Pružnost a pevnost. 2. přednáška, 10. října 2016

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Pružnost a pevnost. 2. přednáška, 10. října 2016"

Transkript

1 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné oteplení

2 Rovnoměrně ohýbaný prut původní délka prutu L

3 Rovnoměrně ohýbaný prut konstantní průře vnější momenty působí poue na koncích poloměr křivosti R M neměněná délka střednice L R M

4 Rovnoměrně ohýbaný prut protažení vlákna L relativní protažení vlákna L L R R M nová délka vlákna L L R R M

5 Rovnoměrně ohýbaný prut relativní protažení vlákna 1 R R 1 R křivost prutu L deformace vlákna je úměrná míře křivení prutu, charakteriované křivostí vdálenosti vlákna od osy prutu (v průmětu do svislé roviny x) deformace se mění po výšce průřeu lineárně

6 Rovnoměrně ohýbaný prut deformace se mění po výšce průřeu lineárně uplatníme Hookeův ákon: E E také napětí se mění po výšce průřeu lineárně M M

7 Rovnoměrně ohýbaný prut podmínka rovnováhy: výslednicí napětí v průřeu musí být moment M M M M

8 Rovnoměrně ohýbaný prut ohybový moment jako výslednice napětí v průřeu těžišťová osa rovnoběžná s osou y y x h b

9 Rovnoměrně ohýbaný prut ohybový moment jako výslednice napětí v průřeu y x h d E b

10 Rovnoměrně ohýbaný prut ohybový moment jako výslednice napětí v průřeu y x d h b d b ohybový moment k těžišťové ose y: příspěvek k momentu: b d h /2 h /2 M b d

11 Vtah mei ohybovým momentem a křivostí E obdélníkový průře h/ 2 h/ 2 M b E b EI 2 d d h/ 2 h/ 2 moment setrvačnosti průřeu k těžišťové ose y I b d b 3 b h /2 h/2 h /2 3 h / h/ 2 h/ 2 bh

12 Vtah mei ohybovým momentem a křivostí E obecný průře max M b E b EI 2 d d min max min moment setrvačnosti průřeu k těžišťové ose y max 2 2 I b d da min A dvojný integrál

13 Vtah mei ohybovým momentem a křivostí M EI ohybový moment ohybová tuhost průřeu EI křivost (charakteriuje deformaci ohybem) modul pružnosti (charakteriuje tuhost materiálu) moment setrvačnosti (charakteriuje geometrii průřeu)

14 Přehled odvoených vtahů pro rovnoměrný ohyb M E I L M EI M EI

15 Základní veličiny a rovnice přemístění vnější síly geometrické rovnice statické rovnice přetvoření materiálové rovnice (fyikální, konstitutivní) vnitřní síly

16 Základní veličiny a rovnice pro rovnoměrně ohýbaný prut EI M L M ohybová tuhost prutu / L (ve stavební mechanice se M M pod pojmem ohybová tuhost obvykle roumí ) 2 EI / L M EI M

17 Hypotéa o achování rovinnosti průřeu

18 Hypotéa o achování rovinnosti průřeu

19 Hypotéa o achování rovinnosti průřeu proatím předpokládáme, že každý průře ůstává i po deformaci rovinný

20 Deformace prutu v rovině

21 Přemístění průřeu v rovině x

22 Přemístění průřeu v rovině x wx x ux x

23 Deformace segmentu prutu elementární segment prutu před deformací po deformaci ohybem x y x x křivost lim d x 0 x dx

24 Přehled vtahů pro jednoduchý ohyb rovnoměrný ohyb M E I L nerovnoměrný ohyb x d dx x x, x Mx x, E x I x M EI M x EI x x

25 Příklad - výpočet napětí a ohybu 50 mm f 200 kn/m 25 mm 400 mm L 4 m 300 mm Zjistěte, ve které oblasti nosníku vniká maximální normálové napětí, a určete jeho velikost.

