PROBLÉMY STABILITY. 9. cvičení

Rozměr: px
Začít zobrazení ze stránky:

Download "PROBLÉMY STABILITY. 9. cvičení"

Transkript

1 PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější ke ztrátě stability dochází rovněž při namáhání ohybem, nebo též při namáhání smykem (viz další obr.). Obr. Ztráta stability při tlaku Obr. Ztráta stability při ohybu Obr. Ztráta stability při smyku

2 Všeobecně může ztráta stability nastat vždy u štíhlých prvků vzdorujících tlakovým napětím. Tak např. při centrickém tlaku působí tlaková napětí v celém průřezu, při ohybu je část průřezu tažená a druhá část tlačená, namáhání smykem lze převést na hlavní napětí v jednom směru tahová, v druhém opět tlaková (viz obr.). Obr. Tlaková napětí v prvku Prvky ohrožené ztrátou stability vykazují sníženou únosnost, jak bude dále vyloženo.

3 Vzpěr celistvých prutů (centricky tlačených) Pruty namáhané vzpěrným tlakem (viz obr.) se posuzují podle podmínky N Sd N b, Rd, Obr. Vzpěrný tlak kde N Sd... návrhová tlaková síla, N b,rd... vzpěrná únosnost, která se vypočte (pro průřezy tříd, a 3) A f y Nb, Rd χ, γ M kde A... průřezová plocha, f y... mez kluzu, γ M... dílčí součinitel spolehlivosti materiálu (γ M,5 viz dříve), χ... součinitel vzpěrnosti (viz dále). Z předchozích cvičení si připomeneme výpočet únosnosti v prostém tlaku A f y Nc, Rd. γ M 0 Porovnáním vztahů pro N c,rd a N b,rd shledáme, že do výpočtu vzpěrné únosnosti N b,rd vstupuje (kromě odlišného součinitele γ Mi ) především nově součinitel vzpěrnosti χ. Vzpěrná únosnost je oproti prostému tlaku zřejmě snížená součinitel vzpěrnosti tudíž nabývá hodnot χ,0. Postup výpočtu sestává z několika po sobě jdoucích kroků: ) stanovit vzpěrné délky L cr, ) stanovit kritické štíhlosti λ, 3) určit součinitel vzpěrnosti χ. ad ) Vzpěrné délky Vzpěrná délka L cr je délka náhradního, kloubově uloženého prutu (stejného průřezu), který má stejnou kritickou sílu jako vyšetřovaný prut. Poznámka Kritickou silou N cr rozumíme osovou sílu, při které nastává bifurkace (rozdvojení) stavu rovnováhy vnějších a vnitřních sil. Získá se řešením DR stability ideálního pružného přímého prutu. 3

4 Vzpěrnou délku je možné určit jako vzdálenost inflexních bodů průhybové křivky při vybočení, tj. délku jedné sinusové půlvlny (viz obr.). Vzpěrná délka se stanovuje obvykle z výrazu L cr β L, kde L...délka prutu, β...součinitel vzpěrné délky. V případě izolovaného prutu (s konstantním průřezem a konstantní osovou silou) závisí vzpěrná délka (resp. součinitel β) na okrajových podmínkách, tj. způsobu uložení (viz obr.). Obr. Základní případy vzpěrné délky V případě prutové soustavy je třeba počítat se ztrátou stability konstrukce jako celku. Jako příklad uvedeme portálový rám s kloubově podepřenými stojkami a tuze připojenou příčlí (viz obr.). Bylo by hrubou chybou brát vzpěrné délky stojek jako u izolovaného prutu (nahoře vetknutého, dole kloubově uloženého, tedy β 0,7)! Představíme si nejprve vybočení celé soustavy za předpokladu dokonale tuhé příčle, kdy stojky vybočují podobně jako izolovaný prut ovšem nahoře posuvně vetknutý, 4

5 dole kloubově podepřený, takže β,0. Ve skutečnosti je příčel poddajná, tvar ztráty stability je třeba korigovat průhybová křivka stojky, zakreslená v celé délce sinusové půlvlny, ukazuje, že součinitel vzpěrné délky β >,0. Konkrétní hodnotu neuvádíme, neboť ta závisí na poměru rozpětí a výšky rámu, jakož i na poměru tuhostí stojek a příčle viz Přílohu C k ČSN Obr. Vzpěrná délka stojky rámu Poznámka Při sledování nejnepříznivějšího stavu konstrukce je třeba si uvědomit, že vzpěrná únosnost je tím menší, čím je vzpěrná délka větší. 5

