Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Rozměr: px
Začít zobrazení ze stránky:

Download "Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF"

Transkript

1 Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Mechanika tekumn 1/13 1

2 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice. StaMka tekumn 3. Dynamika tekumn 4. Navierovy- Stokesovy rovnice 5. Turbulence 6. Bernoulliova rovnice 7. Stlačitelné proudění a akusmka 8. Experimentální metody 9. MatemaMcká simulace proudění 10. Mezní vrstvy 11. Obtékání těles 1. Proudění kanály a potrubím 13. Proudové stroje Mechanika tekumn 1/13

3 Mechanika teku,n - přednášky 1. Úvod, pojmy, definice. StaMka tekumn 3. Dynamika tekumn 4. Navierovy- Stokesovy rovnice 5. Turbulence 6. Bernoulliova rovnice 7. Stlačitelné proudění a akusmka 8. Experimentální metody 9. MatemaMcká simulace proudění 10. Mezní vrstvy 11. Obtékání těles 1. Proudění kanály a potrubím 13. Proudové stroje Mechanika tekumn 1/13 3

4 Bernoulliova rovnice a. Odvození z N- SR b. Různé tvary BR c. Podmínky použid a interpretace výsledků d. Příklady použid BR: výtok kapaliny z nádob, přepady, proudění v potrubí Mechanika tekumn 1/13 4

5 Daniel Bernoulli Hydrodynamica (1738) , Groningen , Basilej Mechanika tekumn 1/13 5

6 Bernoulliova rovnice N- S rovnice TekuMna Nestlačitelná ρ = konst Nevazká Stacionární proud Vektorová idenmta Podél proudnice: DV Dt = V t + V ( )V = 1 ρ p +ν V + g ds 1 V = 1 ( V ) ( V )V = 1 ( V V ) V ( V) ds V p ds = dp ( V ) ds = d V p ρ ds + 1 ( V ) ds + g ds = $ % V V ( ) ( ) dp ρ + d V ( ) + g dz = 0 & ' ds ( ) # $ V V % & ds Mechanika tekumn 1/13 6

7 Bernoulliova rovnice Diferenciální rovnice: ( ) dp ρ + d V + g dz = 0 Možno integrovat mezi body 1 a : 1 dp ρ ( ) d V + g dz = konst = H 1 1 Tlaková energie KineMcká energie Potenciální (polohová) energie p 1 ρ + V 1 + g z = p 1 ρ + V + g z = H Zákon zachování mechanické energie pro ustálené proudění nestlačitelné a nevazké tekumny v 1- D (podél proudnice) Mechanika tekumn 1/13 7

8 Výchozí předpoklady Nestlačitelná teku.na: Ma < 0.3 Nevazká teku.na: není smykové tření, vliv stěn Stacionární proudění: konst. o.p., ne turbulence Podél proudnice: každá proudnice jiná konstanta Není vykonaná práce: na proudnici není čerpadlo, turbína Není přestup tepla: adiabamcký děj Mechanika tekumn 1/13 8

9 Platnost BR Model v aerodynamickém tunelu Pohon tunelu Pec Mechanika tekumn 1/13 9

10 Bernoulliho konstanta Bernoulliho konstanta H SubsMtuce: H = V ω H je konstantní v proudovém poli: Podél proudnice Podél vírové čáry Všude pokud Proudění je nevířivé Vírové čáry splývají s proudnicemi ω = 0 V ω = Mechanika tekumn 1/13 10

11 Různé formy BR Energie p ρ + V + g h = H Nm kg = J kg = m s Výška p gρ + V g + h = h B m Tlak p + 1 ρv + hρg = p B Pa = N m Mechanika tekumn 1/13 11

12 Hydrodynamické paradoxon 1 p+ ρv + hρg = p B Mechanika tekumn 1/13 1

13 Hydrodynamické paradoxon Mechanika tekumn 1/13 13

14 PoužiI HP Vodní vývěva Karburátor Rozprašovač Křídlo - vztlak Mechanika tekumn 1/13 14

15 Kavitace 1 p+ ρv + hρg = p B Tlak nasycených par Voda, 18 C: p np = kpa V > V krit, p < p np Bubliny!!! Mechanika tekumn 1/13 15