26 Příklad - výpočet napětí a ohybu 50 mm f 200 kn/m 25 mm 400 mm L 4 m 300 mm Mx x, I x

27 Příklad - výpočet napětí a ohybu 50 mm f 200 kn/m 25 mm 400 mm L 4 m 300 mm f L x f M x x f x Lx x

28 Příklad - výpočet napětí a ohybu 50 mm f 200 kn/m 25 mm 400 mm L 4 m 300 mm max 2 L f L M x M M 2 8 max

29 Maximální napětí a ohybu M I max max max M W max e pružný průřeový modul W např. pro obdélníkový průře e W I e max bh h /12 bh /

30 Vliv teplotních měn obvyklý předpoklad: měna teploty je konstantní po délce prutu a lineární po výšce průřeu T h... měna teploty horních vláken T d... měna teploty dolních vláken

31 Vliv teplotních měn obvyklý předpoklad: měna teploty je konstantní po délce prutu a lineární po výšce průřeu T h... měna teploty horních vláken T d... měna teploty dolních vláken

32 Vliv teplotních měn obvyklý předpoklad: měna teploty je konstantní po délce prutu a lineární po výšce průřeu T h T T... nerovnoměrné oteplení d h T s... měna teploty střednice T d

33 Vliv teplotních měn obvyklý předpoklad: měna teploty je konstantní po délce prutu a lineární po výšce průřeu T h T d T h T s T d roklad na dva stavy

34 Vliv teplotních měn obvyklý předpoklad: měna teploty je konstantní po délce prutu a lineární po výšce průřeu T h T d T h T s T h T s T s T d T s Td Ts

35 Vliv teplotních měn obvyklý předpoklad: měna teploty je měna teploty dolních vláken T d Th T x, Ts h konstantní po délce prutu a lineární po výšce průřeu měna teploty horních vláken měna teploty v obecném bodě měna teploty ve střednici prutu teplotní gradient (spád) po výšce prutu

36 měna teploty: Vliv teplotních měn T d Th T x, Ts h deformace působená měnou teploty: T T x, T x, T h d h T T T s T Ts T poměrné protažení od oteplení v obecném bodě poměrné protažení střednice od středního oteplení Ts křivost od teplotního gradientu T

37 Vliv teplotních měn poměrné protažení střednice je součtem příspěvků odpovídajících normálové síle a střednímu oteplení: s x N x EA x Ts (vi přednáška o tahu-tlaku) podobně křivost střednice je součtem příspěvků odpovídajících ohybovému momentu a teplotnímu gradientu: x M x EI x T M x EI x x T

38 Příklad nerovnoměrné oteplení E T 210 GPa K 6 1 T h 40 K T d 20 K L 4 m 50 mm 25 mm 300 mm 400 mm Zjistěte, jak se nosník pod vlivem nerovnoměrného oteplení deformuje a jaké v něm vniká napětí. Řešte obdobnou úlohu i pro nosník vetknutý na obou koncích.

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

Téma 6 Normálová napětí v prutech namáhaných na ohyb

Téma 6 Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita,.ročník bakalářského studia Téma 6 Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Integrální definice vnitřních sil na prutu

Integrální definice vnitřních sil na prutu Přednáška 04 Integrální definice vnitřních sil Ohb prutu v rovinách x, x Šikmý ohb Kombinace normálové síl s ohbem Poloha neutrální os Jádro průřeu Příklad Copright (c) 011 Vít Šmilauer Cech Technical

Více

Sada 2 Dřevěné a ocelové konstrukce

Sada 2 Dřevěné a ocelové konstrukce Stř ední škola stavební Jihlava Sada 2 Dřevěné a ocelové konstrukce 20. Prostý ohb Digitální učební materiál projektu: SŠS Jihlava šablon registrační číslo projektu:cz.1.09/1.5.00/34.0284 Šablona: III/2

Více

Přednáška 10. Kroucení prutů

Přednáška 10. Kroucení prutů Přednáška 10 Kroucení prutů 1) Kroucení prutu s kruhovým průřezem 2) Volné kroucení prutu s průřezem a) Masivním b) Tenkostěnným otevřeným, střed smyku c) Tenkostěnným uzavřeným 3) Ohybové (vázané) kroucení