6 ad ) Kritické štíhlosti Poznámka Stanovení kritické štíhlosti λ (neboli štíhlostního poměru) vychází z obecné definice podle kritického napětí σ cr N cr / A, kterou zapisujeme E λ π, σ cr kde E je modul pružnosti v tahu, tlaku, A je průřezová plocha a N cr příslušná kritická síla. Kritické štíhlosti stanovujeme pro všechny reálné způsoby ztráty stability (a tudíž označujeme také odpovídajícím indexem). A) Uzavřené a plné průřezy Pruty uzavřeného nebo plného průřezu vybočují pouze ohybem v hlavních rovinách setrvačnosti mluvíme o tzv. rovinném vzpěru. Změnu polohy mezipodporového průřezu při ztrátě stability uvádíme na obr. Obr. Tvary ztráty stability a příslušné štíhlosti Říkáme, že prut vybočí kolmo k ose y, pak štíhlost (jakož všechny souvisící veličiny) označujeme indexem y; taktéž říkáme, že prut vybočí kolmo k ose z, potom příslušné veličiny označujeme analogicky indexem z. 6

7 Kritické štíhlosti se stanoví ze vzorců: A Lcr, y λ y Lcr, y, I i A Lcr, z λ z L, i y cr, z I z z y kde L cr,y, L cr,z... vzpěrné délky prutu pro vybočení kolmo k ose y, resp. kolmo k ose z (tj. v hlavních rovinách xz, xy), A... plocha průřezu, I y, I z... momenty setrvačnosti průřezu k ose y, resp. k ose z, I y iy, A I z iz... poloměry setrvačnosti průřezu k ose y, resp. k ose z. A B) Otevřené, dvouose symetrické průřezy Pruty s průřezem souměrným k oběma hlavním osám vykazují tři způsoby ztráty stability. Vybočují jednak ohybem v hlavních rovinách xz, xy tedy při rovinném vzpěru; dále se deformují zkroucením kolem podélné osy x mluvíme potom o tzv. prostorovém vzpěru. Změnu polohy průřezu při ztrátě stability uvádíme opět na obr. Obr. Tvary ztráty stability a příslušné štíhlosti Pro štíhlosti rovinného vzpěru λ y, λ z platí dříve uvedené vztahy; štíhlost prostorového vzpěru se stanoví z výrazu I p I p λ ω, Iω GIt Iω It + + L π E L 5 cr, ω cr, ω 7

8 kde L cr,ω je vzpěrná délka při zkroucení, I p, I ω, I t jsou průřezové charakteristiky, G a E jsou materiálové konstanty. Vzpěrná délka při zkroucení L cr,ω se (pro základní případy uložení v kroucení) stanovuje analogicky jako při vybočení ohybem. Přitom volné deplanaci odpovídá kloubové uložení a nulové deplanaci odpovídá vetknutí, volnému pootočení kolem podélné osy odpovídá volný konec a zabránění pootočení odpovídá podepření. Průřezové charakteristiky jsou následující: I t...moment tuhosti v prostém kroucení, I ω...výsečový moment setrvačnosti (ke středu smyku), I p...polární moment setrvačnosti ke středu smyku, který se vypočte I I + I A a, p y z + kde I y, I z... momenty setrvačnosti k hlavním osám y, z, A... průřezová plocha, a C g C s... vzdálenost středu smyku C s od těžiště průřezu C g. Materiálové konstanty značí: E...modul pružnosti v tahu, tlaku, G...modul pružnosti ve smyku. Poznámka Případ B) se týká i průřezů středově symetrických. C) Otevřené, jednoose symetrické průřezy Pruty s průřezem souměrným k jedné ose vykazují dva způsoby ztráty stability: rovinný vzpěr ohybem v rovině symetrie, prostorový vzpěr kroucením současně s ohybem v opačné rovině. Změnu polohy průřezu uvádíme opět na obr. Obr. Tvary ztráty stability a příslušné štíhlosti 8

9 Pro štíhlost rovinného vzpěru λ y platí opět dříve uvedený vztah; štíhlost prostorového vzpěru λ zω se stanoví podle základních štíhlostí λ z, λ ω, vyjádřených rovněž pomocí předchozích vztahů. Tak tedy γ, kde λz ω λ z + κ + κ a γ + κ, i p λω κ, λ z i p iy + iz + a I p A je polární poloměr setrvačnosti ke středu smyku. Poznámka Jestliže je osou symetrie osa y, použijí se vzorce s příslušnou záměnou indexů. D) Otevřené, nesymetrické průřezy Pruty s průřezem nesouměrným vykazují jeden způsob ztráty stability prostorový vzpěr ohybem v obou hlavních rovinách současně s kroucením. Změna polohy průřezu je zřejmá z obr. Obr. Tvar ztráty stability a příslušná štíhlost Kritickou štíhlost λ yzω neuvádíme posluchače odkazujeme na příslušná ustanovení ČSN

