Statistické metody uţívané při ověřování platnosti hypotéz
|
|
- Natálie Švecová
- před 9 lety
- Počet zobrazení:
Transkript
1 Statistické metody uţívané při ověřování platnosti hypotéz
2 Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech,
3 Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy výzkumné otázky v kvalitativních šetřeních) statistické hypotézy nulové hypotézy alternativní hypotézy
4 Pracovní, věcná hypotéza dokázaná verifikací H: Pachateli trestných činů bývají většinou mladiství z rozvrácených (nefunkčních) rodin. Zdůvodnění hypotézy: Proč se to domnívám? Co mne k tomu vedlo nějaký jiný výzkum, autor, tradice, mé zkušenosti? Kolik to je většinou (více jak 50%)? Kdo je to mladistvý respondent? Jaká rodina bude považována za rozvrácenou? Původní nebo současná...
5 Nulová hypotéza H : Mezi pachateli trestných činů nejsou rozdíly co se týká funkčnosti jejich rodiny.
6 Hypotéza alternativní Ha: Mezi pachateli trestných činů a funkčností jejich rodin je statisticky významná závislost.
7 Příklady formulací hypotéz Pracovní H Statistická H alternativní Mezi pohlavím a fyzickou zdatností existuje statisticky významný vztah, souvislost. Nulová H Lidé, kteří často sledují televizi, málo čtou. Ţáci na 1.stupni ZŠ mají rádi matematiku. V kouření cigaret nejsou statisticky významné rozdíly mezi pohlavím.
8 Souvislost vazba mezi jevy statistické testy významnosti Těsnost vztahu korelace
9 Hladina významnosti pravděpodobnost, že nastane Ho symbol - alfa dvě hladiny významnosti 0,01 na 99 % předpokládám vztah z Ho 0,05 na 95 % předpokládám vztah z Ho
10 Druhy statistických testů významnosti parametrické X neparametrické jednostranné X oboustranné
11 Postup při ověřování hypotéz Formulace nulové a statistické hypotézy Volba hladiny významnosti Volba vhodného testového kritéria Výpočet testového kritéria Nalezení příslušné kritické hodnoty Porovnání výsledek testu s kritickou hodnotou - závěr
12 Interpretace výsledku testu významnosti vypočítaná hodnota test. kritéria hodnota kritická nastává situace, kterou jsme očekávali jen s velmi malou pravděpodobností (na 5% nebo 1%), usuzujeme z toho, že výsledky nejsou náhodné a stojí za tím působení určitého vlivu, Ho na zvolené hladině významnosti odmítáme a přijímáme HA, tvrdíme, že výsledek výzkumu je statisticky významný (signifikantní) vypočítaná hodnota test. kritéria < hodnota kritická tento výsledek jsme očekávali s velkou jistotou (na 95% nebo 99%), dosažené výsledky mohou být náhodné, nemusí za tím stát působení nějakého vlivu, Ho na zvolené hladině významnosti nezamítáme, to však neznamená, že je hypotéza správná, konstatujeme, že výsledek není statisticky významný.
13 Volba testového kritéria závisí na tom, zda porovnáváme závislost mezi jevy při : Nominálním měření - testy dobré shody chí-kvadrát různé varianty - Fischerův kombinatorický test Ordinálním měření Znaménkový test Wilcoxonův test U test Manna a Whitneyho U test pro velmi malé výběry (četnosti ve srovnávaných skupinách jsou menší než 8) U test pro větší skupiny (četnosti ve srovnávaných skupinách jsou do 20) U test při velkých četnostech Kolmogorovův Smirnovův test Kruskalův Wallisův test (je zobecněním U testu) Metrickém (intervalovém nebo poměrovém) měření Funkční a statistická závislost mezi jevy Regresní a korelační analýza Pearsonův koeficient korelace Bodová biseriální korelace Biseriální korelace Tetrachordický koeficient korelace Studentův t test Fisherův Snedecorův F - test Párový t test Princip analýzy rozptylu Jednoduchá analýza rozptylu, Duncanův test Dvoufaktorová analýza rozptylu
14 Příklad č.1 Test dobré shody chí-kvadrát ² V různých denních dobách byl sledován počet zákazníků přicházejících do obchodu. Lze na základě těchto dat učinit závěr, že zákazníci přicházejí v průběhu dne rovnoměrně? Doba Počet
15 1. Formulujeme hypotézy H : Zákazníci přicházejí v průběhu dne rovnoměrně (rozdíly jsou způsobeny náhodou). Ha: Zákazníci v průběhu dne do prodejny rovnoměrně nepřicházejí. Existuje mezi dobou a počtem zákazníků statisticky významná závislost.