16 Ideální případ h B EnergeMcká výška (Bernoulliho) h B = p V h gρ + g + h H Hydraulická výška h H p = + h gρ Mechanika tekumn 1/13 16

17 Skutečnost ZTRÁTY ENERGIE Mechanika tekumn 1/13 17

18 Zobecnění BR BR mechanická energie proudu Potenciální Tlaková KineMcká gh p ρ V Zobecnění: Vnitřní energie, entalpie Přenesené teplo q Práce w s Ztráty třením w ν ĥ = û + p ρ p 1 ρ + 1 V 1 + gz 1 = p ρ + 1 V + gz + ( û û 1 q) + w s + w ν Mechanika tekumn 1/13 18

19 Výtok 1: atmosféra p atm, V 1 = 0 : výtok p atm, V 3: p 3 = (h - l) ρ g, V 3 = 0 4: p 4 = p atm Torricelli : p 5 = p atm Mechanika tekumn 1/13 19

20 Horizontální výtok Horizontální výtok p 1 = p = p 3 = p atm h 1 < h < h 3 Vena contracta Aj d j µ = = Ah dh Mechanika tekumn 1/13 0

21 Součinitel kontrakce Aj d j µ = = Ah dh µ = 0,61 µ =1 µ = 0,61 µ = 0, Mechanika tekumn 1/13 1

22 Výtok z otvoru Mechanika tekumn 1/13

23 Bilance energie Potenciální energie Tlaková energie KineMcká energie Bod\Energie Potenciální e. Tlaková e. Kine?cká e. 1 0 Velká Malá Malá 0 Velká 3 Velká Mechanika tekumn 1/13 3

24 Fluktuace rychlos,, tlaku Rychlost a dynamický tlak na proudnici: Reynoldsův rozklad: ( x, ) = ( x) + ʹ ( x, ) p t p p t pd = 1 ρv pds = 1 ρv Středování: (, t) = ( ) + ʹ (, t) V x V x V x pd = ρv = ρv = ρ V + V = ρ V + VV + V = ρ V + V ( ʹ ) ( ʹ ʹ ) ( ʹ ) 1 p = p + ρvʹ p d ds ds Mechanika tekumn 1/13 4

25 Stagnační bod Místo na povrchu obtékaného tělesa (čára, křivka) RelaMvní rychlost je nulová KineMcká energie je nulová Stagnační proudnice Mechanika tekumn 1/13 5

26 Stagnační bod Mechanika tekumn 1/13 6

27 Tlaky v proudící teku,ně StaMcký: (3): p 3 h 4-3 r g (1,): p 1 h r g = p 3 h 3-1 r g Celkový, stagnační: (1,): p H r g Dynamický: (1,): celkový - stamcký = 1/V Teplota: StaMcká Celková Mechanika tekumn 1/13 7

28 Měření tlaků Vzduch zanedbání potenciální energie: p d = p p 1 = 1/rV p 3 = p, p 4 = p 1 p d = p 3 p 4 V = p d ρ Mechanika tekumn 1/13 8

29 Měření rychlos, Mechanika tekumn 1/13 9

30 Bilance kolmo k proudnici Mechanika tekumn 1/13 30

31 Kolmo k proudnici Bilance sil Setrvačné Tíhové Tlakové Bez dhy: Mechanika tekumn 1/13 31

32 Víry Tuhé těleso Potenciální vír Mechanika tekumn 1/13 3

33 Děkuji za pozornost Mechanika tekumn 1/13 33

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 13.10.2014 Mechanika tekutin 1/13 1 Mechanika tekutin - přednášky 1. Úvod, pojmy,

Více

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF

Václav Uruba home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF Václav Uruba uruba@fst.zcu.cz home.zcu.cz/~uruba ZČU FSt, KKE Ústav termomechaniky AV ČR, v.v.i., ČVUT v Praze, FS, UK MFF 14.12.14 Mechanika tekuln 12/13 1 Mechanika teku,n - přednášky 1. Úvod, pojmy,

Více

Výsledný tvar obecné B rce je ve žlutém rámečku

Výsledný tvar obecné B rce je ve žlutém rámečku Vychází N-S rovnice, kterou ovšem zjednodušuje zavedením určitých předpokladů omezujících předpokladů. Bernoulliova rovnice v základním tvaru je jednorozměrný model stacionárního proudění nevazké a nestlačitelné

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K4) Přednáškové slidy předmětu 4 HYA (Hydraulika) verze: 09/008 K4 Fv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu pdf souborů

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D.

ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov. Modelování termohydraulických jevů 3.hodina. Hydraulika. Ing. Michal Kabrhel, Ph.D. ČVUT v Praze Fakulta stavební Katedra Technických zařízení budov Modelování termohydraulických jevů 3.hodina Hydraulika Ing. Michal Kabrhel, Ph.D. Letní semestr 008/009 Pracovní materiály pro výuku předmětu.

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Mechanika kapalin a plynů

Mechanika kapalin a plynů Mechanika kapalin a plynů Petr Pošta pposta@karlin.mff.cuni.cz 24. listopadu 2010 Obsah Tekutiny Tlak Tlak v kapalině vyvolaný vnější silou Tlak v kapalině vyvolaný tíhovou silou Tlak v kapalině vyvolaný

Více

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles

Hydrodynamika. Archimédův zákon Proudění tekutin Obtékání těles Hydrodynamika Archimédův zákon Proudění tekutin Obtékání těles Opakování: Osnova hodin 1. a 2. Archimédův zákon Proudění tekutin Obtékání těles reálnou tekutinou Využití energie proudící tekutiny Archimédes

Více

Síla, vzájemné silové působení těles

Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Síla, vzájemné silové působení těles Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_02_01 Vytvořeno Leden 2014 Síla, značka a jednotka síly, grafické znázornění

Více

Teoretické otázky z hydromechaniky

Teoretické otázky z hydromechaniky Teoretické otázky z hydromechaniky 1. Napište vztah pro modul pružnosti kapaliny (+ popis jednotlivých členů a 2. Napište vztah pro Newtonův vztah pro tečné napětí (+ popis jednotlivých členů a 3. Jaká

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná.

Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Mechanika tekutin je nauka o rovnováze a makroskopickém pohybu tekutin a o jejich působení na tělesa do ní ponořená či jí obtékaná. Popisuje chování tekutin makroskopickými veličinami, které jsou definovány

Více

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA

PROUDĚNÍ KAPALIN A PLYNŮ, BERNOULLIHO ROVNICE, REÁLNÁ TEKUTINA Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Vladislav Válek MGV_F_SS_1S2_D16_Z_MECH_Proudeni_kapalin_bernoulliho_ rovnice_realna_kapalina_aerodynamika_kridlo_pl

Více

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací

U218 - Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. ! t 2 :! Stacionární děj, bez vnitřního zdroje, se zanedbatelnou viskózní disipací VII. cená konvekce Fourier Kirchhoffova rovnice T!! ρ c p + ρ c p u T λ T + µ d t :! (g d + Q" ) (VII 1) Stacionární děj bez vnitřního zdroje se zanedbatelnou viskózní disipací! (VII ) ρ c p u T λ T 1.

Více

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok -

Počítačová dynamika tekutin (CFD) Základní rovnice. - laminární tok - Počítačová dynamika tekutin (CFD) Základní rovnice - laminární tok - Základní pojmy 2 Tekutina nemá vlastní tvar působením nepatrných tečných sil se částice tekutiny snadno uvedou do pohybu (výjimka některé

Více

i j antisymetrický tenzor místní rotace částice jako tuhého tělesa. Každý pohyb částice lze rozložit na translaci, deformaci a rotaci.

i j antisymetrický tenzor místní rotace částice jako tuhého tělesa. Každý pohyb částice lze rozložit na translaci, deformaci a rotaci. KOHERENTNÍ STRUKTURY Kinematika proudění Rozhodující je deformace částic tekutiny wi wi ( x j + dx j, t) = wi ( x j, t) + dx j x j tenzor rychlosti deformace: wi 1 w w i j w w i j 1 = + + = sij + r x j

