PROBLÉMY STABILITY. 9. cvičení

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "PROBLÉMY STABILITY. 9. cvičení"

Transkript

1 PROBLÉMY STABILITY 9. cvičení S pojmem ztráty stability tvaru prvku se posluchač zřejmě již setkal v teorii pružnosti při studiu prutů namáhaných osovým tlakem (viz obr.). Problematika je však obecnější ke ztrátě stability dochází rovněž při namáhání ohybem, nebo též při namáhání smykem (viz další obr.). Obr. Ztráta stability při tlaku Obr. Ztráta stability při ohybu Obr. Ztráta stability při smyku

2 Všeobecně může ztráta stability nastat vždy u štíhlých prvků vzdorujících tlakovým napětím. Tak např. při centrickém tlaku působí tlaková napětí v celém průřezu, při ohybu je část průřezu tažená a druhá část tlačená, namáhání smykem lze převést na hlavní napětí v jednom směru tahová, v druhém opět tlaková (viz obr.). Obr. Tlaková napětí v prvku Prvky ohrožené ztrátou stability vykazují sníženou únosnost, jak bude dále vyloženo.

3 Vzpěr celistvých prutů (centricky tlačených) Pruty namáhané vzpěrným tlakem (viz obr.) se posuzují podle podmínky N Sd N b, Rd, Obr. Vzpěrný tlak kde N Sd... návrhová tlaková síla, N b,rd... vzpěrná únosnost, která se vypočte (pro průřezy tříd, a 3) A f y Nb, Rd χ, γ M kde A... průřezová plocha, f y... mez kluzu, γ M... dílčí součinitel spolehlivosti materiálu (γ M,5 viz dříve), χ... součinitel vzpěrnosti (viz dále). Z předchozích cvičení si připomeneme výpočet únosnosti v prostém tlaku A f y Nc, Rd. γ M 0 Porovnáním vztahů pro N c,rd a N b,rd shledáme, že do výpočtu vzpěrné únosnosti N b,rd vstupuje (kromě odlišného součinitele γ Mi ) především nově součinitel vzpěrnosti χ. Vzpěrná únosnost je oproti prostému tlaku zřejmě snížená součinitel vzpěrnosti tudíž nabývá hodnot χ,0. Postup výpočtu sestává z několika po sobě jdoucích kroků: ) stanovit vzpěrné délky L cr, ) stanovit kritické štíhlosti λ, 3) určit součinitel vzpěrnosti χ. ad ) Vzpěrné délky Vzpěrná délka L cr je délka náhradního, kloubově uloženého prutu (stejného průřezu), který má stejnou kritickou sílu jako vyšetřovaný prut. Poznámka Kritickou silou N cr rozumíme osovou sílu, při které nastává bifurkace (rozdvojení) stavu rovnováhy vnějších a vnitřních sil. Získá se řešením DR stability ideálního pružného přímého prutu. 3

4 Vzpěrnou délku je možné určit jako vzdálenost inflexních bodů průhybové křivky při vybočení, tj. délku jedné sinusové půlvlny (viz obr.). Vzpěrná délka se stanovuje obvykle z výrazu L cr β L, kde L...délka prutu, β...součinitel vzpěrné délky. V případě izolovaného prutu (s konstantním průřezem a konstantní osovou silou) závisí vzpěrná délka (resp. součinitel β) na okrajových podmínkách, tj. způsobu uložení (viz obr.). Obr. Základní případy vzpěrné délky V případě prutové soustavy je třeba počítat se ztrátou stability konstrukce jako celku. Jako příklad uvedeme portálový rám s kloubově podepřenými stojkami a tuze připojenou příčlí (viz obr.). Bylo by hrubou chybou brát vzpěrné délky stojek jako u izolovaného prutu (nahoře vetknutého, dole kloubově uloženého, tedy β 0,7)! Představíme si nejprve vybočení celé soustavy za předpokladu dokonale tuhé příčle, kdy stojky vybočují podobně jako izolovaný prut ovšem nahoře posuvně vetknutý, 4

5 dole kloubově podepřený, takže β,0. Ve skutečnosti je příčel poddajná, tvar ztráty stability je třeba korigovat průhybová křivka stojky, zakreslená v celé délce sinusové půlvlny, ukazuje, že součinitel vzpěrné délky β >,0. Konkrétní hodnotu neuvádíme, neboť ta závisí na poměru rozpětí a výšky rámu, jakož i na poměru tuhostí stojek a příčle viz Přílohu C k ČSN Obr. Vzpěrná délka stojky rámu Poznámka Při sledování nejnepříznivějšího stavu konstrukce je třeba si uvědomit, že vzpěrná únosnost je tím menší, čím je vzpěrná délka větší. 5

6 ad ) Kritické štíhlosti Poznámka Stanovení kritické štíhlosti λ (neboli štíhlostního poměru) vychází z obecné definice podle kritického napětí σ cr N cr / A, kterou zapisujeme E λ π, σ cr kde E je modul pružnosti v tahu, tlaku, A je průřezová plocha a N cr příslušná kritická síla. Kritické štíhlosti stanovujeme pro všechny reálné způsoby ztráty stability (a tudíž označujeme také odpovídajícím indexem). A) Uzavřené a plné průřezy Pruty uzavřeného nebo plného průřezu vybočují pouze ohybem v hlavních rovinách setrvačnosti mluvíme o tzv. rovinném vzpěru. Změnu polohy mezipodporového průřezu při ztrátě stability uvádíme na obr. Obr. Tvary ztráty stability a příslušné štíhlosti Říkáme, že prut vybočí kolmo k ose y, pak štíhlost (jakož všechny souvisící veličiny) označujeme indexem y; taktéž říkáme, že prut vybočí kolmo k ose z, potom příslušné veličiny označujeme analogicky indexem z. 6

