Testování statistických hypotéz. Obecný postup
|
|
- Magdalena Hájková
- před 5 lety
- Počet zobrazení:
Transkript
1 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým testem. Její matematické vyjádření označíme hypotéza H 0. Negací H 0 je alternativní hypotéza označená H 1. A. Formulace H 0 : A = B }{{} nulová hypotéza H 1 : A B }{{} alternativní hypotéza (oboustranná varianta) Případně lze použít jednu z jednostranných alternativních hypotéz (záleží na významu testovaných dat) H 0 : A B H 1 : A < B nebo H 0 : A B H 1 : A > B. B. Volba hladiny významnosti α - pravděpodobnost chyby I. druhu (tedy pravděpodobnost, že zamítneme pravdivý výrok H 0 ). (II) Statistický test se provede dosazením do testovacího kritéria a porovnámín s příslušnou kritickou hodnotou. (Každý test má své předem známé testovací kritérium a příslušnou kritickou hodnotu, které určíme pomocí softwaru.) (III) Vyslovení závěru plyne z výsleku testu. Jsou možné dva. Hodnota testovacího kritéria buďto překročí kritickou hodnotu nebo ne. Jestliže hodnota testovacího kritéria nepřekročí stanovenou kritickou hodnotu, pak řekneme, že Hypotézu H 0 nelze zamítnout. (Pro zamítnutí H 0 není dostatek podkladů, protože neznáme velikost chyby II. druhu.) Jestliže hodnota testovacího kritéria překročí stanovenou kritickou hodnotu, pak řekneme, že Hypotézu H 0 na hladině významnosti α zamítáme ve prospěch alternativy H Rozptyl normálního rozdělení Přehled statistických testů χ -test o rozptylu σ. Tj. má skupina dat {x i } i požadovaný rozptyl roven zvolené hodnotě σ0? Předpoklady: {x i } i jedna skupina naměřených hodnot, má normální rozdělení pravděpodobnosti n počet hodnot {x i } i, σ0 očekávaný rozptyl zadané číslo,
2 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu s výběrový rozptyl (lze dopočítat) Hypotéza: H 0 : σ = σ0 H 1 : σ σ0 (oboustranná) Test: testovací kritérium: χ = (n 1) s σ 0 = (n-1)* s / σ0 pro s =var.s(hodnoty x i) kritický interval: je tvořen kvantily χ α (n 1) ; χ 1 α (n 1) levá mezní hodnota =chisq.inv( α / ;n-1) pravá mezní hodnota =chisq.inv(1- α / ;n-1) χ χ α (n 1); χ 1 α (n 1) pak zamítáme H 0 ve prospěch alternativy H 1 χ χ α (n 1); χ 1 α (n 1) H 0 nelze zamítnout Hypotéza: H 0 : σ = σ0 H 1 : σ < σ0 (jednostranná) kritická hodnota: χ α(n 1) =chisq.inv( α ;n-1) χ χ α(n 1) pak zamítáme H 0 ve prospěch alternativy H 1 χ > χ α(n 1) H 0 nelze zamítnout Hypotéza: H 0 : σ = σ0 H 1 : σ > σ0 (jednostranná) kritická hodnota: χ 1 α (n 1) =chisq.inv( 1-α ;n-1) χ χ 1 α (n 1) pak zamítáme H 0 ve prospěch alternativy H 1 χ < χ 1 α (n 1) H 0 nelze zamítnout Mají provedená měření požadovanou přesnost? Lze tvrdit, že směrodatná odchylka odpovídající daným hodnotám je rovna zadanému číslu? Literatura: Pracovní listy strana 6, řešený příklad strana 150 a neřešený příklad na 7. Dvouvýběrový F-test významnosti rozdílu dvou rozptylů. Tj. mají obě skupiny dat {x i } i a {y j } j stejný rozptyl? Předpoklady: {x i } i a {y j } j dvě skupiny naměřených hodnot, nemusí být párové, mají normální rozdělení pravděpodobnosti s 1 a s výběrové rozptyly (lze dopočítat)
3 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu indexy volíme tak, aby s 1 s, n 1 a n počty hodnot{x i } i a {y j } j, Hypotéza: H 0 : σ1 = σ H 1 : σ1 σ (oboustranná) Test: testovací kritérium: F = s 1 s = s 1^/ s ^) kritická hodnota: pro s 1 s =var.s(hodnoty x i) =var.s(hodnoty y j) F krit = F 1 α (n 1 1, n 1) =f.inv(1-α/;n 1-1;n -1) α...zvolená pravděpodobnost chyby I. druhu F F krit pak zamítáme H 0 ve prospěch alternativy H 1 F < F krit H 0 nelze zamítnout Hypotéza (pravostranná): H 0 : σ1 = σ H 1 : σ1 > σ Test: testovací kritérium: viz oboustranný test kritická hodnota: F krit = F 1 α (n 1 1, n 1) =f.inv( 1-α ;n 1-1;n -1) viz oboustranný test Jsou obě měřené skupiny stejně vyrovnané? Pracují dva měřící přístroje stejně přesně? Jsou výkony dvou skupin studentů při písemce stejně vyrovnané? Jsou výsledky obou měření kvalitativně stejné? Literatura: Skripta kap na straně 6, řešený příklad na straně 7. Pracovní listy strana 63, řešený příklad strana 151 a neřešený příklad na 8.. Střední hodnota normálního rozdělení Jednovýběrový t-test o střední hodnotě µ. Tj. má skupina dat {x i } i požadovaný průměr roven zvolené hodnotě µ 0? Předpoklady: {x i } i jedna skupina naměřených hodnot, má normální rozdělení pravděpodobnosti n počet hodnot {x i } i, µ 0 očekávaná střední hodnota zadané číslo, x výběrová střední hodnota (lze dopočítat) s výběrový rozptyl (lze dopočítat) Hypotéza: H 0 : µ = µ 0 H 1 : µ µ 0 (oboustranná) n Test: testovací kritérium: T = (x µ 0 ) s = (x-µ 0 ) * (n/s )^0,5