Více

1 Vlastnosti kapalin a plynů

1 Vlastnosti kapalin a plynů 1 Vlastnosti kapalin a plynů hydrostatika zkoumá vlastnosti kapalin z hlediska stavu rovnováhy kapalina je v klidu hydrodynamika zkoumá vlastnosti kapalin v pohybu aerostatika, aerodynamika analogicky

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = = MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní

Více

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny

15 MECHANIKA IDEÁLNÍCH TEKUTIN. Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny 125 15 MECHANIKA IDEÁLNÍCH TEKUTIN Hydrostatika ideální kapaliny Hydrodynamika ideální tekutiny Na rozdíl od pevných látek, které zachovávají při pohybu svůj tvar, setkáváme se v přírodě s látkami, které

Více

Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají

Mechanika tekutin Tekutost Nemají stálý tvar pružné při změně objemu stlačitelné Kapaliny stálý objem, málo stlačitelné volnou hladinu Plyny nemají Mechanika tekutin FyzikaII základní pojmy Mechanika tekutin studuje podmínky rovnováhy a zákonitosti pohybu kapalin, plynů a pevných těles do nich ponořených Vlastnosti: Částice tekutiny jsou od sebe ve

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal ribs in a channel with free surface

MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal ribs in a channel with free surface Colloquium FLUID DYNAMICS 007 Institute of Thermomechanics AS CR, v. v. i., Prague, October 4-6, 007 p.1 MODELOVÁNÍ OBTÉKÁNÍ DVOU PRAHŮ V KANÁLU S VOLNOU HLADINOU Modelling of flow over two transversal

Více

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM

CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM CVIČENÍ č. 11 ZTRÁTY PŘI PROUDĚNÍ POTRUBÍM Místní ztráty, Tlakové ztráty Příklad č. 1: Jistá část potrubí rozvodného systému vody se skládá ze dvou paralelně uspořádaných větví. Obě potrubí mají průřez

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Vodohospodářské stavby BS001 Hydraulika 1/3

Vodohospodářské stavby BS001 Hydraulika 1/3 CZ..07/..00/5.046 Posílení kvality bakalářskéo studijnío proramu Stavební Inženýrství Vodoospodářské stavby BS00 Hydraulika /3 Fyzikální vlastnosti kapalin, Hydrostatika a plování těles, Hydrodynamika

Více

Potenciální proudění

Potenciální proudění Hydromechanické procesy Potenciální proudění + plíživé obtékání koule M. Jahoda Proudění tekutiny Pohyby elementu tekutiny 2 čas t čas t + dt obecný pohyb posunutí lineární deformace rotace úhlová deformace

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny 1 Zařazení mechaniky tekutin 2 Rozdělení tekutin 3 Základní pojmy Tekutina je pojem zahrnující kapaliny a plyny. Je to spojité prostředí, které je homogenní

Více

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5

2.3 Tlak v kapalině vyvolaný tíhovou silou... 4. 2.4 Tlak ve vzduchu vyvolaný tíhovou silou... 5 Obsah 1 Tekutiny 1 2 Tlak 2 2.1 Tlak v kapalině vyvolaný vnější silou.............. 3 2.2 Tlak v kapalině vyvolaný tíhovou silou............. 4 2.3 Tlak v kapalině vyvolaný tíhovou silou............. 4

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Václav Uruba, Ústav termomechaniky AV ČR. Vzduch lze považovat za ideální Všechny ostatní fyzikální veličiny jsou funkcí P a T: T K ms

Václav Uruba, Ústav termomechaniky AV ČR. Vzduch lze považovat za ideální Všechny ostatní fyzikální veličiny jsou funkcí P a T: T K ms Měření tlaků Václav Uruba, Ústav termomechaniky AV ČR Stavové veličiny určující stav plynu: Tlak p Teplota T Pro ideální plyn stavová rovnice: PV = RT Vzduch lze považovat za ideální Všechny ostatní fyzikální