7 Kritické štíhlosti se stanoví ze vzorců: A Lcr, y λ y Lcr, y, I i A Lcr, z λ z L, i y cr, z I z z y kde L cr,y, L cr,z... vzpěrné délky prutu pro vybočení kolmo k ose y, resp. kolmo k ose z (tj. v hlavních rovinách xz, xy), A... plocha průřezu, I y, I z... momenty setrvačnosti průřezu k ose y, resp. k ose z, I y iy, A I z iz... poloměry setrvačnosti průřezu k ose y, resp. k ose z. A B) Otevřené, dvouose symetrické průřezy Pruty s průřezem souměrným k oběma hlavním osám vykazují tři způsoby ztráty stability. Vybočují jednak ohybem v hlavních rovinách xz, xy tedy při rovinném vzpěru; dále se deformují zkroucením kolem podélné osy x mluvíme potom o tzv. prostorovém vzpěru. Změnu polohy průřezu při ztrátě stability uvádíme opět na obr. Obr. Tvary ztráty stability a příslušné štíhlosti Pro štíhlosti rovinného vzpěru λ y, λ z platí dříve uvedené vztahy; štíhlost prostorového vzpěru se stanoví z výrazu I p I p λ ω, Iω GIt Iω It + + L π E L 5 cr, ω cr, ω 7

8 kde L cr,ω je vzpěrná délka při zkroucení, I p, I ω, I t jsou průřezové charakteristiky, G a E jsou materiálové konstanty. Vzpěrná délka při zkroucení L cr,ω se (pro základní případy uložení v kroucení) stanovuje analogicky jako při vybočení ohybem. Přitom volné deplanaci odpovídá kloubové uložení a nulové deplanaci odpovídá vetknutí, volnému pootočení kolem podélné osy odpovídá volný konec a zabránění pootočení odpovídá podepření. Průřezové charakteristiky jsou následující: I t...moment tuhosti v prostém kroucení, I ω...výsečový moment setrvačnosti (ke středu smyku), I p...polární moment setrvačnosti ke středu smyku, který se vypočte I I + I A a, p y z + kde I y, I z... momenty setrvačnosti k hlavním osám y, z, A... průřezová plocha, a C g C s... vzdálenost středu smyku C s od těžiště průřezu C g. Materiálové konstanty značí: E...modul pružnosti v tahu, tlaku, G...modul pružnosti ve smyku. Poznámka Případ B) se týká i průřezů středově symetrických. C) Otevřené, jednoose symetrické průřezy Pruty s průřezem souměrným k jedné ose vykazují dva způsoby ztráty stability: rovinný vzpěr ohybem v rovině symetrie, prostorový vzpěr kroucením současně s ohybem v opačné rovině. Změnu polohy průřezu uvádíme opět na obr. Obr. Tvary ztráty stability a příslušné štíhlosti 8

9 Pro štíhlost rovinného vzpěru λ y platí opět dříve uvedený vztah; štíhlost prostorového vzpěru λ zω se stanoví podle základních štíhlostí λ z, λ ω, vyjádřených rovněž pomocí předchozích vztahů. Tak tedy γ, kde λz ω λ z + κ + κ a γ + κ, i p λω κ, λ z i p iy + iz + a I p A je polární poloměr setrvačnosti ke středu smyku. Poznámka Jestliže je osou symetrie osa y, použijí se vzorce s příslušnou záměnou indexů. D) Otevřené, nesymetrické průřezy Pruty s průřezem nesouměrným vykazují jeden způsob ztráty stability prostorový vzpěr ohybem v obou hlavních rovinách současně s kroucením. Změna polohy průřezu je zřejmá z obr. Obr. Tvar ztráty stability a příslušná štíhlost Kritickou štíhlost λ yzω neuvádíme posluchače odkazujeme na příslušná ustanovení ČSN

10 ad 3) Součinitel vzpěrnosti Poznámka Součinitel vzpěrnosti je odvozen na základě toho, že skutečný prut vykazuje (oproti ideálnímu) řadu nedokonalostí tzv. imperfekcí (geometrických, strukturálních a konstrukčních). Všechny tyto imperfekce se nahradí jedinou ekvivalentní geometrickou imperfekcí v podobě počátečního zakřivení prutu s maximální výchylkou e 0 (viz obr.). Řešením DR stability počátečně zakřiveného prutu se získá zvětšená výchylka e, na které vyvolává tlaková síla N přídavný ohybový moment M II (podle teorie. řádu). Napětí od tohoto složeného namáhání se pak položí rovno mezi kluzu f y. Obr. Prut s počátečním zakřivením Součinitel vzpěrnosti se určuje na základě poměrné štíhlosti a křivky vzpěrné pevnosti, a to pro každý předpokládaný způsob vybočení prutu. Poměrná štíhlost je dána vztahem λ f y λ (který vyplývá z obecného λ ), λ σ cr kde λ...kritická štíhlost, λ...srovnávací štíhlost podle vztahu E λ 93, 9 ε (který vyplývá z obecného λ π ), 35 ε. f y f y Křivkou vzpěrné pevnosti nazýváme graf závislosti součinitele vzpěrnosti χ na poměrné štíhlosti λ. Rozlišují se celkem 4 křivky vzpěrné pevnosti (označené písmeny a až d viz obr.); jejich diferenciace je zavedena z důvodu rozdílné míry imperfekcí. Použití vhodné křivky je dáno typem průřezu a způsobem vybočení. Pro rovinný vzpěr jsou vzpěrné křivky uvedeny v přiloženém archu, pro prostorový vzpěr se bere vzpěrná křivka b. 0

11

12

13 Obr. Křivky vzpěrné pevnosti Přiřazená vzpěrná křivka je zahrnuta v součiniteli imperfekce α (viz tab.), který je odvozen z velikosti počáteční výchylky prutu e 0. Tab. Součinitel imperfekce Vzpěrná křivka a b c d α 0, 0,34 0,49 0,76 Součinitel vzpěrnosti se tedy určí z výrazu χ, s omezením χ,0, φ + φ λ [ ] kde,5 + α ( λ 0, ) φ 0 + λ. Poznámka Číselné hodnoty součinitele χ jsou též uvedeny v přiloženém archu. 3

