenka Falková. Laboratoř agrogenomiky. Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita
Mgr. et Mgr. Lenka Falková Laboratoř agrogenomiky Ústav morfologie, fyziologie a genetiky zvířat Mendelova univerzita 9. 9. 2015 Šlechtění Užitek hospodářská zvířata X zájmová zvířata Zemědělství X chovatelství
Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny
Základní škola a Mateřská škola G.A.Lindnera Rožďalovice Za vše mohou geny Jméno a příjmení: Sandra Diblíčková Třída: 9.A Školní rok: 2009/2010 Garant / konzultant: Mgr. Kamila Sklenářová Datum 31.05.2010
BAKTERIÁLNÍ GENETIKA. Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc.
BAKTERIÁLNÍ GENETIKA Lekce 12 kurzu GENETIKA Doc. RNDr. Jindřich Bříza, CSc. -dědičnost u baktérií principiálně stejná jako u komplexnějších organismů -genom haploidní a značně menší Bakteriální genom
Genetika zvířat - MENDELU
Genetika zvířat Gregor Mendel a jeho experimenty Gregor Johann Mendel (1822-1884) se narodil v Heinzendorfu, nynějších Hynčicích. Během období, v kterém Mendel vyvíjel svou teorii dědičnosti, byl knězem
ŠKOLNÍ VZDĚLÁVACÍ PROGRAM
Vyučovací předmět : Období ročník : Učební texty : Přírodopis 3. období 9. ročník Danuše Kvasničková, Ekologický přírodopis pro 9. ročník ZŠ a nižší ročníky víceletých gymnázií, nakl. Fortuna Praha 1998
Zdeňka Veselá Tel.: Výzkumný ústav živočišné výroby, v.v.i.
BIOTECHNOLOGICKÉ METODY VE ŠLECHTĚNÍ HOSPODÁŘSKÝCH ZVÍŘAT Zdeňka Veselá vesela.zdenka@vuzv.cz Tel.: 267009571 Výzkumný ústav živočišné výroby, v.v.i. Co je šlechtění? Soustavné zlepšování genetických schopností
Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů
Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců
Crossing-over. over. synaptonemální komplex
Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových
Využití metod strojového učení v bioinformatice David Hoksza
Využití metod strojového učení v bioinformatice David Hoksza SIRET Research Group Katedra softwarového inženýrství, Matematicko-fyzikální fakulta Karlova Univerzita v Praze Bioinformatika Biologické inspirace
Genetika zvířat - MENDELU
Genetika zvířat DNA - primární struktura Několik experimentů ve 40. a 50. letech 20. století poskytla důkaz, že genetický materiál je tvořen jedním ze dvou typů nukleových kyselin: DNA nebo RNA. DNA je
Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra
Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly
Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna
Mendelova genetika v příkladech Populační genetika a fylogeneze jedle bělokoré analyzována pomocí izoenzymových genových markerů a variability mtdna Roman Longauer, Ústav zakládání a pěstění lesů, MENDELU