10 ad 3) Součinitel vzpěrnosti Poznámka Součinitel vzpěrnosti je odvozen na základě toho, že skutečný prut vykazuje (oproti ideálnímu) řadu nedokonalostí tzv. imperfekcí (geometrických, strukturálních a konstrukčních). Všechny tyto imperfekce se nahradí jedinou ekvivalentní geometrickou imperfekcí v podobě počátečního zakřivení prutu s maximální výchylkou e 0 (viz obr.). Řešením DR stability počátečně zakřiveného prutu se získá zvětšená výchylka e, na které vyvolává tlaková síla N přídavný ohybový moment M II (podle teorie. řádu). Napětí od tohoto složeného namáhání se pak položí rovno mezi kluzu f y. Obr. Prut s počátečním zakřivením Součinitel vzpěrnosti se určuje na základě poměrné štíhlosti a křivky vzpěrné pevnosti, a to pro každý předpokládaný způsob vybočení prutu. Poměrná štíhlost je dána vztahem λ f y λ (který vyplývá z obecného λ ), λ σ cr kde λ...kritická štíhlost, λ...srovnávací štíhlost podle vztahu E λ 93, 9 ε (který vyplývá z obecného λ π ), 35 ε. f y f y Křivkou vzpěrné pevnosti nazýváme graf závislosti součinitele vzpěrnosti χ na poměrné štíhlosti λ. Rozlišují se celkem 4 křivky vzpěrné pevnosti (označené písmeny a až d viz obr.); jejich diferenciace je zavedena z důvodu rozdílné míry imperfekcí. Použití vhodné křivky je dáno typem průřezu a způsobem vybočení. Pro rovinný vzpěr jsou vzpěrné křivky uvedeny v přiloženém archu, pro prostorový vzpěr se bere vzpěrná křivka b. 0

11

12

13 Obr. Křivky vzpěrné pevnosti Přiřazená vzpěrná křivka je zahrnuta v součiniteli imperfekce α (viz tab.), který je odvozen z velikosti počáteční výchylky prutu e 0. Tab. Součinitel imperfekce Vzpěrná křivka a b c d α 0, 0,34 0,49 0,76 Součinitel vzpěrnosti se tedy určí z výrazu χ, s omezením χ,0, φ + φ λ [ ] kde,5 + α ( λ 0, ) φ 0 + λ. Poznámka Číselné hodnoty součinitele χ jsou též uvedeny v přiloženém archu. 3

14 Příklad Zadání. Posuďte centricky tlačený sloup průřezu HE 300 B z oceli S 35 o celkové délce L 6 m. Sloup je zatížen návrhovou silou N Sd 00 kn a podepřen podle obr. Řešení K výpočtu použijeme (pro ocel S 35) následující materiálové charakteristiky: f y 35 MPa, γ M,5. Hodnoty průřezových charakteristik přebíráme ze statických tabulek: A 4, mm, I t, mm 4, i y 30 mm, I ω,69. 0 mm 6, i z 75,8 mm, I p mm 4. Jak bylo uvedeno, ve sloupu působí tlaková síla N Sd 00 kn máme prokázat podmínku spolehlivosti A f y N Sd Nb, Rd χ. γ M Poznámka Klasifikaci průřezu nepředvádíme lze snadno ověřit, že průřez HE 300 B spadá do třídy. Vzpěrnou únosnost N b,rd stanovíme na základě součinitele vzpěrnosti χ, který vypočteme popsaným postupem pro každý z možných způsobů vybočení. Řešíme dvouose symetrický průřez vybočení nastává ) ohybem k ose y, ) ohybem k ose z, 3) zkroucením (ω). 4

15 Nejprve stanovíme vzpěrné délky podle podmínek uložení prutu (jak v koncových průřezech a a b, tak v průřezu c uprostřed délky), viz obr. Takže L cr,y 6000 mm, L cr,z 3000 mm, L cr,ω 6000 mm. Dále stanovíme kritické štíhlosti Lcr, y 6000 λ y 46,, i 30 y Lcr, z 3000 λ z 39,6, i 75,8 z I 6 p λ ω 5,8. I 6 ω It +,69 0, L cr, ω Následuje vyčíslení poměrných štíhlostí λ y 46, λ y 0,49, λ 93,9 λz 39,6 λz 0,4, λ 93,9 λω 5,8 λω 0,56, λ 93,9 5