14 Příklad Zadání. Posuďte centricky tlačený sloup průřezu HE 300 B z oceli S 35 o celkové délce L 6 m. Sloup je zatížen návrhovou silou N Sd 00 kn a podepřen podle obr. Řešení K výpočtu použijeme (pro ocel S 35) následující materiálové charakteristiky: f y 35 MPa, γ M,5. Hodnoty průřezových charakteristik přebíráme ze statických tabulek: A 4, mm, I t, mm 4, i y 30 mm, I ω,69. 0 mm 6, i z 75,8 mm, I p mm 4. Jak bylo uvedeno, ve sloupu působí tlaková síla N Sd 00 kn máme prokázat podmínku spolehlivosti A f y N Sd Nb, Rd χ. γ M Poznámka Klasifikaci průřezu nepředvádíme lze snadno ověřit, že průřez HE 300 B spadá do třídy. Vzpěrnou únosnost N b,rd stanovíme na základě součinitele vzpěrnosti χ, který vypočteme popsaným postupem pro každý z možných způsobů vybočení. Řešíme dvouose symetrický průřez vybočení nastává ) ohybem k ose y, ) ohybem k ose z, 3) zkroucením (ω). 4

15 Nejprve stanovíme vzpěrné délky podle podmínek uložení prutu (jak v koncových průřezech a a b, tak v průřezu c uprostřed délky), viz obr. Takže L cr,y 6000 mm, L cr,z 3000 mm, L cr,ω 6000 mm. Dále stanovíme kritické štíhlosti Lcr, y 6000 λ y 46,, i 30 y Lcr, z 3000 λ z 39,6, i 75,8 z I 6 p λ ω 5,8. I 6 ω It +,69 0, L cr, ω Následuje vyčíslení poměrných štíhlostí λ y 46, λ y 0,49, λ 93,9 λz 39,6 λz 0,4, λ 93,9 λω 5,8 λω 0,56, λ 93,9 5

16 kde λ 93,9 ε 93, 9 je srovnávací štíhlost, 35 ε,0. f y Nyní přiřadíme vzpěrné křivky (a vypíšeme příslušné součinitele imperfekce α ): pro rovinný vzpěr použijeme přiložený arch (tab. 6.9) kritériím h / b,0, a t f 9 00 (u válcovaných I profilů) odpovídá 3. řádek, čili pro vybočení k ose y křivka b α 0,34, vybočení k ose z křivka c α 0,49; pro prostorový vzpěr křivka b α 0,34. Konečně stanovíme součinitele vzpěrnosti: χ y φ + φ λ 0, ,669 0,49 y kde φ 0,5 + α ( λ 0,) y y 0,889, [ + λ ] 0,5 [ + 0,34 ( 0,49 0,) + 0,49 ] 0, 669 y y y χ z φ + φ λ 0,64 + kde φ 0,5 + α ( λ 0,) χ 0,887, z z z 0,64 0,4 z z z [ + λ ] 0,5 [ + 0,49 ( 0,4 0,) + 0,4 ] 0, 64 0,78 + kde φ 0,5 + α ( λ 0,) 0,857, ω φω + φω λω 0,78 0,56 ω ω ω [ + λ ] 0,5 [ + 0,34 ( 0,56 0,) + 0,56 ] 0, 78 Posouzení se provede na základě nejmenšího vzpěrnostního součinitele χ y χ min χ z 0,857. χ ω Vzpěrná únosnost A f 3 y 4, Nb, Rd χ 0, kn N Sd 00 kn γ M,5 vyhovuje. ; ;. 6

17 Závěrečné poznámky ) Je všeobecně účelné, aby (kritická) štíhlost tlačeného prutu nepřekročila hodnotu doporučené mezní štíhlosti viz ČSN Důvodem je eliminace chvění (při nízkých kmitočtech a velkých amplitudách), jakož i nadměrného přetvoření od vlastní tíhy. Ze stejného důvodu jsou ustanoveny i mezní štíhlosti prutů tažených. ) V zájmu dodržení litery citované normy poopravíme matematický zápis některých veličin. Vzpěrná únosnost se píše ve tvaru β A A f y Nb, Rd χ, γ M kde β A pro průřezy tříd, a 3, β A A eff / A pro průřezy třídy 4, kde A eff je tzv. efektivní průřezová plocha; dále pro poměrnou štíhlost platí vztah β A f y λ λ β A. σ λ cr 7

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ

φ φ d 3 φ : 5 φ d < 3 φ nebo svary v oblasti zakřivení: 20 φ KONSTRUKČNÍ ZÁSADY, kotvení výztuže Minimální vnitřní průměr zakřivení prutu Průměr prutu Minimální průměr pro ohyby, háky a smyčky (pro pruty a dráty) φ 16 mm 4 φ φ > 16 mm 7 φ Minimální vnitřní průměr

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska

BETONOVÉ A ZDĚNÉ KONSTRUKCE 1. Dimenzování - Deska BETONOVÉ A ZDĚNÉ KONSTRUKCE 1 Dimenzování - Deska Dimenzování - Deska Postup ve statickém výpočtu (pro BEK1): 1. Nakreslit navrhovaný průřez 2. Určit charakteristické hodnoty betonu 3. Určit charakteristické

Více

http://www.tobrys.cz STATICKÝ VÝPOČET

http://www.tobrys.cz STATICKÝ VÝPOČET http://www.tobrys.cz STATICKÝ VÝPOČET REVITALIZACE CENTRA MČ PRAHA - SLIVENEC DA 2.2. PŘÍSTŘEŠEK MHD 08/2009 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY:

Více

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger

7. přednáška OCELOVÉ KONSTRUKCE VŠB. Technická univerzita Ostrava Fakulta stavební Podéš 1875, éště. Miloš Rieger 7. přednáška OCELOVÉ KONSTRUKCE VŠB Technická univerzita Ostrava Fakulta stavební Ludvíka Podéš éště 1875, 708 33 Ostrava - Poruba Miloš Rieger Téma : Spřažené ocelobetonové konstrukce - úvod Spřažené

Více

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3)

Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Jednotný programový dokument pro cíl 3 regionu (NUTS2) hl. m. Praha (JPD3) Projekt DALŠÍ VZDĚLÁVÁNÍ PEDAGOGŮ V OBLASTI NAVRHOVÁNÍ STAVEBNÍCH KONSTRUKCÍ PODLE EVROPSKÝCH NOREM Projekt je spolufinancován