16 2. Stanovíme hladinu významnosti máme možnost vybrat si buď 0,05 X 0,01 0,05 (tj. na 95 % předpokládáme, že nastane situace v H )
17 3. Volíme vhodné testové kritérium Výpočet testového kritéria ² ² = [(P O)² : O] - P.. pozorované četnosti (tzv. ni) - O.. očekávané četnosti podle Ho
18 4. Výpočet testového kritéria Mechanicky Přes statistické programy Excell, SPSS, NCSS, STATISTICA,...
19 Doba Pozorovaná četnost P Očekávaná četnost O
20 Doba Pozorovaná četnost P Očekávaná četnost O = 188
21 Doba Pozorovaná četnost P Očekávaná četnost O , , ,6 Ø , ,6 = 188 = 188
22 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , , ,6 Ø , ,6 = 188 = 188
23 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O , ,6 Ø -1,6 2,56 0, , , ,6 = 188 = 188
24 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188
25 Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,6-1,6 2,56 0,068 Ø ,6 2,4 5,76 0, ,6-10,6 112,36 2, ,6 1,4 1,96 0, ,6 8,4 70,56 1,877 = 188 = 188 = 0 (vždy!) = 5,138
26 5. Nalezení kritické hodnoty v tabulkách kritických hodnot stupně volnosti příslušný stupeň volnosti. 4 (5 řádků v tabulce, tj. 5 1 = 4) Kritická hodnota: ²0,05 (4) = 9,483 popř. ²0,01 (4) = 13,277
27 6. Porovnání vypočítané hodnoty s kritickou hodnotou z tabulek vypočítaná hodnota je 5,138 kritická hodnota z tabulek je pro hladinu význ. 0,05 a 4 stupně volnosti = 9,483 5,138 9,483
28 Závěr Ho nelze odmítnout, proto nelze ze zjištěných údajů vyvozovat, že by zákazníci v průběhu dne přicházeli nerovnoměrně. Na 0,05 hladině významnosti přijímáme Ho
29 Jak se to píše do DP?! Tento výpočet dát do příloh Postupujeme podle bodů, ale ve větách, jako souvislý text (v DP) stanoví se hypotézy Ho a HA + zdůvodní se zařadí se tabulka pozorovaných četností následně komentář s uvedením údajů o zvolené hladině významnosti, vypočítané hodnotě ², kritické hodnotě z tabulek, jejich porovnání závěr k příslušné hypotéze přijímám Ho nebo HA
30 Příklad č. 2 - Seskupení údajů Doba Počet Doba Počet
31 Postup podle bodů 1. Formulace hypotéz 2. Stanovení hladiny významnosti 3. Volba testového kritéria 4. Výpočet testového kritéria
32 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O
33 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O = 188
34 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = 188
35 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2 Ø ,8 = 188 = ,2 148,84 1,
36 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188
37 Rozdělení do časových pásem Doba Pozorovaná četnost P Očekávaná četnost O P - 0 (P O)² (P O)²:O ,2-12,2 148,84 1, Ø ,8 12,2 148,84 1, = 188 = 188 = 0 = 3,
38 5. Nalezení kritické hodnoty v tabulkách příslušný stupeň volnosti. 1 (2 řádky v tabulce, tj. 2 1 = 1) ² 0,05(1) = 3, Porovnání vypočítané a kritické hodnoty vypočítaná hodnota je 3, , ,841
39 Závěr Musíme opět přijmout H, že zákazníci v průběhu dne přicházejí rovnoměrně. Vhodným seskupením v tabulce lze docílit různých výsledků Takovéto sdružování je možné pouze v důsledku logického řešení problému a ne spekulací!