Více

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu

, Brno Připravil: Tomáš Vítěz Petr Trávníček. Úvod do předmětu 7..03, Brno Připravil: Tomáš Vítěz Petr Trávníček Mechanika tekutin Úvod do předmětu strana Mechanika tekutin Zabývá se podmínkami rovnováhy kapalin a plynu v klidu, zákonitostmi pohybu kapalin a plynu,

Více

Počítačová dynamika tekutin (CFD) Turbulence

Počítačová dynamika tekutin (CFD) Turbulence Počítačová dynamika tekutin (CFD) Turbulence M. Jahoda Turbulence 2 Turbulentní proudění vzniká při vysokých Reynoldsových číslech (Re>>1); je způsobováno komplikovanou interakcí mezi viskózními a setrvačnými

Více

8. Mechanika kapalin a plynů

8. Mechanika kapalin a plynů 8. Mechanika kapalin a plynů 8. Vlastnosti kapalin a plynů Základní vlastností je tekutost. Tekutost je, když částečky se po sobě velmi snadno a velmi dobře pohybují (platí to pro tekutiny i plyny). Díky

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrauliky a hydrologie MAGNUSŮV EFEKT. Semestrální práce

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrauliky a hydrologie MAGNUSŮV EFEKT. Semestrální práce ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra hydrauliky a hydrologie MAGNUSŮV EFEKT Semestrální práce Zpracoval: Petr Šplíchal Datum: 1. května 2017 Obor: Vodní hospodářství a vodní stavby

Více

Hydromechanické procesy Obtékání těles

Hydromechanické procesy Obtékání těles Hydromechanické procesy Obtékání těles M. Jahoda Klasifikace těles 2 Typy externích toků dvourozměrné osově symetrické třírozměrné (s/bez osy symetrie) nebo: aerodynamické vs. neaerodynamické Odpor a vztlak

Více

MECHANIKA KAPALIN A PLYNŮ

MECHANIKA KAPALIN A PLYNŮ MECHANIKA KAPALIN A PLYNŮ Věda, která oisuje kaaliny v klidu se nazývá Věda, která oisuje kaaliny v ohybu se nazývá Věda, která oisuje lyny v klidu se nazývá Věda, která oisuje lyny v ohybu se nazývá VLATNOTI

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

FLUENT přednášky. Turbulentní proudění

FLUENT přednášky. Turbulentní proudění FLUENT přednášky Turbulentní proudění Pavel Zácha zdroj: [Kozubková, 2008], [Fluent, 2011] Proudění skutečných kapalin - klasifikujeme 2 základní druhy proudění: - laminární - turbulentní - turbulentní

Více

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ

INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ CZ.1.07/1.1.00/08.0010 NUMERICKÉ SIMULACE ING. KATEŘINA

Více

MECHANIKA TEKUTIN TEKUTINY

MECHANIKA TEKUTIN TEKUTINY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 28. 3. 2013 Název zpracovaného celku: MECHANIKA TEKUTIN TEKUTINY Tekutiny jsou společný název pro kapaliny a plyny. Společná vlastnost tekutin

Více

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.

5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6. OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

FYZIKA. K učebnici MECHANIKA pro gymnázia

FYZIKA. K učebnici MECHANIKA pro gymnázia FYZIKA K učebnici MECHANIKA pro gymnázia EMANUEL SVOBODA Matematicko-fyzikální fakulta UK, Praha Nakladatelství PROMETHEUS, spol. s r.o. vydalo v roce 2013 jako své páté přepracované vydání učebnici pro

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země

p gh Hladinové (rovňové) plochy Tlak v kapalině, na niž působí pouze gravitační síla země Hladinové (rovňové) plochy Plochy, ve kterých je stálý statický tlak. Při posunu po takové ploše je přírůstek tlaku dp = 0. Hladinová plocha musí být všude kolmá ke směru výsledného zrychlení. Tlak v kapalině,

Více

Únik plynu plným průřezem potrubí

Únik plynu plným průřezem potrubí Únik plynu plným průřezem potrubí Studentská vědecká konference 22. 11. 13 Autorka: Angela Mendoza Miranda Vedoucí práce: doc. Ing. Václav Koza, CSc. Roztržení, ocelové potrubí DN 300 http://sana.sy/servers/gallery/201201/20120130-154715_h.jpg

Více

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát).