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB Předmět: Ročník: Vytvořil: Datum: MECHNIK DRUHÝ ŠČERBOVÁ M. PVELK V. 14. ČERVENCE 2013 Název zpracovaného celku: NMÁHÁNÍ N OHYB D) VETKNUTÉ NOSNÍKY ZTÍŽENÉ SOUSTVOU ROVNOBĚŽNÝCH SIL ÚLOH 1 Určete maximální

Více

4 Halové objekty a zastřešení na velká rozpětí

4 Halové objekty a zastřešení na velká rozpětí 4 Halové objekty a zastřešení na velká rozpětí 4.1 Statické systémy Tab. 4.1 Statické systémy podle namáhání Namáhání hlavního nosného systému Prostorové uspořádání Statický systém Schéma Charakteristické

Více

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS)

Výstavba nového objektu ZPS na LKKV. Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) Výstavba nového objektu ZPS na LKKV Investor:LETIŠTĚ KARLOVY VARY,s.r.o. K letišti 132, 360 01 Karlovy Vary stupeň dokumentace ( DPS) D.1.2 - STAVEBNĚ KONSTRUČKNÍ ŘEŠENÍ Statický posudek a technická zpráva

Více

Statický výpočet střešního nosníku (oprava špatného návrhu)

Statický výpočet střešního nosníku (oprava špatného návrhu) Statický výpočet střešního nosníku (oprava špatného návrhu) Obsah 1 Obsah statického výpočtu... 3 2 Popis výpočtu... 3 3 Materiály... 3 4 Podklady... 4 5 Výpočet střešního nosníku... 4 5.1 Schéma nosníku

Více

A. 1 Skladba a použití nosníků

A. 1 Skladba a použití nosníků GESTO Products s.r.o. Navrhování nosníků I Stabil na účinky zatížení výchozí normy ČSN EN 1990 Zásady navrhování konstrukcí ČSN EN 1995-1-1 ČSN 731702 modifikace DIN 1052:2004 navrhování dřevěných stavebních

Více

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.

NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving. ČSN EN ISO 9001 NOVING s.r.o. Úlehlova 108/1 700 30 Ostrava - Hrabůvka TEL., Tel/fax: +420 595 782 426-7, 595 783 891 E-mail: noving@noving.cz http://www.noving.cz PROLAMOVANÉ NOSNÍKY SMĚRNICE 11 č. S

Více

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D

Schöck Isokorb typ D. Schöck Isokorb typ D. Schöck Isokorb typ D Schöck Isokorb typ Schöck Isokorb typ Schöck Isokorb typ Používá se u ových desek pronikajících do stropních polí. Prvek přenáší kladné i záporné ohybové momenty a posouvající síly. 105 Schöck Isokorb

Více

Dřevěné a kovové konstrukce

Dřevěné a kovové konstrukce Učební osnova předmětu Dřevěné a kovové konstrukce Studijní obor: Stavebnictví Zaměření: Pozemní stavitelství Forma vzdělávání: denní Celkový počet vyučovacích hodin za studium: 64 4. ročník: 32 týdnů

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling

PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling PODKLADY PRO DIMENZOVÁNÍ NOSNÉHO BEDNĚNÍ PODLAH A REGÁLŮ Z DESEK OSB/3 Sterling Objednavatel: M.T.A., spol. s r.o., Pod Pekárnami 7, 190 00 Praha 9 Zpracoval: Ing. Bohumil Koželouh, CSc. znalec v oboru

Více

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti

Nosné konstrukce II - AF01 ednáška Navrhování betonových. použitelnosti Brno University of Technology, Faculty of Civil Engineering Institute of Concrete and Masonry Structures, Veveri 95, 662 37 Brno Nosné konstrukce II - AF01 1. přednp ednáška Navrhování betonových prvků

Více

Tepelně izolační styčník s čelní deskou. Zdeněk Sokol České vysoké učení technické v Praze

Tepelně izolační styčník s čelní deskou. Zdeněk Sokol České vysoké učení technické v Praze Tepelně styčník s čelní deskou Zdeněk Sokol České vysoké učení technické v Praze Praktické využití tepelně ho spoje Vnější části objektu (přístřešky, nevytápěné části objektu) Střešní nástavby Balkony,

Více

PRVKY BETONOVÝCH KONSTRUKCÍ

PRVKY BETONOVÝCH KONSTRUKCÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JOSEF PANÁČEK PRVKY BETONOVÝCH KONSTRUKCÍ MODUL CM2 DIMENZOVÁNÍ BETONOVÝCH PRVKŮ ČÁST 1 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu. Ohyb přímých prutů nosníků Ohyb nastává, jestliže v řeu jakožto vnitřní účinek působí ohybový moment, tj dvojice sil ležící v rovině kolmé k rovině řeu Ohybový moment určíme jako součet momentů od všech

Více

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka

NEXIS 32 rel. 3.70 Betonové konstrukce referenční příručka SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

Příklady pro uspořádání prvků a řezy 34. Půdorysy 35. Popis výrobků 36. Typové varianty/zvláštní konstrukční detaily 37. Dimenzační tabulky 38-41

Příklady pro uspořádání prvků a řezy 34. Půdorysy 35. Popis výrobků 36. Typové varianty/zvláštní konstrukční detaily 37. Dimenzační tabulky 38-41 Schöck Isokorb typ Obsah Strana Příklady pro uspořádání prvků a řezy 34 Půdorysy 35 Popis výrobků 36 Typové varianty/zvláštní konstrukční detaily 37 Dimenzační tabulky 38-41 Příklad dimenzování/upozornění

Více

NEXIS 32 rel. 3.60 Samostatný betonový průřez

NEXIS 32 rel. 3.60 Samostatný betonový průřez SCIA CZ, s. r. o. Slavíčkova 1a 638 00 Brno tel. 545 193 526 545 193 535 fax 545 193 533 E-mail info.brno@scia.cz www.scia.cz Systém programů pro projektování prutových a stěnodeskových konstrukcí NEXIS

Více

14. JEŘÁBY 14. CRANES

14. JEŘÁBY 14. CRANES 14. JEŘÁBY 14. CRANES slouží k svislé a vodorovné přepravě břemen a jejich držení v požadované výšce Hlavní parametry jeřábů: 1. jmenovitá nosnost největší hmotnost dovoleného břemene (zkušební břemeno

Více

Určení počátku šikmého pole řetězovky

Určení počátku šikmého pole řetězovky 2. Šikmé pole Určení počátku šikmého pole řetězovky d h A ϕ y A y x A x a Obr. 2.1. Souřadnie počátku šikmého pole Jestliže heme určit řetězovku, která je zavěšená v bodeh A a a je daná parametrem, je

Více

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING.

