Matematika pro 9. ročník základní školy

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika pro 9. ročník základní školy"

Transkript

1 Matematika pro 9. ročník základní školy Řešení Číselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy 1 není prvočíslo)., 3, 5, 7, 11, 13, 17, 19 8 prvočísel. 18 = 3.3. = 3., 1 = 7.3, 30 = 3..5, 36 = = 3., 4 = 7..3, 5 = 13., 60 = = = = 39 = ( ) = = 4. 1 = 4 1 = 16 1 = 15 = 3 1 (větší než 3 a menší než 5) , 5 = = = = = 6 = = 36, 9 81 (4 9 ) = 16, 81 4 = = Mocniny a odmocniny: 8. 0, , = ,5 + 0,57 Okomentoval(a): [J1]: Nemusíme sčítat všechny 3 hodnoty (A) 31,5 (B) 147,447 (C) 05,757 (D) 0,77 (E) 15, , , = 4, ,7 35 = 4,553 (A) 31,5 (B) 4,553 (C) 195,773 (D) 0,83 (E) 35, (64 5 ) 3 = (8 ) 15 = (( 3 ) ) 15 = 90 Okomentoval(a): [J]: Umocnění mocniny: exponenty násobíme , 04 ( ). ( ) (0,0) = 10. (4.10 ) ( 8) = + 8 = = 9, 5 0, = =.53 =.53 = 15 Výrazy 1. x + 4 4x a = x 4x + 4 a = (x ) a = (x + a).(x a) Upravte následující výrazy: Okomentoval(a): [J3]: Vzorec: A AB + B = (A B) Okomentoval(a): [J4]: Vzorec: A B = (A +B).(A B) 1

2 . x 1 x + x+1 x 1 x+1 = x 1. x+1 = 1 (x 1)(x+1) (x+1).(x+1) (x+1) x ±1 3. ( 4a 8a + ) (1 a+1 1 a 4. ) = 4a+(a+1) a+1 1 a 8a 1 a = 4a+a+ a+1. 1 a 1 9a 1 b y b yb y (3a+1) = a+1 (1+a).(1 a) = (1 a) (1+3a).(1 3a) 1 3a. b y bb y b yb y 3b b by 3b b by 3b b b y y b b y b y 3b 3by b by by 4b 4by b yb y b yb y 4bb y 4b b yb y b y (b y, b y) a ±1, a ± (x y, x y, x 0) xx y 4. x xy y xx y y 3 x xy x xy x y. x y 1 1 :. 4x 8xy 4y 4 4 x y. x y x y x (x 1) x = 3.[( 3) 1] ( 3) = 3.( 4) + 3 = = 9 D) y 4 16 = 16(y 4 1) = 16(y + 1)(y 1) = 16(y + 1)(y + 1)(y 1) A) (y + 1) Procenta, přímá a nepřímá úměra 1. 1ar = 100 m,5 aru = 50 m 50 m 100% 50 m x % x : 100 = 50 : 50 x = 0% 50 m ze,5 aru je 0% A) 0 % Zopakujte si převody jednotek!!!!. Neznámé číslo je 100 % a) Zvětšíme ho o 17 %, dostaneme 100 % + 17 %. Číslo X tedy představuje 117 % neznámého čísla. b) Neznámé číslo zmenšíme o 8 %, dostaneme 100 % 8 % = 9%. Číslo Y představuje 9 % neznámého čísla. X 117 %, Y.9 %, = 5 % 5%..50 nebo rovnice: 1,17x 0,9x = 50 1 %.... 0,5x = %...00 x = 00 Neznámé číslo je 00. A) Karel x známek rovnice: x + 1,x = 444 Milan..1,x (o % víc námek),x = 444 x = 00 Milan má 44 známek. B) 44

3 4. 1. bedna x rovnice: x + 1,x + 1,5x = 1,1. bedna 1,x 3,7x = 1,1 3. bedna 1,4.1,x = 1,5x x = bedna 33 kg. bedna 39,6 kg 3. bedna 49,5 kg Třetí bedna vážila 49,5 kg. A) 49,5 kg 5. Před zdražením představuje cena 100 %. 1 % Kč Po zdražení představuje cena 1 % 1 %...44 Kč 100 % Kč nebo rovnice: Cena před zdražením..x x + 0,x = 5368 Zdražení o 0,x 1,x = 5368 x = Přehrávač stál před zdražením Kč C) Kč 6. Cena pračky před slevou.x Cena po 1. slevě.0,8x (80 % ceny pračky před slevou) Cena po. slevě.0,8.0,8x (další sleva o 0%, tedy na 80 %) rovnice: 0,8. 0,8x = ,64x = 7040 x = Před první slevou byla cena pračky (B) Kč % 108.x % x = 30 % Kruhová výseč představuje 30 % plochy kruhu. B) 30% 3