Pokud proudění splňuje všechny výše vypsané atributy, lze o něm prohlásit, že je turbulentní (atributy je třeba znát). Laminární proudění je jeden z typů proudění reálné, tedy vazké, tekutiny. Laminární proudění vzniká obecně při nižších rychlostech (přesněji Re). Proudnice laminárního proudu jsou rovnoběžné a vytvářejí

Více

Stabilizace Galerkin Least Squares pro

Stabilizace Galerkin Least Squares pro Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav

Více

TECHNICKÁ ZAŘÍZENÍ BUDOV 1

TECHNICKÁ ZAŘÍZENÍ BUDOV 1 TECHNICKÁ ZAŘÍZENÍ BUDOV 1 HYDRAULIKA POTRUBÍ, ZÁSOBOVÁNÍ OBJEKTŮ VODOU, VNITŘNÍ VODOVOD, POTŘEBA VODY Ing. Stanislav Frolík, Ph.D. - katedra technických zařízení budov - 1 Učební texty, legislativa normy:

Více

FYZIKA. Hydrodynamika

FYZIKA. Hydrodynamika Brno 2007 1 Jak je z obrázku patrné, původní studijní pomůcka (opora) vznikla v roce 1992 pro opakování středoškolské fyziky. Pro výrobu byl použit autorský systém Genie, jehož výstupem jsou DOSové aplikace.

Více

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie.

Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. Proudění Sborník článků z on-line pokračujícího zdroje Transformační technologie. 37. Škrcení plynů a par 38. Vznik tlakové ztráty při proudění tekutiny 39. Efekty při proudění vysokými rychlostmi 40.

Více

Výpočet stlačitelného proudění metodou konečných objemů

Výpočet stlačitelného proudění metodou konečných objemů Výpočet stlačitelného proudění metodou konečných objemů Petra Punčochářová Ústav technické matematiky, Fakulta strojní, Vysoké učení technické v Praze Vedoucí práce: Prof. RNDr. K. Kozel DrSc. Úvod V 80.

Více

11. Mechanika tekutin

11. Mechanika tekutin . Mechanika tekutin.. Základní poznatky Pascalův zákon Působí-li na tekutinu vnější tlak pouze v jednom směru, pak uvnitř tekutiny působí v každém místě stejně velký tlak, a to ve všech směrech. Hydrostatický

Více

Úvod. K141 HYAR Úvod 0

Úvod. K141 HYAR Úvod 0 Úvod K141 HYAR Úvod 0 FYZIKA MECHANIKA MECH. TEKUTIN HYDRAULIKA HYDROSTATIKA HYDRODYNAMIKA Mechanika tekutin zabývá se mechanickými vlastnostmi tekutin (tj. silami v tekutinách a prouděním tekutin) poskytuje

Více

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha

Studentská tvůrčí činnost 2009. 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži. David Jícha Studentská tvůrčí činnost 2009 3D modelování vírových struktur v rozváděcí turbínové lopatkové mříži David Jícha Vedoucí práce : Prof.Ing.P.Šafařík,CSc. a Ing.D.Šimurda 3D modelování vírových struktur

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2.

PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -2. PŘÍKLADY Z HYDRODYNAMIKY Poznámka: Za gravitační zrychlení je ve všech příkladech dosazována přibližná hodnota 10 m.s -. Řešené příklady z hydrodynamiky 1) Příklad užití rovnice kontinuity Zadání: Vodorovným

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 11. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Proč funguje Clemův motor

Proč funguje Clemův motor - 1 - Proč funguje Clemův motor Princip - výpočet - konstrukce (c) Ing. Ladislav Kopecký, 2004 Tento článek si klade za cíl odhalit podstatu funkce Clemova motoru, provést základní výpočty a navrhnout

Více

Poznámky k cvičením z termomechaniky Cvičení 3.