2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ. SŠS Jihlava ING. 2014/2015 STAVEBNÍ KONSTRUKCE SBORNÍK PŘÍKLADŮ PŘÍKLADY ZADÁVANÉ A ŘEŠENÉ V HODINÁCH STAVEBNÍCH KONSTRUKCÍ SŠS Jihlava ING. SVOBODOVÁ JANA OBSAH 1. ZATÍŽENÍ 3 ŽELEZOBETON PRŮHYBEM / OHYBEM / NAMÁHANÉ PRVKY

Více

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod

I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Úvod I. Přehled norem pro ocelové konstrukce ČSN EN 1993 1 Úvod Zatímco stavební praxe vystačí pro betonové, dřevěné a ocelobetonové konstrukce se třemi evropskými normami, pro ocelové konstrukce je k

Více

Manuál. Návrh ocelových konstrukcí

Manuál. Návrh ocelových konstrukcí Manuál Návrh ocelových konstrukcí Návrh ocelových konstrukcí Obsah Úvod do posudků... 2 Parametry posudků dílce pro EC-ENV... 3 Parametry posudků dílce pro EC-EN... 4 Parametry posudků dílce pro NEN 6770-6771...

Více

B5 Železobetonové podpory

B5 Železobetonové podpory B5 Železobetonové podpory Příručka pro uživatele programů pro statické výpočty Frilo Friedrich + Lochner GmbH 2009 Web společnosti Frilo v síti Internet www.frilo.de E-mailová adresa: info@frilo.de Příručka

Více

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady:

Pro zpracování tohoto statického výpočtu jsme měli k dispozici následující podklady: Předložený statický výpočet řeší založení objektu SO 206 most na přeložce silnice I/57 v km 13,806 přes trať ČD v km 236,880. Obsahem tohoto výpočtu jsou pilotové základy krajních opěr O1 a O6 a středních

Více

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W

Schöck Isokorb typ W. Schöck Isokorb typ W. Schöck Isokorb typ W Schöck Isokorb typ Schöck Isokorb typ Používá se u volně vyložených stěn. Přenáší záporné ohybové momenty a kladné posouvající síly. Navíc přenáší i vodorovné síly působící střídavě opačnými směry. 115

Více

Přednáška 1 Obecná deformační metoda, podstata DM

Přednáška 1 Obecná deformační metoda, podstata DM Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí

Více

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza

Projekt 3. Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Projekt 3 Zastřešení sportovní haly založené na konceptu Leonardova mostu: statická analýza Vypracovala: Bc. Karolína Mašková Vedoucí projektu: Doc. Ing. Jan Zeman, Ph.D. Konzultace: Ing. Ladislav Svoboda,

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

SOFTWAROVÁ PODPORA NÁVRHU OCELOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ

SOFTWAROVÁ PODPORA NÁVRHU OCELOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ SOFTWAROVÁ PODPORA NÁVRHU OCELOVÝCH A DŘEVĚNÝCH KONSTRUKCÍ Praha, září 2010 České vysoké učení technické v Praze Obsah F. Wald Předmluva...5 J. Studnička 1 Statický výpočet a software...7 J. Macháček 2

Více

STEEL EC3. Posouzení únosnosti, použitelnosti a stability podle Eurokódu 3

STEEL EC3. Posouzení únosnosti, použitelnosti a stability podle Eurokódu 3 Vydání červen 2009 Přídavný modul STEEL EC3 Posouzení únosnosti, použitelnosti a stability podle Eurokódu 3 Popis programu Všechna práva včetně práv k překladu vyhrazena. Bez výslovného souhlasu společnosti

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

Ocelové konstrukce požární návrh

Ocelové konstrukce požární návrh Ocelové konstrukce požární návrh Zdeněk Sokol František Wald, 17.2.2005 1 2 Obsah prezentace Úvod Přestup tepla do konstrukce Požárně nechráněné prvky Požárně chráněné prvky Mechanické vlastnosti oceli

Více

Platnost zásad normy:

Platnost zásad normy: musí zajistit Kotvení výztuže -spolehlivé přenesení sil mezi výztuží a betonem musí zabránit -odštěpování betonu -vzniku podélných trhlin Platnost zásad normy: betonářská prutová výztuž výztužné sítě předpínací

Více

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet

Rozlítávací voliéra. Statická část. Technická zpráva + Statický výpočet Stupeň dokumentace: DPS S-KON s.r.o. statika stavebních konstrukcí Ing.Vladimír ČERNOHORSKÝ Podnádražní 12/910 190 00 Praha 9 - Vysočany tel. 236 160 959 akázkové číslo: 12084-01 Datum revize: prosinec

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Metodika návrhu dle EC 2 - termicky

Metodika návrhu dle EC 2 - termicky Metodika návrhu dle EC 2 - termicky termická analýza - teplotní účinky - teploty žhavých plynů - normový požár přirozený požár (PP) NTK teplota [ C] T teplota výztuže (NTK) teplota výztuže (PP) doba trvání

Více

Program pro prostorové. prutové konstrukce pro stavební inženýrství... Statika, která Vás bude bavit... RSTAB 8 EUROKÓDY / MEZINÁRODNÍ NORMY RSTAB8

Program pro prostorové. prutové konstrukce pro stavební inženýrství... Statika, která Vás bude bavit... RSTAB 8 EUROKÓDY / MEZINÁRODNÍ NORMY RSTAB8 Stabilita a dynamika 3D prutové konstrukce Ocel www.timberdesign.cz www.lackner-raml.at Masivní konstrukce Jeřábové dráhy Dřevo EUROKÓDY / MEZINÁRODNÍ NORMY RSTAB8 Program pro prostorové Přípoje Mosty

Více

7. Haly. Dispozice, střešní konstrukce.

7. Haly. Dispozice, střešní konstrukce. 7. Haly. Dispozice, střešní konstrukce. Halové stavby: terminologie, dispoziční řešení (příčný a podélný směr, střešní rovina). Střešní konstrukce: střešní plášť, vaznice (prosté, spojité, kloubové, příhradové,

Více

NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM

NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ NOVÉ MOŽNOSTI V NAVRHOVÁNÍ VELKOROZPONOVÝCH DŘEVĚNÝCH KONSTRUKCÍ PODLE PLATNÝCH EVROPSKÝCH NOREM PETR KUKLÍK VELKOROZPONOVÉ DŘEVĚNÉ stropy 12 m KONSTRUKCE!!!