40 Příklad č. 3 - Test dobré shody ² pro kontingenční tabulku Ověřte na 5 % hladině významnosti předpoklad, že podávání určitého léku zkracuje dobu léčení nemoci na základě získaných údajů u 174 pacientů: Do 7 dnů lék bralo 67 /nebralo 18 pacientů Mezi 7-10 dny bralo lék 22 / nebralo 25 Nad 10 dnů bralo lék 14 pacientů
41 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů 14
42 Řešení: 1. Vytvoření hypotéz Ho: Neexistuje vztah mezi dobou nemoci braním léků. HA: Rozdíly nejsou způsobeny náhodou a existuje závislost mezi dobu nemoci a braním léků. 2. Stanovení hladiny významnosti 3. Volba vhodného testového kritéria 4. Výpočet testového kritéria
43 Sestavení tzv. kontingenční tabulky Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů
44 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů
45 Doba nemoci Lék brali Lék nebrali Do 7 dnů dnů nad 10 dnů
46 Doba nemoci Lék brali P Lék nebrali P Do 7 dnů dnů nad 10 dnů
47 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32= (103.85): / dnů 22 / 25 / 47 nad 10 dnů 14 / 28 /
48 Doba nemoci Lék brali P / O Lék nebrali P / 0 Do 7 dnů 67 / 50,32 18 / 34, dnů 22 / 27,82 25 / 19,18 47 nad 10 dnů 14 / 24,86 28 / 17,
49 4. Výpočet testového kritéria Pro každé pole tabulky vypočteme podle vzorce hodnoty ² a sečteme je ² = (67-50,32)²:50,32 + (18-34,68)²:34, (22-27,82)²:27, = = 5,529+8,023+1,218+1,766+4,744+6,881= = 28,161
50 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (3-1). (2-1) = 2. 1 = 2 kritická hodnota z tabulek je ² 0,05 (2) = 5,991
51 6. Porovnání hodnot vypočítaná hodnota je 28,161 kritická hodnota z tabulek je ² 0,05 (2) = 5,991 28,161 5,991 Zamítáme H a přijímáme Ha
52 Příklad č. 4 Test dobré shody pro čtyřpolní tabulku Při silniční kontrole byly u náhodně vybraných 200 vozidel zjišťovány závady na osvětlení a pneumatikách. Posuďte zda existuje závislost mezi závadami na pneumatikách a osvětlení. Závady na pneumatikách Závady na osvětlení ANO NE ANO NE
53 Řešení 1. Formulujeme hypotézy: Ho: Mezi závadami pneumatik a osvětlením není žádná souvislost. HA: Mezi závadami pneumatik a osvětlením existuje souvislost. 2. Stanovíme hladinu významnosti 3. Volíme vhodné testové kritérium
54 4. Výpočet testového kritéria Vzorec pro výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C)
55 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) NE 16 (C) 140 (D)
56 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B NE 16 (C) 140 (D) 44
57 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156
58 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 n = 200
59 Závady na pneumatikách Závady na osvětlení ANO NE ANO 32 (A) 12 (B) A + B 44 NE 16 (C) 140 (D) C + D 156 A + C B + D n =
60 Výpočet: ²= n. (A.D-B.C)² : (A+B).(A+C).(B+D).(D+C) ² = 200.( )² : = = ,3672 = 73,431
61 5. Nalezení kritické hodnoty z tabulek zvolená hladina významnosti 0,05 příslušný stupeň volnosti f =? f = (ř-1). (s-1)... ř = řádky s = sloupce f = (2-1). (2-1) = 1. 1 = 1 kritická hodnota z tabulek je ² 0,05 (1) = 3,841
62 6. Porovnání a závěr vypočítaná hodnota je 73,431 kritická hodnota z tabulek je ² 0,05 (1) = 3,841 73,431 3,841 Odmítáme H a přijímáme Ha Stejný výsledek dostaneme i na hladině významnosti 0,01
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Název testu Předpoklady testu Testová statistika Nulové rozdělení. ( ) (p počet odhadovaných parametrů)
VYBRANÉ TESTY NEPARAMETRICKÝCH HYPOTÉZ TESTY DOBRÉ SHODY Název testu Předpoklady testu Testová statistika Nulové rozdělení test dobré shody Očekávané četnosti, alespoň 80% očekávaných četností >5 ( ) (p
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Program Statistica Base 9. Mgr. Karla Hrbáčková, Ph.D.