4 8. Nepřímá úměra (víc malířů natře stěnu pokoje za kratší čas) 10 malířů 5 hod 0 malířů.x hod x : 5 = 10 : 0 x =,5 hod 0 malířů natře stěnu pokoje za, 5 hodin. Přímá úměra: čím více stěn, tím delší čas: 0 malířů natře 1 stěnu..za,5 hodin 0 malířů natře 5 stěnu..za 5.,5 hodin = 1,5 hod Dvacet malířů natře 5 stěn pokoje za 1,5 hodin. B) 9. Přímá úměrnost: y = kx Souřadnice bodu: [x, y] x = 3 7 y = = k 3 7 /.14 9 = k. 6 k = 3 y = 3 x B) y = 3 x Výpočet obsahu obrazce 1. S.obsah čtverce 3a 3a, S = (3a) = 9a S1 obsah pravoúhlého trojúhelníku s odvěsnami a a a S 1 = 3a.a Obsah vyšrafované části: S S1 = 9a 6a = 3a Obsah vyšrafované části je 3a.. Třetí, nejmenší čtverec je polovinou poloviny 1. 1 = 1 4 Čtverec číslo 3 tvoří ¼, tj. 5 % původního čtverce Tyto 4 trojúhelníky tvoří přesně ½ původního čtverce Obsah obdélníku ABCD 4 14 cm je S = 336 cm Obsah trojúhelníku DAX s odvěsnami 14 cm a 1 cm S1= 84 cm D A 1/4 X 1/4 1/8 C Y B A

5 Obsah trojúhelníku YCD s odvěsnami 7 cm a 4 cm S= 84 cm Obsah trojúhelníku DAX s odvěsnami 7 cm a 1 cm S1= 4 cm Obsah trojúhelníku XYD S4 = S (S1 + S + S3) = 16 cm % 16..x % x = 37,5 % Obsah trojúhelníku XYD tvoří 37,5 % obdélníku ABCD. Jiný postup: 1 ( ) = 3, tj. 37,5 % Pravoúhlý trojúhelník 1. Délky stran pravoúhlého trojúhelníku musí splňovat Pythagorovu větu: 5 = C) 3, 4, 5. Zadané strany jsou buď dvě odvěsny nebo kratří strana je odvěsna a delší přepona. a) délky jsou odvěsny a, b, přepona je c: c = c = 10 cm b) délky jsou odvěsna (např. b) a přepona (c ): a = 8 6 a = 5,3 cm Třetí strana trojúhelníku má velikost 10 cm nebo 5,3 cm. 3. V rovnoramenném pravoúhlém trojúhelníku platí: c = c = = = 30 Přepona je dlouhá A) 3 cm. 4. Kružnice je Thaletova kružnice, trojúhelník FGE je tedy pravoúhlý, s pravým úhlem při vrcholu G a platí v něm Pythagorova věta. Poloměr kružnice je polovina přepony tohoto trojúhelníku. r = = 169 = 6,5 cm Poloměr kružnice je 6,5 cm. B) 5