16 kde λ 93,9 ε 93, 9 je srovnávací štíhlost, 35 ε,0. f y Nyní přiřadíme vzpěrné křivky (a vypíšeme příslušné součinitele imperfekce α ): pro rovinný vzpěr použijeme přiložený arch (tab. 6.9) kritériím h / b,0, a t f 9 00 (u válcovaných I profilů) odpovídá 3. řádek, čili pro vybočení k ose y křivka b α 0,34, vybočení k ose z křivka c α 0,49; pro prostorový vzpěr křivka b α 0,34. Konečně stanovíme součinitele vzpěrnosti: χ y φ + φ λ 0, ,669 0,49 y kde φ 0,5 + α ( λ 0,) y y 0,889, [ + λ ] 0,5 [ + 0,34 ( 0,49 0,) + 0,49 ] 0, 669 y y y χ z φ + φ λ 0,64 + kde φ 0,5 + α ( λ 0,) χ 0,887, z z z 0,64 0,4 z z z [ + λ ] 0,5 [ + 0,49 ( 0,4 0,) + 0,4 ] 0, 64 0,78 + kde φ 0,5 + α ( λ 0,) 0,857, ω φω + φω λω 0,78 0,56 ω ω ω [ + λ ] 0,5 [ + 0,34 ( 0,56 0,) + 0,56 ] 0, 78 Posouzení se provede na základě nejmenšího vzpěrnostního součinitele χ y χ min χ z 0,857. χ ω Vzpěrná únosnost A f 3 y 4, Nb, Rd χ 0, kn N Sd 00 kn γ M,5 vyhovuje. ; ;. 6

17 Závěrečné poznámky ) Je všeobecně účelné, aby (kritická) štíhlost tlačeného prutu nepřekročila hodnotu doporučené mezní štíhlosti viz ČSN Důvodem je eliminace chvění (při nízkých kmitočtech a velkých amplitudách), jakož i nadměrného přetvoření od vlastní tíhy. Ze stejného důvodu jsou ustanoveny i mezní štíhlosti prutů tažených. ) V zájmu dodržení litery citované normy poopravíme matematický zápis některých veličin. Vzpěrná únosnost se píše ve tvaru β A A f y Nb, Rd χ, γ M kde β A pro průřezy tříd, a 3, β A A eff / A pro průřezy třídy 4, kde A eff je tzv. efektivní průřezová plocha; dále pro poměrnou štíhlost platí vztah β A f y λ λ β A. σ λ cr 7

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

Klasifikace rámů a složitějších patrových konstrukcí

Klasifikace rámů a složitějších patrových konstrukcí Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

K výsečovým souřadnicím

K výsečovým souřadnicím 3. cvičení K výsečovým souřadnicím Jak již bylo řečeno, výsečové souřadnice přiřazujeme bodům na střednici otevřeného průřezu, jejich soustava je dána pólem B a výsečovým počátkem M 0. Velikost výsečové

Více

Šroubovaný přípoj konzoly na sloup

Šroubovaný přípoj konzoly na sloup Šroubovaný přípoj konzoly na sloup Připojení konzoly IPE 180 na sloup HEA 220 je realizováno šroubovým spojem přes čelní desku. Sloup má v místě přípoje vyztuženou stojinu plechy tloušťky 10mm. Pro sloup

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl regionu (NUTS2) hl. m. Praha (JPD) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován Evropským

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury.

Statika 2. Vybrané partie z plasticity. Miroslav Vokáč 2. prosince ČVUT v Praze, Fakulta architektury. ocelových 5. přednáška Vybrané partie z plasticity Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 2. prosince 2015 Pracovní diagram ideálně pružného materiálu ocelových σ

Více

SPOJE OCELOVÝCH KONSTRUKCÍ

SPOJE OCELOVÝCH KONSTRUKCÍ 2. cvičení SPOJE OCELOVÝCH KONSTRUKCÍ Na spojování prvků ocelových konstrukcí se obvykle používají spoje šroubové (bez předpětí), spoje třecí a spoje svarové. Šroubové spoje Základní pojmy. Návrh spojovacího

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

4. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

4. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 4. přednáška OCELOVÉ KOSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger VZPĚRÁ ÚOSOST TLAČEÝCH PRUTŮ 1) Centrický tlak - Vzpěrná únosnost

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce

Skořepinové konstrukce úvod. Skořepinové konstrukce výpočetní řešení. Zavěšené, visuté a kombinované konstrukce 133 BK4K BETONOVÉ KONSTRUKCE 4K Betonové konstrukce BK4K Program výuky Přednáška Týden Datum Téma 1 40 4.10.2011 2 43 25.10.2011 3 44 12.12.2011 4 45 15.12.2011 Skořepinové konstrukce úvod Úvod do problematiky

Více

Prvky betonových konstrukcí BL01 11 přednáška

Prvky betonových konstrukcí BL01 11 přednáška Prvky betonových konstrukcí BL01 11 přednáška Mezní stavy použitelnosti (MSP) Použitelnost a trvanlivost Obecně Kombinace zatížení pro MSP Stádia působení ŽB prvků Mezní stav omezení napětí Mezní stav

Více

Složení. Konstrukční ocel obsahuje okolo 0,2% C

Složení. Konstrukční ocel obsahuje okolo 0,2% C Složení Ocel - slitina železa a dalších prvků - nejdůležitější je uhlík - nekujná železa > 2,14 % C (litina) - kujná železa < 2,14% C Konstrukční ocel obsahuje okolo 0,2% C Nežádoucí prvky: P, S, O 2,