Více

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa

Pomocné výpočty. Geometrické veličiny rovinných útvarů. Strojírenské výpočty (verze 1.1) Strojírenské výpočty. Michal Kolesa Strojírenské výpočty http://michal.kolesa.zde.cz michal.kolesa@seznam.cz Předmluva Publikace je určena jako pomocná kniha při konstrukčních cvičeních, ale v žádném případě nemá nahrazovat publikace typu

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1. Inovace a zkvalitnění výuky prostřednictvím ICT Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Spoje a spojovací součásti Pohybové šrouby Ing. Magdalena

Více

Cvičebnice stavební mechaniky

Cvičebnice stavební mechaniky Cvičebnice stavební mechaniky Ing. Karla Labudová. vydání Tato příručka vznikla za finanční podpory Evropského sociálního fondu a rozpočtu České republiky. Obsah Síly působící v jednom paprsku 7. Dvě síly

Více

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2. Kapitola 2 Přímková a rovinná soustava sil 2.1 Přímková soustava sil Soustava sil ležící ve společném paprsku se nazývá přímková soustava sil [2]. Působiště všech sil m i lze posunout do společného bodu

Více

VY_32_INOVACE_C 07 03

VY_32_INOVACE_C 07 03 Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 74601 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory 1.5

Více

IDEA StatiCa novinky

IDEA StatiCa novinky strana 1/22 IDEA StatiCa novinky IDEA StatiCa novinky verze 5 strana 2/22 IDEA StatiCa novinky IDEA StatiCa... 3 Natočení podpor... 3 Pružné podpory... 3 Únava a mimořádné návrhové situace... 4 Změny a

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ. Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Doc. Ing. MARCELA KARMAZÍNOVÁ, CSc. KOVOVÉ MOSTY I MODUL M04 SPŘAŽENÉ OCELOBETONOVÉ MOSTY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

Více

GlobalFloor. Cofraplus 60 Statické tabulky

GlobalFloor. Cofraplus 60 Statické tabulky GlobalFloor. Cofraplus 6 Statické tabulky Cofraplus 6. Statické tabulky Cofraplus 6 žebrovaný profil pro kompozitní stropy Polakovaná strana Použití Profilovaný plech Cofraplus 6 je určen pro výstavbu

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

YTONG STROPNÍ KONSTRUKCE

YTONG STROPNÍ KONSTRUKCE YTONG STROPNÍ KONSTRUKCE OBSAH 1. Navrhování vložkové stropní konstrukce YTONG 3 1.1 Všeobecné podmínky a předpoklady výpočtu 3 1.2 Uvažované charakteristiky materiálů 4 1.3 Mezní stav únosnosti prostý

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka

http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka http://www.tobrys.cz KONSTRUKČNÍ ŘEŠENÍ SPOJOVACÍ LÁVKA, ÚŘAD PRÁCE PARDUBICE 01/2014 Ing. Tomáš Bryčka 1. OBSAH 1. OBSAH 2 2. ÚVOD: 3 2.1. IDENTIFIKAČNÍ ÚDAJE: 3 2.2. ZADÁVACÍ PODMÍNKY: 3 2.2.1. Použité

Více

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě.

Žák plní standard v průběhu primy a sekundy, učivo absolutní hodnota v kvartě. STANDARDY MATEMATIKA 2. stupeň ČÍSLO A PROMĚNNÁ 1. M-9-1-01 Žák provádí početní operace v oboru celých a racionálních čísel; užívá ve výpočtech druhou mocninu a odmocninu 1. žák provádí základní početní

Více

Zakládání ve Scia Engineer

Zakládání ve Scia Engineer Apollo Bridge Apollo Bridge Architect: Ing. Architect: Miroslav Ing. Maťaščík Miroslav Maťaščík - Alfa 04 a.s., - Alfa Bratislava 04 a.s., Bratislava Design: DOPRAVOPROJEKT Design: Dopravoprojekt a.s.,

Více

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA

NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA NOSNÉ KONSTRUKCE 3 ÚLOHA 2 HALOVÁ STAVBA BAKALÁŘSKÝ PROJEKT Ubytovací zařízení u jezera v Mostě Vypracoval: Ateliér: Konzultace: Paralelka: Vedoucí cvičení: Jan Harciník Bočan, Herman, Janota, Mackovič,

Více

Fyzikálně a geometricky nelineární výpočty rámových konstrukcí

Fyzikálně a geometricky nelineární výpočty rámových konstrukcí Fyzikálně a geometricky nelineární výpočty rámových konstrukcí Fyzikálně a geometricky Nelineární výpočty rámových konstrukcí Doc. Ing. Jaroslav Navrátil, CSc. Ing. Petr Foltyn 2006 FYZIKÁLNĚ A GEOMETRICKY

Více

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů

Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Omezení nadměrných průhybů komorových mostů optimalizací vedení předpínacích kabelů Lukáš Vráblík, Vladimír Křístek 1. Úvod Jedním z nejzávažnějších faktorů ovlivňujících hlediska udržitelné výstavby mostů

Více

NÁVRH OCELOVÉ KONSTRUKCE MĚŘÍCÍHO PRACOVIŠTĚ PRO ŘÍZENÍ ROZBĚHU JEŘÁBOVÉ KOČKY

NÁVRH OCELOVÉ KONSTRUKCE MĚŘÍCÍHO PRACOVIŠTĚ PRO ŘÍZENÍ ROZBĚHU JEŘÁBOVÉ KOČKY NÁVRH OCELOVÉ KONSTRUKCE MĚŘÍCÍHO PRACOVIŠTĚ PRO ŘÍZENÍ ROZBĚHU JEŘÁBOVÉ KOČKY DESIGN OF STEEL CONSTRUCTION OF THE MEASUREMENT ASSEMBLY FOR STEPLESS SPEED CONTROL OF AN ELECTRIC HOIST Pavel Vraník 1 Anotace:

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

Vydání červenec 2008. Přídavný modul STEEL. Posouzení napětí Optimalizace profilu. Popis programu. Ing. Software Dlubal s.r.o.