6 Další příklady 1. K dědečkovi a babičce do velkého stavení na venkově přijely všechny jejich děti i se svými dětmi. Ty vyběhly na svah za stodolou a celé odpoledne sáňkovali a lyžovali. Když přiběhly na svačinu a čaj, bylo v předsíni poházeno 68 kusů bot, 5 sáněk a 8 kusů lyží. Kolik dětí mělo s sebou na kopci sáňky i lyže? ( Každé dítě má buď sáňky, nebo lyže, nebo oboje.) celkem dětí: 68 ks bot 34 dětí sáňky (s) i lyže (l).x dětí rovnice: s + l + x = 34 5 sáňky...s + x = 5 5 x + 14 x + x = lyže (8 kusů lyží!!) l + x = x = 34 x = 5 Sáňky i lyže mělo 5 dětí.. Malá firma má 5 zaměstnanců, z toho 1 zaměstnanců má řidičský průkaz, 8 zaměstanců má svářečský průkaz. 10 zaměstnanců nevlastní ani jeden z těchto průkazů. Kolik zaměstnanců firmy má svářečský i řidičský průkaz zároveň? Firma má 5 zaměstnanců oba x ř + s + x + 10 = 5 1 má řidičský průkaz (ř) ř + x = 1 1 x + 8 x + x + 10 = 5 8 má svářečský průkaz (s) s + x = 8 30 x = 5 10 ani jeden x = 5 Svářečský i řidičský průkaz zároveň má 5 zaměstnanců firmy. Lineární rovnice 1. (y 3) 1 = 3 ( y + 1) + y 1 y 6y = 6y 3 + y 1 6y + 8 = 6y 4 1y = 1 y = 1 K={1}. a 14 a 7 = 3 /. (a 7) podmínky: a 7 0, a 7 a 14 = 3(a 7) a 14 = 3a +1 5a = 35 a = 7 K={ } rovnice nemá řešení 6

7 7

8 8

9 9

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

Matematika pro 9. ročník základní školy

Matematika pro 9. ročník základní školy Matematika pro 9. ročník základní školy Řešení Ćíselné výrazy 1. Prvočíslo je přirozené číslo, které je beze zbytku dělitelné právě dvěma různými přirozenými čísly, a to číslem jedna a sebou samým (tedy

Více

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem

Více

INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika

INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika INTERNETOVÉ ZKOUŠKY NANEČISTO 1. kolo řešení matematika 1. Zimní bundu zdražili v obchodě o 22 % a po zdražení stála 5 68 Kč. Kolik korun stála bunda před zdražením? 122 % 5 68 Kč 1 % 44 Kč 100 % 4 400

Více

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) ) Druhá mocnina z tabulek 1) (- 6) = 10)(- 5) = ) 7 = 4 11) 5 = ) 4,8 = 4) 40 = 5),785 = 6) 65 8 = 7) 0,01485 = 8) 5,7 = 9) = 4 1),4 = 1)80 = 14)4,6787 = 15)467 56 = 16)0,014 = 17)48,69 = 1 18) Druhá odmocnina

Více

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné

Více

Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace

Slouží k opakování učiva 8. ročníku na začátku školního roku list/anotace Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 utor Mgr. Martina Smolinková Datum 9. 8. 2014 Ročník 8. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika

Více

Příklady k opakování učiva ZŠ

Příklady k opakování učiva ZŠ Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,

Více

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3 y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou

Více

Témata absolventského klání z matematiky :

Témata absolventského klání z matematiky : Témata absolventského klání z matematiky : 1.Dělitelnost přirozených čísel - násobek a dělitel - společný násobek - nejmenší společný násobek (n) - znaky dělitelnosti 2, 3, 4, 5, 6, 8, 9,10 - společný

Více

Základní škola Blansko, Erbenova 13 IČO

Základní škola Blansko, Erbenova 13 IČO Základní škola Blansko, Erbenova 13 IČO 49464191 Dodatek Školního vzdělávacího programu pro základní vzdělávání Škola v pohybu č.j. ERB/365/16 Škola: Základní škola Blansko, Erbenova 13 Ředitelka školy:

Více

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr

- čte a zapisuje desetinná čísla MDV kritické čtení a - zaokrouhluje, porovnává. - aritmetický průměr Matematika - 6. ročník Provádí početní operace v oboru desetinná čísla racionálních čísel - čtení a zápis v desítkové soustavě F užití desetinných čísel - čte a zapisuje desetinná čísla - zaokrouhlování

Více

VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8

VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8 VZDĚLÁVACÍ OBLAST: MATEMATIKA A JEJÍ APLIKACE VZDĚLÁVACÍ OBOR: MATEMATIKA A JEJÍ APLIKACE PŘEDMĚT: MATEMATIKA 8 Poznámky Opakování-číselné obory N, Z Opakování-číselné obory Q Opakování-jednotky Opakování-poměr,

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, trojúhelníky a čtyřúhelníky, výrazy 1, hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

Pythagorova věta

Pythagorova věta .8.19 Pythagorova věta Předpoklady: 00801 Pedagogická poznámka: Z následujícího příkladu rýsuje každý žák pouze jeden bod podle toho, v jakém sedí oddělení. Př. 1: Narýsuj pravoúhlý trojúhelník: a) ABC:

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 2 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gmnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro základní vzdělávání Vzdělávací oblast: Matematika a její aplikace Tematický okruh:

Více

M - Pythagorova věta, Eukleidovy věty

M - Pythagorova věta, Eukleidovy věty M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací

Více

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 2 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Od součtu libovolného čísla x a čísla 256 odečtěte číslo x zmenšené o 256.