Více

3. Způsoby namáhání stavebních konstrukcí

3. Způsoby namáhání stavebních konstrukcí 3. Způsoby namáhání stavebních konstrukcí Každému přetvoření stavební konstrukce odpovídá určitý druh namáhání, který poznáme podle výslednice vnitřních sil ve vyšetřovaném průřezu. Lze ji obecně nahradit

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Řešený příklad: Nosník s kopením namáhaný koncovými momenty

Řešený příklad: Nosník s kopením namáhaný koncovými momenty Dokument: SX011a-CZ-EU Strana 1 z 7 Eurokód Vypracoval rnaud Lemaire Datum březen 005 Kontroloval lain Bureau Datum březen 005 Řešený příklad: Nosník s kopením namáhaný koncovými Tento příklad seznamuje

Více

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky 5. Návrh a posouzení sloupu vzpěrné délky 5. Návrh a posouzení sloupu např. válcovaný průřez HEB: 5.1. Výpočet osové síly N Ed zatížení stálá a proměnná působící na sloup v přízemí (tj. stropy všech příslušných

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

1 Použité značky a symboly

1 Použité značky a symboly 1 Použité značky a symboly A průřezová plocha stěny nebo pilíře A b úložná plocha soustředěného zatížení (osamělého břemene) A ef účinná průřezová plocha stěny (pilíře) A s průřezová plocha výztuže A s,req

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVENÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES SPORTOVNÍ HALA EXHIBITION

Více

Program dalšího vzdělávání

Program dalšího vzdělávání Program dalšího vzdělávání VZDĚLÁVÁNÍ LEŠENÁŘŮ Učební plán kurzu: Vzdělávání odborně způsobilých osob pro DSK MODUL A2 Projekt: Konkurenceschopnost pro lešenáře Reg. č.: CZ.1.07/3.2.01/01.0024 Tento produkt

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavebních konstrukcí Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavebních konstrukcí 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního

Více

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu.

3. Tenkostěnné za studena tvarované OK Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. 3. Tenkostěnné za studena tvarované O Výroba, zvláštnosti návrhu, základní případy namáhání, spoje, přístup podle Eurokódu. Tloušťka plechu 0,45-15 mm (ČSN EN 1993-1-3, 2007) Profily: otevřené uzavřené

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky

Statický výpočet postup ve cvičení. 5. Návrh a posouzení sloupu vzpěrné délky Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu vzpěrné délky Statický výpočet postup ve cvičení 5. Návrh a posouzení sloupu např. válcovaný průřez HEB: 5.1. Výpočet osové síly N Ed [stálé

Více

Uplatnění prostého betonu

Uplatnění prostého betonu Prostý beton -Uplatnění prostého betonu - Charakteristické pevnosti - Mezní únosnost v tlaku - Smyková únosnost - Obdélníkový průřez -Konstrukční ustanovení - Základová patka -Příklad Uplatnění prostého

Více

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady

Přednáška 05. Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Přednáška 05 Vybočení ideálně přímého prutu Vybočení prutu s počáteční deformací Okrajové podmínky a staticky neurčité případy Příklady Copyright (c) 011 Vít Šmilauer Czech Technical University in Prague,

Více

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti.

9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. 9. Spřažené ocelobetonové nosníky Spřažené ocelobetonové konstrukce, návrh nosníků teorie plasticity a pružnosti. Spřažené ocelobetonové konstrukce (ČSN EN 994-) Spřažené nosníky beton (zejména lehký)

Více

Diskrétní řešení vzpěru prutu

Diskrétní řešení vzpěru prutu 1 z 5 Diskrétní řešení vzpěru prutu Discrete solution of beam buckling Petr Frantík Abstract Here is described discrete method for solution of beam buckling. The beam is divided into a number of tough

Více

Různé druhy spojů a spojovací součásti (rozebíratelné spoje)

Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Různé druhy spojů a spojovací součásti (rozebíratelné spoje) Kolíky, klíny, pera, pojistné a stavěcí kroužky, drážkování, svěrné spoje, nalisování aj. Nýty, nýtování, příhradové ocelové konstrukce. Ovládací

Více

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015

Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem STATICKÝ POSUDEK. srpen 2015 2015 STAVBA STUPEŇ Stavební úpravy bytu č. 19, Vrbová 1475, Brandýs nad Labem DSP STATICKÝ POSUDEK srpen 2015 ZODP. OSOBA Ing. Jiří Surovec POČET STRAN 8 Ing. Jiří Surovec istruct Trabantská 673/18, 190

Více

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů

Sylabus přednášek OCELOVÉ KONSTRUKCE. Vzpěrná pevnost skutečného prutu. Obsah přednášky. Únosnost tlačeného prutu. Výsledky zkoušek tlačených prutů Sylabus přednášek OCELOVÉ KONSTRUKCE Studijní program: STAVEBNÍ INŽENÝRSTVÍ pro bakalářské studium Kód předmětu: K134OK1 4 kredity (2 + 2), zápočet, zkouška Pro. Ing. František ald, CSc., místnost B 632