Poznámky k cvičením z termomechaniky Cvičení 3. Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho

Více

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO

E K O G Y M N Á Z I U M B R N O o.p.s. přidružená škola UNESCO Seznam výukových materiálů III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Tematická oblast: Předmět: Vytvořil: MECHANIKA FYZIKA JANA SUCHOMELOVÁ 01 - Soustava SI notebook VY_32_INOVACE_01.pdf Datum

Více

Dynamika proudících plynů

Dynamika proudících plynů Dynamika proudících plynů Při výpočtech se budeme zabývat prouděním ideálních plynů. Jejich vlastnosti již byly popsány na předchozích přednáškách/cvičeních. Při proudění ideálního plynu si zavedeme ještě

Více

Proudění ideální kapaliny

Proudění ideální kapaliny DUM Základy přírodních věd DUM III/-T3-9 Téma: Rovnice kontinuity Střední škola Rok: 0 03 Varianta: A Zpracoval: Mgr. Pavel Hrubý VÝKLAD Proudění ideální kapaliny Rovnice kontinuity toku = spojitosti toku

Více

HYDROMECHANIKA 3. HYDRODYNAMIKA

HYDROMECHANIKA 3. HYDRODYNAMIKA . HYDRODYNAMIKA Hydrodynamika - část hydromechaniky zabývající se říčinami a důsledky ohybu kaalin. ZÁKLADY PROUDĚNÍ Stavové veličiny roudění Hustota tekutin [kgm - ] Tlak [Pa] Telota T [K] Rychlost [ms

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT v Praze, fakulta stavební katedra hydrauliky a hydrologie (K141) Přednáškové slidy předmětu 1141 HYA (Hydraulika) verze: 09/2008 K141 FSv ČVUT Tato webová stránka nabízí k nahlédnutí/stažení řadu

Více

čas t s 60s=1min rychlost v m/s 1m/s=60m/min

čas t s 60s=1min rychlost v m/s 1m/s=60m/min TEKUTINOVÉ MECHANIMY UČEBNÍ TEXTY PRO VÝUKU MECHATRONIKY OBAH: Hydraulika... 3 Základní veličiny a jednotky... 3 Molekulové vlastnosti tekutin... 3 Tlak v kapalinách... 4 Hydrostatický tlak... 6 Atmosférický

Více

Konstrukce optického mikroviskozimetru

Konstrukce optického mikroviskozimetru Ing. Jan Medlík, FSI VUT v Brně, Ústav konstruování Konstrukce optického mikroviskozimetru Školitel: prof. Ing. Martin Hartl, Ph.D. VUT Brno, FSI 2008 Obsah Úvod Shrnutí současného stavu Měření viskozity

Více

Ústav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail:

Ústav termomechaniky AV ČR. Témata diplomových prací (2007) Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail: Ústav termomechaniky AV ČR Oddělení dynamiky tekutin Dolejšova 5 Praha 8 mail: uruba@it.cas.cz Témata diplomových prací (2007) Metody identifikace koherentních struktur ve 2D vektorových polích. Teoretická

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANIKA KAPALIN A PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D07_Z_OPAK_M_Mechanika_kapalin_a_plynu_T Člověk a příroda Fyzika Mechanika kapalin

Více

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP

UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ. Katedra fyziky ZÁKLADY FYZIKY I. Pro obory DMML, TŘD a AID prezenčního studia DFJP UNIVERZITA PARDUBICE FAKULTA CHEMICKO-TECHNOLOGICKÁ Katedra fyziky ZÁKLADY FYZIKY I Pro obory DMML, TŘD a AID prezenčního studia DFJP RNDr. Jan Z a j í c, CSc., 2004 5. M E C H A N I K A T E K U T I N

Více

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY

5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY Laboratorní cvičení z předmětu Reologie potravin a kosmetických prostředků 5b MĚŘENÍ VISKOZITY KAPALIN POMOCÍ PADAJÍCÍ KULIČKY 1. TEORIE: Měření viskozity pomocí padající kuličky patří k nejstarším metodám

Více

Hydraulika a hydrologie

Hydraulika a hydrologie Hydraulika a hydrologie Cvičení č. 1 - HYDROSTATIKA Příklad č. 1.1 Jaký je tlak v hloubce (5+P) m pod hladinou moře (Obr. 1.1), je-li průměrná hustota mořské vody ρ mv = 1042 kg/m 3 (měrná tíha je tedy