Více

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun.

Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy: Vypočtěte, kolik korun je 5 setin procenta ze 2 miliard korun. 1. Operace s reálnými čísly Obsah jedné stěny krychle je 289 cm 2. Vypočítejte objem této krychle. [S= 4 913 cm 3 ] Určete třetinu podílu čtvrtého čísla zleva a šestého čísla zprava podle číselné osy:

Více

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce)

Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Užití rovnic a jejich soustav při řešení slovních úloh (11. - 12. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 15. září

Více

TEMATICKÝ PLÁN. září říjen

TEMATICKÝ PLÁN. září říjen TEMATICKÝ PLÁN Předmět: MATEMATIKA Literatura: Matematika doc. RNDr. Oldřich Odvárko, DrSc., doc. RNDr. Jiří Kadleček, CSc Matematicko fyzikální tabulky pro základní školy UČIVO - ARITMETIKA: 1. Rozšířené

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 3. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 3 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Jsou dány intervaly A = ( ; 2), B = 1; 3, C = 0;

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102

Více

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek Přípravný kurz - Matematika Téma: Výpočtová geometrie v rovině Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Více

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, kruhy a válce, úměrnost, geometrické konstrukce, výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

Obsahy. Trojúhelník = + + 2

Obsahy. Trojúhelník = + + 2 Obsahy Obsah nám říká, jak velkou plochu daný útvar zaujímá. Třeba jak velký máme byt nebo pozemek kolik metrů čtverečných (m 2 ), hektarů (ha), centimetrů čtverečných (cm 2 ), Základní jednotkou obsahu

Více

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz?

g) když umocníme na druhou třetinu rozdílu dvou čísel x, y a zvětšíme toto číslo o jejich součin, tak dostaneme výraz? Téma : Výrazy, poměr (úprava výrazů, podmínky řešitelnosti, algebraické vzorce, hodnota výrazů, poměr, měřítko na mapě) Příklady Zápis výrazů ) Zapište jako výraz: a) součet trojnásobku libovolného čísla

Více

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší

Více

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6.

MATEMATIKA. 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5. vážil celý nákup? (A) 4,25 kg (B) 4,5 kg (C) 5 kg (D) 5,25 kg 6. MATEMATIKA 9. třída. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 7 (B) M = 4N (C) M N

Více

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy

Základní škola Ruda nad Moravou. Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Označení šablony (bez čísla materiálu): EU-OPVK-MAT-8+9- Slovní úlohy Číslo mate riálu Datum Třída Téma hodiny Ověřený materiál - název Téma, charakteristika Autor Ověřil 1. 2.5. 2012 VI.B I. Sestavení

Více

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel. 5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených

Více

Výstupy Učivo Průřezová témata

Výstupy Učivo Průřezová témata 5.2.4.2. Vzdělávací obsah vyučovacího předmětu VZDĚLÁVACÍ OBLAST: Matematika a její aplikace PŘEDMĚT: Matematika ROČNÍK: 6. Výstupy Učivo Průřezová témata - provádí početní operace s přirozenými čísly

Více

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Racionální čísla a procenta a základy finanční matematiky, Trojúhelníky a čtyřúhelníky, Výrazy I, Hranoly Třída: Sekunda Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC

Více

Předmět: MATEMATIKA Ročník: 6.