Vydání červenec 2008. Přídavný modul STEEL. Posouzení napětí Optimalizace profilu. Popis programu. Ing. Software Dlubal s.r.o. Vydání červenec 2008 Přídavný modul STEEL Posouzení napětí Optimalizace profilu Popis programu Všechna práva včetně práv k překladu vyhrazena. Bez výslovného souhlasu společnosti Ing. Software Dlubal s.r.o.

Více

STATIKA TUHÝCH TĚLES

STATIKA TUHÝCH TĚLES VOŠ a SOŠ Roudnice nad Labem STATIKA TUHÝCH TĚLES Studijní obor: Dopravní prostředky Ing. Jan JINDRA 1.9.2011 Pro vnitřní potřebu školy 1 Tělesa volná: Určení síly: působiště, velikost, směr a smysl Přeložení

Více

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami:

6. Geometrie břitu, řezné podmínky. Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: 6. Geometrie břitu, řezné podmínky Abychom mohli určit na nástroji jednoznačně jeho geometrii, zavádíme souřadnicový systém tvořený třemi rovinami: Základní rovina Z je rovina rovnoběžná nebo totožná s

Více

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení

2 Zpracování naměřených dat. 2.1 Gaussův zákon chyb. 2.2 Náhodná veličina a její rozdělení 2 Zpracování naměřených dat Důležitou součástí každé experimentální práce je statistické zpracování naměřených dat. V této krátké kapitole se budeme věnovat určení intervalů spolehlivosti získaných výsledků

Více

Ocelové plechové sloupy pro elektrická venkovní vedení do 45 kv

Ocelové plechové sloupy pro elektrická venkovní vedení do 45 kv ČEZ Distribuce, E.ON ČR, E.ON Distribuce Podniková norma energetiky pro rozvod elektrické energie Ocelové plechové sloupy pro elektrická venkovní vedení do 45 kv PNE 34 8250 1. vydání Odsouhlasení normy

Více

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5

Černé označení. Žluté označení H R B % C 0,1 0,2 0,3 0,4 0,5 Řešení 1. Definujte tvrdost, rozdělte zkoušky tvrdosti Tvrdost materiálu je jeho vlastnost. Dá se charakterizovat, jako jeho schopnost odolávat vniku cizího tělesa. Zkoušky tvrdosti dělíme dle jejich charakteru

Více

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter

RIBTEC zadání průběhů vnitřních sil z globálního modelu do výpočtu BEST Newsletter RIBtec BEST výpočet a zadání zatížení sloupu korespondující s průběhem jeho vnitřních sil v globálním výpočetním modelu (FEM) nosné konstrukce Běžným pracovním postupem, zejména u prefabrikovaných betonových

Více

CZ.1.07/1.5.00/34.0015 V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol. Ing.

CZ.1.07/1.5.00/34.0015 V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol. Ing. Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.0015 V/2 - Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Zobrazování

Více

Z a C - profily ZED VAZNICOVÉ SYSTÉMY. Návrhové tabulky podle ČSN EN. pro sekundární ocelové konstrukce

Z a C - profily ZED VAZNICOVÉ SYSTÉMY. Návrhové tabulky podle ČSN EN. pro sekundární ocelové konstrukce ZED VZNICOVÉ SYSTÉMY Z a C - profily pro sekundární ocelové konstrukce Návrhové tabulky podle ČSN EN voestalpine PROFILFORM s.r.o. www.voestalpine.com/profilform-cz Konstrukční systémy METSEC jméno, kterému

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

GlobalFloor. Cofrastra 40 Statické tabulky

GlobalFloor. Cofrastra 40 Statické tabulky GlobalFloor. Cofrastra 4 Statické tabulky Cofrastra 4. Statické tabulky Cofrastra 4 žebrovaný profil pro kompozitní stropy Tloušťka stropní desky až cm Použití Profilovaný plech Cofrastra 4 je určen pro

Více

1.7.4. Skládání kmitů

1.7.4. Skládání kmitů .7.4. Skládání kmitů. Umět vysvětlit pojem superpozice.. Umět rozdělit různé typy skládání kmitů podle směru a frekvence. 3. Umět určit amplitudu a fázi výsledného kmitu. 4. Vysvětlit pojem fázor. 5. Znát

Více

IDEA Corbel 5. Uživatelská příručka

IDEA Corbel 5. Uživatelská příručka Uživatelská příručka IDEA Corbel IDEA Corbel 5 Uživatelská příručka Uživatelská příručka IDEA Corbel Obsah 1.1 Požadavky programu... 3 1.2 Pokyny k instalaci programu... 3 2 Základní pojmy... 4 3 Ovládání...

Více

Posudek ocelové konstrukce metodami ČSN EN a SBRA

Posudek ocelové konstrukce metodami ČSN EN a SBRA Posudek ocelové konstrukce metodami ČSN EN a Dříve užívané deterministické metody ověření spolehlivosti stavební konstrukce a tedy i jednoho jejího dílčího kritéria únosnosti konstrukce byly již pro praktické

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Dřevěné sloupy a dřevěné sloupy na patkách pro elektrická venkovní vedení do 45 kv

Dřevěné sloupy a dřevěné sloupy na patkách pro elektrická venkovní vedení do 45 kv Podniková norma energetiky pro rozvod elektrické energie REAS ČR, ZSE, VSE řevěné sloupy a dřevěné sloupy na patkác pro elektrická venkovní vedení do 45 kv PNE 4 8210 rué vydání Odsoulasení normy Konečný

Více

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU

KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU KOMENTÁŘ KE VZOROVÉMU LISTU SVĚTLÝ TUNELOVÝ PRŮŘEZ DVOUKOLEJNÉHO TUNELU OBSAH 1. ÚVOD... 3 1.1. Předmět a účel... 3 1.2. Platnost a závaznost použití... 3 2. SOUVISEJÍCÍ NORMY A PŘEDPISY... 3 3. ZÁKLADNÍ

Více

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky.