Více

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut

2.13 Rovinný obloukový nosník zatížený v rovině = staticky určitě podepřený rovinný obloukový prut .13 Rovinný obloukový nosník atížený v rovině = staticky určitě podepřený rovinný obloukový prut (střednice-rovinná křivka, atížení v rovině střednice) Geometrie obloukového prutu Poloha průřeu: s x =

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Přednáška 08. Obecná trojosá napjatost

Přednáška 08. Obecná trojosá napjatost Přednáška 8 Obecná trojosá napjatost Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Objemový modul pružnosti Oedometrický modul pružnosti Hlavní napětí, hlavní deformace

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

3. Způsoby namáhání stavebních konstrukcí

3. Způsoby namáhání stavebních konstrukcí 3. Způsoby namáhání stavebních konstrukcí Každému přetvoření stavební konstrukce odpovídá určitý druh namáhání, který poznáme podle výslednice vnitřních sil ve vyšetřovaném průřezu. Lze ji obecně nahradit

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

Téma 7 Smyková napětí v ohýbaných nosnících

Téma 7 Smyková napětí v ohýbaných nosnících Pružnost a plasticita,.ročník bakalářského studia Téma 7 Smková napětí v ohýbaných nosnících Základní vtah a předpoklad řešení Výpočet smkového napětí vbraných průřeů Dimenování nosníků namáhaných na smk

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

Stavební mechanika přednáška, 10. dubna 2017

Stavební mechanika přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Jednoosá tahová zkouška betonářské oceli

Jednoosá tahová zkouška betonářské oceli Přednáška 06 epružné chování materiálu Ideálně pružnoplastický model Plastická analýza průřezu ohýbaného prutu Mezní plastický stav konstrukce Plastický kloub Interakční diagram, M Příklady Copyright (c)

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Pružnoplastická analýza

Pružnoplastická analýza Pružnost a pevnost 132PRPE Přednášk Pružnoplastická analýa Nepružné cování materiálů. Pružnoplastický a plastický stav průřeu oýbanýc prutů. Mení plastická analýa nosníku. Petr Kabele České vsoké učení

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

12. Prostý krut Definice

12. Prostý krut Definice p12 1 12. Prostý krut 12.1. Definice Prostý krut je označení pro namáhání přímého prizmatického prutu, jestliže jsou splněny prutové předpoklady, příčné průřezy se nedeformují, pouze se vzájemně natáčejí

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Smyková napětí v ohýbaných nosnících

Smyková napětí v ohýbaných nosnících Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk

Více

Pružnost a plasticita CD03

Pružnost a plasticita CD03 Pružnost a plasticita CD03 Luděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechaniky tel: 541147368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky 13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

Optimalizace vláknového kompozitu

Optimalizace vláknového kompozitu Optimalizace vláknového kompozitu Bc. Jan Toman Vedoucí práce: doc. Ing. Tomáš Mareš, Ph.D. Abstrakt Optimalizace trubkového profilu z vláknového kompozitu při využití Timošenkovy hypotézy. Hledání optimálního

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce 133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NOSNÍKY Předmět: Ročník: Vytvořil: Datum: MECHNIK PRVNÍ ŠČERBOVÁ M. PVELK V. 15. ZÁŘÍ 2012 Název zpracovaného celku: NOSNÍKY ) NOSNÍKY ZTÍŽENÉ OBECNOU SOUSTVOU SIL Obecný postup při matematickém řešení reakcí

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:

FAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ

SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ h Předmět: Ročník: Vytvořil: Dtum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 11. SRPNA 2013 Název zprcovného celku: SLOŽENÁ NAMÁHÁNÍ SLOŽENÁ NAMÁHÁNÍ Ke sloţenému nmáhání dojde tehdy, vyskytnou-li se součsně

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová

Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová Pružnost a plasticita Martin Krejsa, Lenka Lausová a Vladimíra Michalcová Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se

Více

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT

NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT Φd Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 8. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA KRUT NAMÁHÁNÍ NA KRUT KRUT KRUHOVÝCH PRŮŘEZŮ Součást je namáhána na krut