Předmět: MATEMATIKA Ročník: 6. Předmět: MATEMATIKA Ročník: 6. Výstupy z RVP Školní výstupy Učivo Mezipředm. vazby, PT Číslo a proměnná - užívá různé způsoby kvantitativního vyjádření vztahu celek - část (přirozeným číslem, poměrem,

Více

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program

Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Číslo materiálu Předmět ročník Téma hodiny Ověřený materiál Program Stran Stran celkem DUM 1 VY_32_INOVACE_03_01 Matematika 1. M - pololetní opakování písemná práce Word 5 4 2 VY_32_INOVACE_03_02 Matematika

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Obecné informace: Typy úloh a hodnocení:

Obecné informace: Typy úloh a hodnocení: Obecné informace: Počet úloh: 30 Časový limit: 60 minut Max. možný počet bodů: 30 Min. možný počet bodů: 8 Povolené pomůcky: modrá propisovací tužka obyčejná tužka pravítko kružítko mazací guma Poznámky:

Více

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13 CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu

Více

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta 1. Mnohočleny 2. Rovnice rovné nule 3. Nerovnice různé od nuly 4. Lomený výraz 5. Krácení lomených výrazů 6. Rozšiřování lomených výrazů 7. Sčítání lomených výrazů 8. Odčítání lomených výrazů 9. Násobení

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou

Matematika. 8. ročník. Číslo a proměnná druhá mocnina a odmocnina (využití LEGO EV3) mocniny s přirozeným mocnitelem. výrazy s proměnnou list 1 / 7 M časová dotace: 4 hod / týden Matematika 8. ročník M 9 1 01 provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu Číslo a proměnná druhá

Více

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5

MATEMATIKA 9. TŘÍDA. 0,5 b. Umocnění výrazu (x 2) 2 : 3 hmotnosti nákupu a 2 kg. Kolik kilogramů. Nákup vážil 5 MATEMATIKA 9. TŘÍDA 1. Nechť M je součet druhých mocnin prvních tří přirozených čísel a N součet těchto tří přirozených čísel. Které z následujících tvrzení je pravdivé? (A) M + N = 17 (B) M = 4N (C) M

Více

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků

Více

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 6.

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: 6. Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika Ročník: 6. ROZPRACOVANÉ OČEKÁVANÉ VÝSTUPY - čte, zapisuje a porovnává přirozená čísla - provádí početní operace s přirozenými

Více

Slovní úlohy vedoucí na kvadratické rovnice

Slovní úlohy vedoucí na kvadratické rovnice 4..0 Slovní úlohy vedoucí na kvadratické rovnice Předpoklady: 04009 S druhou mocninou souvisí plochy, proto se mnoho slovních úloh vedoucích na kvadratické rovnice týká ploch. Př. : Obdélníková garáž má

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9.

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematický kroužek pro nadané žáky ročník 9. Školní rok 2013/2014 Mgr. Lenka Mateová Kapitola Téma (Učivo) Znalosti a dovednosti (výstup)

Více

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika

Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika 9. Matematika 104 Vzdělávací oblast: Matematika a její aplikace Vzdělávací obor: Matematika a její aplikace Vyučovací předmět: Matematika Charakteristika vyučovacího předmětu Obsahové, časové a organizační

Více

Matematika - 6. ročník

Matematika - 6. ročník Matematika - 6. ročník Učivo Výstupy Kompetence Průřezová témata Metody a formy Přirozená čísla - zápis čísla v desítkové soustavě - zaokrouhlování - zobrazení na číselné ose - početní operace v oboru

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální

Více

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ

volitelný předmět ročník zodpovídá PŘÍPRAVA NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY 9. MACASOVÁ Výstupy žáka ZŠ Chrudim, U Stadionu Učivo obsah Mezipředmětové vztahy Metody + formy práce, projekty, pomůcky a učební materiály ad. Poznámky provádí operace s celými čísly (sčítání, odčítání, násobení

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt: Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Metodické pokyny k pracovnímu listu č Pythagorova věta

Metodické pokyny k pracovnímu listu č Pythagorova věta Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1..33/0.0039 Metodické pokyny k pracovnímu listu č. 8.03 Pythagorova věta Pracovní list slouží k upevnění učiva týkajícího se jedné z nejvýznamnějších

Více

ZŠ ÚnO, Bratří Čapků 1332

ZŠ ÚnO, Bratří Čapků 1332 Úvodní obrazovka Menu (vlevo nahoře) Návrat na hlavní stránku Obsah Výsledky Poznámky Záložky edunet Konec Matematika 1 (pro 12-16 let) LangMaster Obsah (střední část) výběr tématu - dvojklikem v seznamu

Více

Kategorie: U 1 pro žáky 1. ročníků učebních oborů

Kategorie: U 1 pro žáky 1. ročníků učebních oborů Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Kolika způsoby lze zaplatit částku 50 Kč, smíme-li použít pouze mince v hodnotě 1 Kč, 5 Kč a 10 Kč? ) Umocněte: 1 7 p3 q 3 r + 7pq r 3 = 3) Přeložíme-li