Více

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání

Prvky betonových konstrukcí BL01 12 přednáška. Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky betonových konstrukcí BL01 12 přednáška Prvky namáhané kroutícím momentem Prvky z prostého betonu Řešení prvků při místním namáhání Prvky namáhané kroucením Typy kroucených prvků Prvky namáhané kroucením

Více

Prvky betonových konstrukcí BL01 10 přednáška

Prvky betonových konstrukcí BL01 10 přednáška Prvy betonových onstrucí BL0 0 přednáša ŠTÍHLÉ TLAČENÉ PRVKY chování štíhlých tlačených prutů chování štíhlých onstrucí metody vyšetřování účinů 2. řádu ŠTÍHLÉ TLAČENÉ PRVKY POJMY ztužující a ztužené prvy

Více

NCCI: Obecná metoda pro posouzení příčné stability rámů

NCCI: Obecná metoda pro posouzení příčné stability rámů CCI: Obecná metoda pro posouzení příčné stability rámů S032a-CZ-EU CCI: Obecná metoda pro posouzení příčné stability rámů Tento CCI dokument vysvětluje obecnou metodu presentovanou v 6.3.4 z E1993-1-1

Více

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami.

Roznášení svěrné síly z hlav, resp. matic šroubů je zajištěno podložkami. 4. cvičení Třecí spoje Princip třecích spojů. Návrh spojovacího prvku V třecím spoji se smyková síla F v přenáší třením F s mezi styčnými plochami spojovaných prvků, které musí být vhodně upraveny a vzájemně

Více

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti.

Stěnové nosníky. Obr. 1 Stěnové nosníky - průběh σ x podle teorie lineární pružnosti. Stěnové nosníky Stěnový nosník je plošný rovinný prvek uložený na podporách tak, že prvek je namáhán v jeho rovině. Porovnáme-li chování nosníků o výškách h = 0,25 l a h = l, při uvažování lineárně pružného

Více

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky

13. Zděné konstrukce. h min... nejmenší tloušťka prvku bez omítky 13. Zděné konstrukce Navrhování zděných konstrukcí Zděné konstrukce mají široké uplatnění v nejrůznějších oblastech stavebnictví. Mají dobrou pevnost, menší objemová hmotnost, dobrá tepelně izolační schopnost

Více

1.3.1 Výpočet vnitřních sil a reakcí pro nejnepříznivější kombinaci sil

1.3.1 Výpočet vnitřních sil a reakcí pro nejnepříznivější kombinaci sil OHYB NOSNÍKU - SVAŘOVANÝ PROFIL TVARU Ι SE ŠTÍHLOU STĚNOU (Posouzení podle ČSN 0-8) Poznámka: Dále psaný text je lze rozlišit podle tpu písma. Tpem písma Times Ne Roman normální nebo tučné jsou psané poznámk,

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

6 Mezní stavy únosnosti

6 Mezní stavy únosnosti 6 Mezní stavy únosnosti 6.1 Nosníky 6.1.1 Nosníky pozemních staveb Typické průřezy spřažených nosníků jsou na obr. 4. Betonová deska může být kompaktní nebo žebrová, případně může mít náběhy. Ocelový nosník

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

VZDĚLÁVACÍ KURZ SE ZAMĚŘENÍM NA PŘÍPRAVU NA PROFESNÍ KVALIFIKACI PROJEKTANT LEŠENÍ INFORMACE

VZDĚLÁVACÍ KURZ SE ZAMĚŘENÍM NA PŘÍPRAVU NA PROFESNÍ KVALIFIKACI PROJEKTANT LEŠENÍ INFORMACE INFORMACE MÍSTO KONÁNÍ: HOTEL SLAVIA, VLADIVOSTOCKÁ 1460/10, PRAHA 10. Organizace kurzu Kurz je rozdělen do 8 seminářů pátek sobota vždy po 6-ti vyučovacích hodinách v kombinované formě studia prezenční

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil.

Únosnosti stanovené níže jsou uvedeny na samostatné stránce pro každý profil. Směrnice Obsah Tato část se zabývá polyesterovými a vinylesterovými konstrukčními profily vyztuženými skleněnými vlákny. Profily splňují požadavky na kvalitu dle ČSN EN 13706. GDP KORAL s.r.o. může dodávat

Více

Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením

Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Dokument č. SX003a-CZ-EU Strana 1 z 8 Eurokód :200 Řešený příklad: Prostě uložený nosník s mezilehlým příčným podepřením Tento příklad podrobně popisuje posouzení prostého nosníku s rovnoměrným zatížením.