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Praktikum I Mechanika a molekulová fyzika

Praktikum I Mechanika a molekulová fyzika Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum I Mechanika a molekulová fyzika Úloha č. XIX Název: Pád koule ve viskózní kapalině Pracoval: Matyáš Řehák stud.sk.: 16 dne:

Více

κ ln 9, 793 ρ.u.y B = 1 κ ln f r, (2.2) B = 0 pro k s + < 2, 25, (2.3)

κ ln 9, 793 ρ.u.y B = 1 κ ln f r, (2.2) B = 0 pro k s + < 2, 25, (2.3) Obtékání drsných stěn (Modelování vlivu drsnosti stěn na ztráty v lopatkové mříži) Ing. Jiří Stanislav, Prof.Ing. Jaromír Příhoda, CSc., Prof.Ing. Pavel Šafařík, CSc. 1 Úvod Znalost smykového napětí na

Více

Základy hydrauliky vodních toků

Základy hydrauliky vodních toků Základy hydrauliky vodních toků Jan Unucka, 014 Motivace pro začínajícího hydroinformatika Cesta do pravěku Síly ovlivňující proudění 1. Gravitace. Tření 3. Coriolisova síla 4. Vítr 5. Vztlak (rozdíly

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

125ESB 1-B Energetické systémy budov

125ESB 1-B Energetické systémy budov ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta stavební Katedra technických zařízení budov 15ESB 1-B Energetické systémy budov doc. Ing. Michal Kabrhel, Ph.D. Pracovní materiály pro výuku předmětu 1 Dimenzování

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení

ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ. Studijní program: B2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení ZÁPADOČESKÁ UNIVERZITA V PLZNI FAKULTA STROJNÍ Studijní program: B2301 Strojní inženýrství Studijní zaměření: Stavba energetických strojů a zařízení BAKALÁŘSKÁ PRÁCE Modelování mezní vrstvy a vliv na přestup

Více

MaK 8/2011. Materiál a konstrukce, syllaby FSv ČVUT Praha 2011, Prof. Ing. J.Krňanský, CSc.

MaK 8/2011. Materiál a konstrukce, syllaby FSv ČVUT Praha 2011, Prof. Ing. J.Krňanský, CSc. Proudění tekutin, konvekce MaK 8/011 Praha 011, Prof. Ing. J.Krňanský, CSc. Mikrostruktura tekutin z hlediska jejich pohybu Tekutiny v makroskopickém klidu (TD rovnováha) žádné makroskopické pohyby, pouze

Více

Studentská tvůrčí činnost 2009

Studentská tvůrčí činnost 2009 Studentská tvůrčí činnost 2009 Numerické řešení proudového pole v kompresorové lopatkové mříži Balcarová Lucie Vedoucí práce: Prof. Ing. P. Šafařík, CSc. a Ing. T. Hyhlík, PhD. Numerické řešení proudového

Více

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami

Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami Příspěvek do konference STČ 2008: Numerické modelování obtékání profilu NACA 0012 dvěma nemísitelnými tekutinami (Numerical Modelling of Flow of Two Immiscible Fluids Past a NACA 0012 profile) Ing. Tomáš

Více

Hmotnost atomu, molární množství. Atomová hmotnost

Hmotnost atomu, molární množství. Atomová hmotnost Hmotnost atomu, molární množství Atomová hmotnost Hmotnosti jednotlivých atomů (atomové hmotnosti) se vyjadřují v násobcích tzv atomové hmotnostní jednotky u: Dohodou bylo stanoveno, že atomová hmotnostní

Více

1. Charakteristiky větru 2. Výpočet dynamické odezvy podle EC1

1. Charakteristiky větru 2. Výpočet dynamické odezvy podle EC1 Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz VI. Zatížení stavebních konstrukcí větrem 2. Výpočet dynamické odezvy podle EC1 Vítr vzniká vyrovnáváním tlaků v atmosféře, která

Více