Více

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule. Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito

Více

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách.

ročník 6. 7. 8. 9. celkem počet hodin 4 4 4 5 17 Předmět matematika se vyučuje jako samostatný předmět. Výuka probíhá převážně v kmenových třídách. MATEMATIKA Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematice je zaměřeno na: užití matematiky v reálných situacích osvojení pojmů, matematických postupů rozvoj abstraktního myšlení

Více

Příprava na pololetní písemnou práci 9. ročník

Příprava na pololetní písemnou práci 9. ročník Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)

Více

Úlohy klauzurní části školního kola kategorie A

Úlohy klauzurní části školního kola kategorie A 62. ročník matematické olympiády Úlohy klauzurní části školního kola kategorie A 1. V obdélníku ABCD o stranách AB = 9, BC = 8 leží vzájemně se dotýkající kružnice k 1 (S 1, r 1 ) a k 2 (S 2, r 2 ) tak,

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

Pythagorova věta výpočet odvěsny - přirozená čísla

Pythagorova věta výpočet odvěsny - přirozená čísla Pythagorova věta výpočet odvěsny - přirozená čísla Sada materiálů je určena pro procvičování výpočtu odvěsen pravoúhlého trojúhelníku. Obsahuje 3 pracovní listy a jejich výsledky pro jednoduchou kontrolu

Více

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu! -----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Autor Použitá literatur a zdroje Metodika. Pořadové číslo IV-2-M-II- 1-7.r. Název materiálu

Autor Použitá literatur a zdroje Metodika. Pořadové číslo IV-2-M-II- 1-7.r. Název materiálu Pořadové číslo 1-7.r. Název materiálu Celá čísla 1 Autor Použitá literatur a zdroje Metodika CSc. : Matematika 2 pro 7.ročník základní školy, Prometheus 2.díl,ISBN 80-7196-126-4 1. vydání,1998 Mgr. Slavomír

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Matematika (MAT) Náplň: Rovnice a nerovnice, Kruhy a válce, Úměrnost, Geometrické konstrukce, Výrazy 2 Třída: Tercie Počet hodin: 4 hodiny týdně Pomůcky: Učebna s PC a dataprojektorem (interaktivní

Více

8. Stereometrie 1 bod

8. Stereometrie 1 bod 8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme

Více

4.3.4 Základní goniometrické vzorce I

4.3.4 Základní goniometrické vzorce I .. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě

Více

Matematika Název Ročník Autor

Matematika Název Ročník Autor Desetinná čísla řádu desetin a setin 6. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Opakování učiva 6.ročníku 7. Dělitelnost přirozených čísel 7. Desetinná čísla porovnávání 7. Desetinná

Více

GEODETICKÉ VÝPOČTY I.

GEODETICKÉ VÝPOČTY I. SPŠS Č.Budějovice Obor Geodézie a Katastr nemovitostí 2.ročník GEODETICKÉ VÝPOČTY I. TROJÚHELNÍK PYTHAGOROVA VĚTA TROJÚHELNÍK Geodetické výpočty I. trojúhelník je geometrický rovinný útvar určený třemi

Více

PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY

PYTHAGOROVA VĚTA, EUKLIDOVY VĚTY Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PYTHAGOROVA

Více

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace

Projekt IMPLEMENTACE ŠVP. pořadí početních operací, dělitelnost, společný dělitel a násobek, základní početní operace Střední škola umělecká a řemeslná Evropský sociální fond "Praha a EU: Investujeme do vaší budoucnosti" Projekt IMPLEMENTACE ŠVP Evaluace a aktualizace metodiky předmětu Matematika Výrazy Obory nástavbového

Více

Úlohy k procvičení kapitoly Obsahy rovinných obrazců

Úlohy k procvičení kapitoly Obsahy rovinných obrazců Úlohy k procvičení kapitoly Obsahy rovinných obrazců 1. Vypočtěte obvod a obsah obrazců nakreslených na obrázku 1. (Rozměry jsou udány v mm.) Obrázek 1 2. Na pokrytí 1 m 2 střechy se spotřebuje 26 ražených