4 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu pro x =průměr(hodnoty x i) s =var.s(hodnoty x i) kritická hodnota: kvantil t krit = t 1 α (n 1) =t.inv.t(α;n-1) T t krit pak zamítáme H 0 ve prospěch alternativy H 1 T < t krit H 0 nelze zamítnout Hypotéza jednostranná: H 0 : µ = µ 0 H 1 : µ > µ 0 kritická hodnota: kvantil t krit = t 1 α (n 1) viz oboustranný test Hypotéza jednostranná: H 0 : µ = µ 0 H 1 : µ < µ 0 =t.inv.t(*α;n-1) kritická hodnota: kvantil t krit = t 1 α (n 1) viz oboustranný test =t.inv.t(*α;n-1) Mají naměřená data požadovaný průměr? Mají dodané výrobky slibovanou kvalitu? Je měřící přístroj přesný? Nevzniká náhodou při měření systematická chyba? Literatura: Skripta kap na straně 8, řešený příklad na straně 9. Pracovní listy strana 61, řešený příklad strana 149 a neřešený příklad na 6. Dvouvýběrový t-test významnosti rozdílu dvou výběrových průměrů Tj. mají obě skupiny dat {x i } i a {y j } j stejnou střední hodnotu? Výpočet se provádí podle toho, jak vyšel test Dvouvýběrový F-test významnosti rozdílu dvou rozptylů. Proto je potřeba F-test provést nejdříve. Předpoklady: {x i } i a {y j } j dvě skupiny naměřených hodnot, nepárové, mají normální rozdělení pravděpodobnosti n 1 a n počty hodnot{x i } i a {y j } j, indexy volíme tak, aby n 1 n, x 1 a x výběrové střední hodnoty (lze dopočítat) s 1 a s příslušné výběrové rozptyly (lze dopočítat) Hypotéza: H 0 : µ 1 = µ H 1 : µ 1 µ nebo jednostranné hypotézy H 0 : µ 1 = µ H 1 : µ 1 > µ Test: (a) pokud podle F-testu je σ 1 = σ H 0 : µ 1 = µ H 1 : µ 1 < µ
5 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu testovací kritérium: T = x 1 x n1 n (n 1 + n ) n1 s 1 + n s n 1 + n =(x 1 -x )/(n 1 *s 1 +n *s )^0.5 * ((n 1*n *(n 1 +n -))/(n 1 +n ))^0.5 pro x 1 = průměr(hodnoty x i), x = průměr(hodnoty y j) s 1 = var.s(hodnoty x i), s = var.s(hodnoty y j) kritická hodnota: pro oboustranný test kvantil t krit = t 1 α (n 1 + n ) =t.inv.t(α;n 1 +n -) s = var.s(hodnoty y j) kritická hodnota: pro jednostranné testy kvantil t krit = t 1 α (n 1 + n ) =t.inv.t(*α;n 1 +n -) (b) pokud podle F-testu je σ1 σ x 1 x testovací kritérium: T = (n1 (n 1)s 1 + (n 1)(n 1 1)s 1) =(x 1 -x )/((n -1)*s 1 +(n 1-1)*s )^0.5 * ((n 1-1)*(n -1))^0.5 kritická hodnota: pro oboustranný test t krit = (n 1) s 1 t 1 α (n 1 1) + (n 1 1) s t 1 α (n 1) (n 1)s 1 + (n 1 1)s =((n -1)*s 1 *t.inv.t(α;n 1-1)+(n 1-1)*s *t.inv.t(α;n -1))/((n -1)*s 1 +(n 1-1)*s ) kritická hodnota: pro jednostranné testy t krit = (n 1) s 1 t 1 α(n 1 1) + (n 1 1) s t 1 α(n 1) (n 1)s 1 + (n 1 1)s =((n -1)*s 1 *t.inv.t(*α;n 1-1)+(n 1-1)*s *t.inv.t(*α;n -1))/((n -1)*s 1 +(n 1-1)*s ) T t krit pak zamítáme H 0 ve prospěch alternativy H 1 T < t krit H 0 nelze zamítnout Je výkonnost dvou skupin kvantitativně stejná? Je bodový zisk při písemce studentů ze dvou různých skupin v průměru stejný? Literatura: Skripta kap na straně 10, řešené příklady na straně Pracovní listy strana 64 a 65, řešený příklad strana 15 a neřešený příklad na 8. Studentův t-test pro párové hodnoty Předpoklady: {[x i, y i ]} i skupina naměřených párových hodnot mají normální rozdělení pravděpodobnosti {d i } rozdíly hodnot x i y i, n počet hodnot {d i } i, x d výběrová střední hodnota pro {d i } i (lze dopočítat) výběrový rozptyl pro {d i } i (lze dopočítat) s d Hypotéza: H 0 : µ 1 = µ (d = 0) H 1 : µ 1 µ (d 0) nebo jednostranné hypotézy H 0 : µ 1 = µ H 1 : µ 1 > µ H 0 : µ 1 = µ H 1 : µ 1 < µ
6 poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu Test: testovací kritérium: T = n 1 x d s d =(n-1)^0,5 * abs(x d )/ (s d )^0,5 pro x d =průměr(hodnoty d) s d =var.s(hodnoty d) kritická hodnota: pro oboustranný test t krit = t 1 α (n 1) =t.inv.t(α;n-1) kritická hodnota: pro jednostranné testy t krit = t 1 α (n 1) =t.inv.t(*α;n-1) T t krit pak zamítáme H 0 ve prospěch alternativy H 1 T < t krit H 0 nelze zamítnout Došlo ke změně výkonnosti po seřízení stroje? Zabrali nové léky na tlak, jestliže jsme u jedné skupiny pacientů měřili t a po podání léků? Zvýšil se průměrný výnos očesaných jablek ze sadu, jestliže se provedl po škůdcům? Nevzniká náhodou při měření systematická chyba? Literatura: Skripta kap na straně 14, řešený příklad na straně 15. Pracovní listy strana 66, řešený příklad strana 153 a neřešený příklad na 9.