Program Statistica Base 9 Mgr. Karla Hrbáčková, Ph.D. OBSAH KURZU obsluha jednotlivých nástrojů, funkce pro import dat z jiných aplikací, práce s popisnou statistikou, vytváření grafů, analýza dat, výstupní
Testování hypotéz a měření asociace mezi proměnnými
Testování hypotéz a měření asociace mezi proměnnými Testování hypotéz Nulová a alternativní hypotéza většina statistických analýz zahrnuje různá porovnání, hledání vztahů, efektů Tvrzení, že efekt je nulový,
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Analýza dat z dotazníkových šetření
Analýza dat z dotazníkových šetření Cvičení 6. Rozsah výběru Př. Určete minimální rozsah výběru pro proměnnou věk v souboru dovolena, jestliže 95% interval spolehlivost průměru proměnné nemá být širší
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1
Kategorická data METODOLOGICKÝ PROSEMINÁŘ II TÝDEN 7 4. DUBNA 2018 4. dubna 2018 Lukáš Hájek, Karel Höfer Metodologický proseminář II 1 Typy proměnných nominální (nominal) o dvou hodnotách lze říci pouze
INDUKTIVNÍ STATISTIKA
10. SEMINÁŘ INDUKTIVNÍ STATISTIKA 3. HODNOCENÍ ZÁVISLOSTÍ HODNOCENÍ ZÁVISLOSTÍ KVALITATIVNÍ VELIČINY - Vychází se z kombinační (kontingenční) tabulky, která je výsledkem třídění druhého stupně KVANTITATIVNÍ
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu
Mgr. Karla Hrbáčková, Ph.D. Základy kvantitativního výzkumu K čemu slouží statistika Popisuje velké soubory dat pomocí charakteristických čísel (popisná statistika). Hledá skryté zákonitosti v souborech
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA. Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK.
ANALÝZA DAT V R 7. KONTINGENČNÍ TABULKA Mgr. Markéta Pavlíková Katedra pravděpodobnosti a matematické statistiky MFF UK www.biostatisticka.cz PŘEHLED TESTŮ rozdělení normální spojité alternativní / diskrétní
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
Základy biostatistiky II. Veřejné zdravotnictví 3.LF UK - II
Základy biostatistiky II Veřejné zdravotnictví 3.LF UK - II Teoretické rozložení-matematické modely rozložení Naměřená data Výběrové rozložení Teoretické rozložení 1 e 2 x 2 Teoretické rozložení-matematické
Obsah Úvod Kapitola 1 Než začneme Kapitola 2 Práce s hromadnými daty před analýzou
Úvod.................................................................. 11 Kapitola 1 Než začneme.................................................................. 17 1.1 Logika kvantitativního výzkumu...........................................
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
ADDS cviceni. Pavlina Kuranova
ADDS cviceni Pavlina Kuranova Testy pro dva nezávislé výběry Mannův Whitneyho test - Založen na Wilcoxnově statistice W - založen na pořadí jednotlivých pozorování (oba výběry spojeny do jednoho celku)
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová
VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza
5 Vícerozměrná data - kontingenční tabulky, testy nezávislosti, regresní analýza 5.1 Vícerozměrná data a vícerozměrná rozdělení Při zpracování vícerozměrných dat se hledají souvislosti mezi dvěma, případně
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Návod na vypracování semestrálního projektu
Návod na vypracování semestrálního projektu Následující dokument má charakter doporučení. Není závazný, je pouze návodem pro studenty, kteří si nejsou jisti výběrem dat, volbou metod a formou zpracování
Grafický a číselný popis rozložení dat 3.1 Způsoby zobrazení dat Metody zobrazení kvalitativních a ordinálních dat Metody zobrazení kvan
1 Úvod 1.1 Empirický výzkum a jeho etapy 1.2 Význam teorie pro výzkum 1.2.1 Konstrukty a jejich operacionalizace 1.2.2 Role teorie ve výzkumu 1.2.3 Proces ověření hypotéz a teorií 1.3 Etika vědecké práce
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
Statistika. Testování hypotéz statistická indukce Neparametrické testy. Roman Biskup
Statistika Testování hypotéz statistická indukce Neparametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Statistické testování hypotéz II
PSY117/454 Statistická analýza dat v psychologii Přednáška 9 Statistické testování hypotéz II Přehled testů, rozdíly průměrů, velikost účinku, síla testu Základní výzkumné otázky/hypotézy 1. Stanovení
{ } ( 2) Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
TECHNICKÁ UNIVERZITA V LIBERCI. Statistický rozbor dat z dotazníkového šetření
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Analýza výsledků dotazníkového šetření - fakultní dotazník Vypracovaly: Klára Habrová,
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Test χ 2 v kontingenční tabulce typu 2 2 Jde vlastně o speciální případ χ 2 testu pro čtyřpolní tabulku.