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza tenzometrického snímače ve tvaru háku Autor: Michal Šofer Verze 0 Ostrava 20 Zadání: Proveďte

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Hydromechanické procesy Hydrostatika

Hydromechanické procesy Hydrostatika Hydromechanické procesy Hydrostatika M. Jahoda Hydrostatika 2 Hydrostatika se zabývá chováním tekutin, které se vzhledem k ohraničujícímu prostoru nepohybují - objem tekutiny bude v klidu, pokud výslednice

Více

Rekapitulace princip virtuálních sil pro tah/tlak

Rekapitulace princip virtuálních sil pro tah/tlak SMA Přednáška Doplňková virtuální práce momentů Metody integrace dvou spojitých funkcí Doplňková virtuální práce posouvajících sil Vliv rovnoměrné a nerovnoměrné teploty Formulace principu virtuálních

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše

T leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

Přijímací zkouška do navazujícího magisterského programu FSv ČVUT

Přijímací zkouška do navazujícího magisterského programu FSv ČVUT - 1 - Pokyny k vyplnění testu: Na každé stránce vyplňte v záhlaví kód své přihlášky Ke každé otázce jsou vždy čtyři odpovědi, z nichž pouze právě jedna je správná o Za správnou odpověď jsou 4 body o Za

Více

PROBLÉMY STABILITY. 9. cvičení

PROBLÉMY STABILITY. 9. cvičení PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější

Více

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ.

2.8 Zobecnění vztahů mezi zatížením a vnitřními silami prutu (rovinný prut zatížený v rovině) df x =f x.ds df z =f z.ds. M+dM x. ds=r.dϕ. .8 Zobecnění vtahů mei atížením a vnitřními silami prutu (rovinný prut atížený v rovině) µ x N V M dm µ df df x =R. MdM x NdN VdV Náhradní břemena: df x = x. df =. dm µ =µ. Obecný rovinný prut: spojité

Více

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup

5 SLOUPY. Obr. 5.1 Průřezy ocelových sloupů. PŘÍKLAD V.1 Ocelový sloup SLOUPY. Obecné ponámk Sloup jsou hlavními svislými nosnými element a přenášejí atížení vodorovných konstrukčních prvků do ákladové konstrukce. Modulové uspořádání načně ávisí na unkci objektu a jeho dispoičním

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

MODEL ZATLAČOVANÉHO HŘEBÍKU

MODEL ZATLAČOVANÉHO HŘEBÍKU MODEL ZATLAČOVANÉHO HŘEBÍKU MODEL OF DRIVEN NAIL Petr Frantík Abstrakt Článek pojednává o dynamickém nelineárním modelu hřebíku zatlačovaného do dřeva a studii závislosti výsledku simulace na rychlosti

Více

Analýza stavebních konstrukcí

Analýza stavebních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV STAVEBNÍ MECHANIKY FACULTY OF CIVIL ENGINEERING INSTITUTE OF STRUCTURAL MECHANICS ANALÝZA TRADIČNÍCH DŘEVĚNÝCH KONSTRUKCÍ

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLASTISLAV SALAJKA PETR HRADIL ALEŠ NEVAŘIL PRUŽNOST A PEVNOST MODUL BD02-MO2 TEORIE NAMÁHÁNÍ PRUTŮ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VLASTISLAV SALAJKA PETR HRADIL ALEŠ NEVAŘIL PRUŽNOST A PEVNOST MODUL BD02-MO2 TEORIE NAMÁHÁNÍ PRUTŮ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FKULT STVEBNÍ VLSTISLV SLJK PETR HRDIL LEŠ NEVŘIL PRUŽNOST PEVNOST ODUL BD0-O TEORIE NÁHÁNÍ PRUTŮ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRY S KOBINOVNOU FOROU STUDI Teorie namáhání

Více

1 Tuhé těleso a jeho pohyb

1 Tuhé těleso a jeho pohyb 1 Tuhé těleso a jeho pohyb Tuhé těleso (TT) působením vnějších sil se nemění jeho tvar ani objem nedochází k jeho deformaci neuvažuje se jeho částicová struktura, těleso považujeme za tzv. kontinuum spojité

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více