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

ÚPRAVY BYTU V PANELOVÉM DOMĚ Projekt pro stavební povolení

ÚPRAVY BYTU V PANELOVÉM DOMĚ Projekt pro stavební povolení Ing. Vladimír KOVÁČ autorizovaný statik Nad vodovodem 3258/2 100 31 Praha 10 kovac@az-statika.cz Vajdova 1031/5, 102 00 Praha 15 - Hostivař ÚPRAVY BYTU V PANELOVÉM DOMĚ Projekt pro stavební povolení STATICKÉ

Více

5. Aplikace výsledků pro průřezy 4. třídy.

5. Aplikace výsledků pro průřezy 4. třídy. 5. plikace výsledků pro průřez 4. tříd. eff / eff / Výsledk únosnosti se používají ve tvaru součinitele oulení ρ : ρ f eff kde d 0 Stěn namáhané tlakem a momentem: Základní případ: stlačovaná stěna: výsledk

Více

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová

Vzpěr jednoduchého rámu, diferenciální operátory. Lenka Dohnalová 1 / 40 Vzpěr jednoduchého rámu, diferenciální operátory Lenka Dohnalová ČVUT, fakulta stavební, ZS 2015/2016 katedra stavební mechaniky a katedra matematiky, Odborné vedení: doc. Ing. Jan Zeman, Ph.D.,

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice

studentská kopie 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice 3. Vaznice - tenkostěnná 3.1 Vnitřní (mezilehlá) vaznice Vaznice bude přenášet pouze zatížení působící kolmo k rovině střechy. Přenos zatížení působícího rovnoběžně se střešní rovinou bude popsán v poslední

Více

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví

STAVEBNÍ KONSTRUKCE. Témata k profilové ústní maturitní zkoušce. Školní rok 2014 2015. Třída 4SVA, 4SVB. obor 36-47-M/01 Stavebnictví Střední průmyslová škola stavební Střední odborná škola stavební a technická Ústí nad Labem, příspěvková organizace tel.: 477 753 822 e-mail: sts@stsul.cz www.stsul.cz STAVEBNÍ KONSTRUKCE Témata k profilové

Více

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D.

Konstrukční systémy I Třídění, typologie a stabilita objektů. Ing. Petr Suchánek, Ph.D. Konstrukční systémy I Třídění, typologie a stabilita objektů Ing. Petr Suchánek, Ph.D. Zatížení a namáhání Konstrukční prvky stavebního objektu jsou namáhány: vlastní hmotností užitným zatížením zatížením

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

10 Navrhování na účinky požáru

10 Navrhování na účinky požáru 10 Navrhování na účinky požáru 10.1 Úvod Zásady navrhování konstrukcí jsou uvedeny v normě ČSN EN 1990[1]; zatížení konstrukcí je uvedeno v souboru norem ČSN 1991. Na tyto základní normy navazují pak jednotlivé

Více

Investor: Měřítko: Počet formátů: Obec Vrátkov. Datum: D.1.2 STAVEBNĚ KONSTRUKČNÍ ČÁST DSP 04-2015

Investor: Měřítko: Počet formátů: Obec Vrátkov. Datum: D.1.2 STAVEBNĚ KONSTRUKČNÍ ČÁST DSP 04-2015 první statická s.r.o. Na Zámecké 597/11, 140 00 Praha 4 email: stastny@prvnistaticka.cz ZODP.PROJEKTANT: VYPRACOVAL: KONTROLOVAL: ING. Radek ŠŤASTNÝ,PH.D. ING.Ondřej FRANTA. ING. Radek ŠŤASTNÝ,PH.D. Akce:

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

Prvky betonových konstrukcí BL01 7 přednáška

Prvky betonových konstrukcí BL01 7 přednáška Prvky betonových konstrukcí BL01 7 přednáška Zásady vyztužování - podélná výztuž - smyková výztuž Vyztužování bet. prvků desky - obecné zásady - pásové a lokální zatížení - úpravy kolem otvorů trámové

Více

Použitelnost. Žádné nesnáze s použitelností u historických staveb

Použitelnost. Žádné nesnáze s použitelností u historických staveb Použitelnost - funkční způsobilost za provozních podmínek - pohodlí uživatelů - vzhled konstrukce Obvyklé mezní stavy použitelnosti betonových konstrukcí: mezní stav napětí z hlediska podmínek použitelnosti,

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ

NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ NÁVRH A POSOUZENÍ DŘEVĚNÝCH KROKVÍ Vypracoval: Zodp. statik: Datum: Projekt: Objednatel: Marek Lokvenc Ing.Robert Fiala 07.01.2016 Zastínění expozice gibonů ARW pb, s.r.o. Posudek proveden dle: ČSN EN

Více

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami.