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Mějme kategoriální proměnné X a Y. Vytvoříme tzv. kontingenční tabulku. Budeme tedy testovat hypotézu
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
IBM SPSS Exact Tests. Přesné analýzy malých datových souborů. Nejdůležitější. IBM SPSS Statistics
IBM Software IBM SPSS Exact Tests Přesné analýzy malých datových souborů Při rozhodování o existenci vztahu mezi proměnnými v kontingenčních tabulkách a při používání neparametrických ů analytici zpravidla
Vysoká škola báňská technická univerzita Ostrava. Fakulta elektrotechniky a informatiky
Vysoká škola báňská technická univerzita Ostrava Fakulta elektrotechniky a informatiky Bankovní účty (semestrální projekt statistika) Tomáš Hejret (hej124) 18.5.2013 Úvod Cílem tohoto projektu, zadaného
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
ADDS cvičení 7. Pavlína Kuráňová
ADDS cvičení 7 Pavlína Kuráňová Analyzujte závislost věku obyvatel na místě kde nejčastěji tráví dovolenou. (dotazník dovolená, sloupce Jaký je Váš věk a Kde nejčastěji trávíte dovolenou) Analyzujte závislost
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce z předmětu Statistický rozbor dat z dotazníkového šetření Jméno: Lucie Krechlerová, Karel Kozma, René Dubský, David Drobík Ročník: 2015/2016
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Úvod do analýzy rozptylu
Úvod do analýzy rozptylu Párovým t-testem se podařilo prokázat, že úprava režimu stravování a fyzické aktivity ve vybrané škole měla vliv na zlepšené hodnoty HDLcholesterolu u školáků. Pro otestování jsme
Technická univerzita v Liberci
Technická univerzita v Liberci Ekonomická fakulta Analýza výsledků z dotazníkového šetření Jména studentů: Adam Pavlíček Michal Karlas Tomáš Vávra Anna Votavová Ročník: 2015/2016 Datum odevzdání: 13/05/2016
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
6. Testování statistických hypotéz. KGG/STG Zimní semestr 6. Testování statistických hypotéz
6. Testování statistických Testování statistických Princip: Ověř ěřování určit itého předpokladu p zjišťujeme, zda zkoumaný výběr r pochází ze základnz kladního souboru, který mám určit ité rozdělen lení
PARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
Příklad: Test nezávislosti kategoriálních znaků
Příklad: Test nezávislosti kategoriálních znaků Určete na hladině významnosti 5 % na základě dat zjištěných v rámci dotazníkového šetření ve Šluknově, zda existuje závislost mezi pohlavím respondenta a
Kontingenční tabulky, korelační koeficienty
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz Budeme předpokládat, že X a Y jsou kvalitativní náhodné veličiny, obor hodnot X obsahuje r hodnot (kategorií,
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina)
5. Závislost dvou náhodných veličin různých typů (kategoriální a metrická veličina) Cílem tématu je správné posouzení a výběr vhodného testu v závislosti na povaze metrické a kategoriální veličiny. V následující
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy
Přednáška XI. Asociace ve čtyřpolní tabulce a základy korelační analýzy Relativní riziko a poměr šancí Princip korelace dvou náhodných veličin Korelační koeficienty Pearsonůva Spearmanův Korelace a kauzalita
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů.
Téma 10: Analýza závislosti dvou nominálních veličin Úkol 1.: Testování nezávislosti nominálních veličin V roce 1950 zkoumali Yule a Kendall barvu očí a vlasů u 6800 mužů. barva očí barva vlasů světlá
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
TECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření Počet stran: 10 Datum odevzdání: 13. 5. 2016 Pavel Kubát Obsah Úvod... 3 1 Charakterizujte
SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ FAKULTA DOPRAVNÍ SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU STATISTIKY Facebook vs. studium Vypracovali: Martina Grivalská Nikola Karkošiaková Barbora Brůhová Obsah 1. Úvod 2. Dotazník 3.
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1