Více

MATE MATIKA. učebnice pro 2. stupeň ZŠ a víceletá gymnázia

MATE MATIKA. učebnice pro 2. stupeň ZŠ a víceletá gymnázia MATE MATIKA učebnice pro. stupeň ZŠ a víceletá gymnázia OBSAH Zlomky 5 Rovnice Množiny 7 Jazyk písmen II 7 Rodina Mnohoúhelníky 50 Trojúhelník I Prvočísla I 5 Záporná čísla 7 Mocniny 55 Dělitelnost 0

Více

Podmínky pro hodnocení žáka v předmětu matematika

Podmínky pro hodnocení žáka v předmětu matematika Podmínky pro hodnocení žáka v předmětu matematika Společné ustanovení pro všechny třídy čtyřletého studia a 5. až 8. ročníku osmiletého studia: Žákům bude vyučujícími umožněno doplnit chybějící klasifikaci

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Trojúhelník má jeden úhel tupý,

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C 61. ročník Matematické olympiády Návody k domácí části I. kola kategorie C 1. Najděte všechny trojčleny p(x) = ax 2 + bx + c, které dávají při dělení dvojčlenem x + 1 zbytek 2 a při dělení dvojčlenem x

Více

SOUŘADNICE BODU, VZDÁLENOST BODŮ

SOUŘADNICE BODU, VZDÁLENOST BODŮ Registrační číslo projektu: CZ.1.07/1.1.14/01.001 SOUŘADNICE BODU, VZDÁLENOST BODŮ SOUŘADNICE BODU NA PŘÍMCE ČÍSELNÁ OSA na přímce je určena počátkem O a jednotkou měření. Libovolný bod A na číselné ose

Více

MATEMATIKA Charakteristika vyučovacího předmětu

MATEMATIKA Charakteristika vyučovacího předmětu MATEMATIKA Charakteristika vyučovacího předmětu Matematika se vyučuje ve všech ročnících. V primě a sekundě je vyučováno 5 hodin týdně, v tercii a kvartě 4 hodiny týdně. Předmět je tedy posílen o 2 hodiny

Více

Očekávané výstupy RVP Školní výstupy Učivo Poznámky (průřezová témata, mezipředmětové vztahy apod.)

Očekávané výstupy RVP Školní výstupy Učivo Poznámky (průřezová témata, mezipředmětové vztahy apod.) Vzdělávací obsah vyučovacího předmětu MATEMATIKA pro 2. stupeň: 6. ročník Očekávané výstupy RVP Školní výstupy Učivo Poznámky (průřezová témata, M-9-3-06 Načrtne a sestrojí rovinné útvary. M-9-3-01 Zdůvodňuje

Více

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,

. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu, Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie

Více

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,

Více

Matematika a její aplikace. Matematika a její aplikace

Matematika a její aplikace. Matematika a její aplikace Oblast Předmět Období Časová dotace Místo realizace Charakteristika předmětu Průřezová témata Matematika a její aplikace Matematika a její aplikace 1. 9. ročník 1. ročník 4 hodiny týdně 2. 5. ročník 5

Více

SEMINÁŘ K VÝUCE MATEMATIKA 1

SEMINÁŘ K VÝUCE MATEMATIKA 1 Charakteristika vyučovacího předmětu SEMINÁŘ K VÝUCE MATEMATIKA 1 Vzdělávací oblast: Vzdělávací obor: Název vyučovacího předmětu: Časové vymezení předmětu: Matematika a její aplikace Matematika a její

Více

4.3.2 Koeficient podobnosti

4.3.2 Koeficient podobnosti 4.. Koeficient podobnosti Předpoklady: 04001 Př. 1: Která z následujících tvrzení jsou správná? a) Každé dvě úsečky jsou podobné. b) Každé dva pravoúhlé trojúhelníky jsou podobné. c) Každé dva rovnostranné

Více

Příprava na pololetní písemnou práci 9. ročník

Příprava na pololetní písemnou práci 9. ročník Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09

Více

2. Mocniny 2.1 Mocniny a odmocniny

2. Mocniny 2.1 Mocniny a odmocniny . Mocniny. Mocniny a odmocniny 8. ročník. Mocniny a odmocniny Příklad : Vyjádřete jako mocninu : a)... b) (- ). (- ). (- ). (- ). (- ). (- ) c)...a.a.a.a.b.b.b.b d)..a.b e) a. a. a. a Příklad : Vyjádřete

Více