Přímá montáž SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ. Hilti. Splní nejvyšší nároky. SPŘAHOVÁNÍ OCELOBETONOVÝCH STROPŮ Hilti. Splní nejvyšší nároky. Spřhovcí prvky Technologie spřhovcích prvků spočívá v připevnění prvků přímo k pásnici ocelového nosníku, nebo připevnění k pásnici přes

Více

Ocelové konstrukce. Jakub Stejskal, 3.S

Ocelové konstrukce. Jakub Stejskal, 3.S Ocelové konstrukce { Jakub Stejskal, 3.S Výhody a nevýhody ocelových konstrukcí Výhody Vysoká pevnost vzhledem ke hmotnosti Průmyslová výroba (přesnost, produktivita, automatizace, odstranění sezónnosti,

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006

Zkoušky otvorových výplní Technický a zkušební ústav stavební Praha, s.p. 2006 TZÚS, s.p., pobočka Praha 1/ Mechanické zkoušky 2/ Klimatické zkoušky 3/ Tepelně technické zkoušky 1/ Mechanické zkoušky odolnost proti svislému zatížení deformace křídla při zatížení svislou silou v otevřené

Více

Stropní nosníky základní technické údaje PNG 72 3762-4. část

Stropní nosníky základní technické údaje PNG 72 3762-4. část KERAMICKÉ STROPY HELUZ MIAKO Stropní nosníky základní technické údaje PNG 72 3762-4. část základní technické údaje a použití Keramické stropy HELUZ MIAKO jsou tvořené cihelnými vložkami HELUZ MIAKO a keramobetonovými

Více

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN

STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Ministerstvo dopravy TP 200 ODBOR INFRASTRUKTURY STANOVENÍ ZATÍŽITELNOSTI MOSTŮ PK navržených podle norem a předpisů platných před účinností EN Technické podmínky Schváleno MD-OI čj. 1075/08-910-IPK/1

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Advance Design 2014 / SP1

Advance Design 2014 / SP1 Advance Design 2014 / SP1 První Service Pack pro ADVANCE Design 2014 přináší několik zásadních funkcí a více než 240 oprav a vylepšení. OBECNÉ [Réf.15251] Nová funkce: Možnost zahrnout zatížení do generování

Více

TECHNICKÁ ZPRÁVA STATIKY

TECHNICKÁ ZPRÁVA STATIKY Akce: MŠ Černovice, Brno, nástavba, DSP - technická zpráva statiky Zak.č.:B-12-14 TECHNICKÁ ZPRÁVA STATIKY 1. Účel a rozsah projektu Předmětem této statické části dokumentace pro stavební povolení nástavby

Více

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM

ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM ZOBRAZOVÁNÍ ROVINNÝM ZRCADLEM Pozorně se podívejte na obrázky. Kterou rukou si nevěsta maluje rty? Na které straně cesty je automobil ve zpětném zrcátku? Zrcadla jsou vyleštěné, zpravidla kovové plochy

Více

POZEMNÍ STAVITELSTVÍ I

POZEMNÍ STAVITELSTVÍ I POZEMNÍ STAVITELSTVÍ I Vysoká škola technická a ekonomická v Českých Budějovicích Institute of Technology And Business In České Budějovice Tento učební materiál vznikl v rámci projektu "Integrace a podpora

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VÍCEÚČELOVÁ SPORTOVNÍ HALA MULTI-PURPOSE SPORTS BUILDING

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VÍCEÚČELOVÁ SPORTOVNÍ HALA MULTI-PURPOSE SPORTS BUILDING VYOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERITY OF TECHNOLOGY FAKULTA TAVEBNÍ ÚTAV KOVOVÝCH A DŘEVĚNÝCH KONTRUKCÍ FACULTY OF CIVIL ENGINEERING INTITUTE OF METAL AND TIMBER TRUCTURE VÍCEÚČELOVÁ PORTOVNÍ HALA

Více

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU

PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU PENETRACE TENKÉ KOMPOZITNÍ DESKY OCELOVOU KULIČKOU : Ing.Bohuslav Tikal CSc, ZČU v Plzni, tikal@civ.zcu.cz Ing.František Valeš CSc, ÚT AVČR, v.v.i., vales@cdm.cas.cz Anotace Výpočtová simulace slouží k

Více

MITCALC for Pro/ENGINEER

MITCALC for Pro/ENGINEER MITCALC for Pro/ENGINEER MITCalc je sada strojírenských, průmyslových a technických výpočtů pro každodenní praxi. Spolehlivě, přesně a hlavně rychle vás provede návrhem součásti, řešením technického problému

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA II PRUŽNOST A PEVNOST

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109. Josef Gruber MECHANIKA II PRUŽNOST A PEVNOST STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJNICKÁ A STŘEDNÍ ODBORNÁ ŠKOLA PROFESORA ŠVEJCARA, PLZEŇ, KLATOVSKÁ 109 Josef Gruber MECHANIKA II PRUŽNOST A PEVNOST Vytvořeno v rámci Operačního programu Vzdělávání pro konkurenceschopnost

Více

MĚSÍC MATEMATIKA GEOMETRIE

MĚSÍC MATEMATIKA GEOMETRIE 3. ročník Bod, přímka ZÁŘÍ Násobení a dělení Aplikační úlohy (nakupujeme) Bod, přímka Úsečka Násobení a dělení ŘÍJEN Procvičování Pamětné sčítání a odčítání, aplikační úlohy Polopřímka Modelování polopřímek

Více

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ]

Aplikované úlohy Solid Edge. SPŠSE a VOŠ Liberec. Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] Aplikované úlohy Solid Edge SPŠSE a VOŠ Liberec Ing. Jan Boháček [ÚLOHA 27 NÁSTROJE KRESLENÍ] 1 CÍL KAPITOLY V této kapitole si představíme Nástroje kreslení pro tvorbu 2D skic v modulu Objemová součást

Více