Obr. 1 Stavební hřebík. Hřebíky se zarážejí do dřeva ručně nebo přenosnými pneumatickými hřebíkovačkami. cvičení Dřevěné konstrukce Hřebíkové spoje Základní pojmy. Návrh spojovacího prostředku Na hřebíkové spoje se nejčastěji používají ocelové stavební hřebíky s hladkým dříkem kruhového průřezu se zápustnou

Více

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Cvičení 1 Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti Napjatost v bodě tělesa Napjatost (napěťový stav) v bodě tělesa je množinou obecných napětí ve všech řezech, které lze

Více

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku.

PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY. Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku. PŘÍKLAD Č. 3 NÁVRH A POSOUZENÍ ŽELEZOBETONOVÉ DESKY Zadání: Navrhněte a posuďte železobetonovou desku dle následujícího obrázku Skladba stropu: Podlaha, tl.60mm, ρ=400kg/m 3 Vlastní žb deska, tl.dle návrhu,

Více

PROFILY S VLNITOU STOJINOU POMŮCKA PRO PROJEKTANTY A ODBĚRATELE WT PROFILŮ

PROFILY S VLNITOU STOJINOU POMŮCKA PRO PROJEKTANTY A ODBĚRATELE WT PROFILŮ Průběžná 74 100 00 Praha 10 tel: 02/67 31 42 37-8, 02/67 90 02 11 fax: 02/67 31 42 39, 02/67 31 53 67 e-mail:kovprof@ini.cz PROFILY S VLNITOU STOJINOU POMŮCKA PRO PROJEKTANTY A ODBĚRATELE WT PROFILŮ verze

Více

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB

NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 12. KVĚTNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA OHYB NAMÁHÁNÍ NA OHYB Nejdůleţitější konstrukční prvek pro ohyb je nosník.

Více

Jednoduchá metoda pro návrh ocelobetonového stropu

Jednoduchá metoda pro návrh ocelobetonového stropu Jednoduchá metoda pro návrh Jan BEDNÁŘ František WALD, Tomáš JÁNA, Olivier VASSART, Bin ZHAO Software pro požární návrh konstrukcí 9. února 011 Obsah prezentace Chování za požáru Jednoduchá metoda pro

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

15. ŽB TRÁMOVÉ STROPY

15. ŽB TRÁMOVÉ STROPY 15. ŽB TRÁMOVÉ STROPY Samostatné Společně s deskou trámového stropu Zásady vyztužování h = l/10 až l/20 b = h/2 až h/3 V každém rohu průřezu musí být jedna vyztužená ploška Nosnou výztuž tvoří 3-5 vložek

Více

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE

TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE 1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Katedra ocelových a dřevěných konstrukcí Obsah přednášek 2 Stabilita stěn, nosníky třídy 4. Tenkostěnné za studena tvarované profily. Spřažené ocelobetonové spojité

Více

PRVKY BETONOVÝCH KONSTRUKCÍ

PRVKY BETONOVÝCH KONSTRUKCÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ DOC. ING. LADISLAV ČÍRTEK, CSC PRVKY BETONOVÝCH KONSTRUKCÍ MODUL M05 NAVRHOVÁNÍ JEDNODUCHÝCH PRVKŮ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU

Více

Betonové konstrukce (S)

Betonové konstrukce (S) Betonové konstrukce (S) Přednáška 10 Obsah Navrhování betonových konstrukcí na účinky požáru Tabulkové údaje - nosníky Tabulkové údaje - desky Tabulkové údaje - sloupy (metoda A, metoda B, štíhlé sloupy

Více

BO04 KOVOVÉ KONSTRUKCE I

BO04 KOVOVÉ KONSTRUKCE I BO04 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Obsah VNITŘNÍ SÍLY PRÍHRADOVÉ

Více

BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI

BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI BL 04 - Vodohospodářské betonové konstrukce MEZNÍ STAV POUŽITELNOSTI doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 OSNOVA 1. Co je to mezní stav použitelnosti (MSP)?

Více

předběžný statický výpočet

předběžný statický výpočet předběžný statický výpočet (část: dřevěné konstrukce) KOUNITNÍ CENTRU ATKY TEREZY V PRAZE . Základní inormace.. ateriály.. Schéma konstrukce. Zatížení 4. Návrh prvků 5.. Střecha 5.. Skleněná asáda KOUNITNÍ

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Ocelobetonové konstrukce

Ocelobetonové konstrukce Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ

Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy. Náměstí Svobody Modřice STATICKÉ POSOUZENÍ Akce: Modřice, Poděbradova 413 přístavba a stavební úpravy budovy Investor: Město Modřice Náměstí Svobody 93 664 42 Modřice STATICKÉ POSOUZENÍ Vypracoval: Ing. Miroslav Dorazil Ivanovické náměstí 404/28a

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STAVEBNÍ ÚSTAV KOVOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ FACULTY OF CIVIL ENGINEERING INSTITUTE OF METAL AND TIMBER STRUCTURES SKLADOVACÍ HALA

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více