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
VíceTestování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
VíceTestování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
VíceTesty statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
VíceSTATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
VíceUrčujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
VíceCharakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
VíceLékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
VíceTestování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
VíceAproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
VícePravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
VíceNormální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
VíceTestování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
VíceStručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Více4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
VíceNáhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
VíceTestování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
VíceKatedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci
Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické
VíceTesty. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Více12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
VíceIng. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceStatistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
VíceTESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
VíceTestování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
VíceIntervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
VíceTestování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
VícePříklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
VícePříklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
VíceJEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
VíceZápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
VícePravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
VíceParametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
Více5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
VícePRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
VíceTESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Více12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
VíceNeparametrické testy
Neparametrické testy Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální (Gaussovo) rozdělení. Například: Grubbsův test odlehlých
VíceJednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
VíceStatistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
VíceProblematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
VíceCvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Vícet-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
VíceRozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Víceanalýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Více11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
VíceTestování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Více2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
Více12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
VíceNeparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika
Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování
Víceletní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test
Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma
VíceDVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
VíceTestování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
VíceYou created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
VíceTestování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Více15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VíceTestování hypotéz. December 10, 2008
Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně
VíceJednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
VíceSTATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza
Více5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
VíceÚvod do teorie odhadu. Ing. Michael Rost, Ph.D.
Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost
VíceSTATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
VíceEpidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
VícePravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
Více4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
VíceZákladní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
VíceCvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
VíceMann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
VíceTomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
VíceOpakování. Neparametrické testy. Pořadí. Jednovýběrový Wilcoxonův test. t-testy: hypotézy o populačním průměru (střední hodnoty) předpoklad normality
Opakování Opakování: Testy o střední hodnotě normálního rozdělení 1 jednovýběrový t-test 2 párový t-test 3 dvouvýběrový t-test jednovýběrový Wilcoxonův test párový Wilcoxonův test dvouvýběrový Wilcoxonův
VíceTestování hypotéz. Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry
Testování hypotéz Testování hypotéz o rozdílu průměrů t-test pro nezávislé výběry t-test pro závislé výběry Testování hypotéz Obecný postup 1. Určení statistické hypotézy 2. Určení hladiny chyby 3. Výpočet
VíceDva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
VíceTECHNICKÁ UNIVERZITA V LIBERCI. Ekonomická fakulta. Semestrální práce. Statistický rozbor dat z dotazníkového šetření školní zadání
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce Statistický rozbor dat z dotazníkového šetření školní zadání Skupina: 51 Vypracovaly: Pavlína Horná, Nikola Loumová, Petra Mikešová,
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 7. Testování statistických hypotéz Mgr. David Fiedor 30. března 2015 Osnova 1 2 3 Dělení testů parametrické - o parametrech rozdělení základního souboru (průměr, rozptyl,
VíceÚVOD DO TESTOVÁNÍ HYPOTÉZ. Martina Litschmannová
ÚVOD DO TESTOVÁNÍ HYPOTÉZ Martina Litschmannová Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu v odhadu parametru náhodné veličiny Testování
VíceStatistika. Testování hypotéz - statistická indukce Parametrické testy. Roman Biskup
Statistika Testování hypotéz - statistická indukce Parametrické testy Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 1. února 01 Statistika by Birom
VícePravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n
VícePARAMETRICKÉ TESTY. 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU 10.
PARAMETRICKÉ TESTY Testujeme rovnost průměru - předpokladem normální rozdělení I) Jednovýběrový t-test 1) Měření Etalonu. Dataset - mereni_etalonu.sta - 9 měření etalonu srovnáváme s PŘEDPOKLÁDANOU HODNOTOU
VíceHODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
VíceJednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
VíceSTATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
VíceMATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ
MATEMATICKO STATISTICKÉ PARAMETRY ANALYTICKÝCH VÝSLEDKŮ Má-li analytický výsledek objektivně vypovídat o chemickém složení vzorku, musí splňovat určitá kriteria: Mezinárodní metrologický slovník (VIM 3),
VíceMatematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
VícePřednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
VíceKGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 9. Korelační analýza Mgr. David Fiedor 20. dubna 2015 Analýza závislostí v řadě geografických disciplín studujeme jevy, u kterých vyšetřujeme nikoliv pouze jednu vlastnost
VíceTECHNICKÁ UNIVERZITA V LIBERCI
TECHNICKÁ UNIVERZITA V LIBERCI Ekonomická fakulta Semestrální práce STATISTICKÝ ROZBOR DAT Z DOTAZNÍKOVÉHO ŠETŘENÍ Vypracovaly: Renata Němcová, Andrea Zuzánková, Lenka Vítová, Michaela Ťukalová, Kristýna
VíceLineární regrese. Komentované řešení pomocí MS Excel
Lineární regrese Komentované řešení pomocí MS Excel Vstupní data Tabulka se vstupními daty je umístěna v oblasti A1:B11 (viz. obrázek) na listu cela data Postup Základní výpočty - regrese Výpočet základních
VícePřednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení
Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;
VíceRNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr.
Analýza dat pro Neurovědy RNDr. Eva Janoušová doc. RNDr. Ladislav Dušek, Dr. Jaro 2014 Institut biostatistiky Janoušová, a analýz Dušek: Analýza dat pro neurovědy Blok 3 Jak a kdy použít parametrické a
VíceSever Jih Západ Plechovka Točené Sever Jih Západ Součty Plechovka Točené Součty
Neparametrické testy (motto: Hypotézy jsou lešením, které se staví před budovu a pak se strhává, je-li budova postavena. Jsou nutné pro vědeckou práci, avšak skutečný vědec nepokládá hypotézy za předmětnou
Více