5. T e s t o v á n í h y p o t é z

Save this PDF as:
Rozměr: px
Začít zobrazení ze stránky:

Download "5. T e s t o v á n í h y p o t é z"

Transkript

1 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů: Parametrické testy jsou testy o hodnotách parametrů rozdělení, ze kterého je proveden náhodný výběr. Neparametrické testy jsou testy o typu rozdělení, shodě rozdělení, symetrii rozdělení. Testování provádíme na základě funkce náhodného výběru, statistiky, jejíž rozdělení je známé a rozhodnutí činíme na základě hodnot této statistiky. Strategie testování. 1. Na základě hodnot náhodného výběru a charakteru úlohy zvolíme: nulovou hypotézu H 0 a alternativní hypotézu H 1, kterou příjímáme v případě odmítnutí nulové hypotézy.. Volíme testovací kritérium. Vybereme statistiku, funkci náhodného výběru, jejíž rozdělení známe. 3. Stanovíme hladinu významnosti testu jako hodnotu α, číslo α je blízké nule. Obvykle z intervalu (0, 01; 0, 1). 4. Na základě hodnoty hladiny, stanovíme kritický obor W α testu, kdy v případě, že zvolená statistika má hodnotu z kritického oboru odmítneme nulovou hypotézu H 0 a příjmeme alternativní hypotézu H 1. Chyby testu. Je-li T testovací statistika, α je hladina významnosti testu a W α je kritický obor testu, pak při rozhodovaní nastanou následující situace. S k u t e č n o s t H 0 H 1 H 0 T / W α T / W α, správně chyba. druhu β H 1 T W α, T W α chyba 1. druhu α správně Stanovení kritického oboru. Požadujeme, aby chyba 1. druhu, kdy odmítneme nulovou hypotézu H 0, ačkoliv platí, byla menší než α. K tomu stačí, aby byl kritický obor W α doplňkem k (1 α)0% intervalu spolehlivosti pro testovaný parametr rozdělení. Chybu. druhu můžeme pouze odhadnout. Je-li zvolené číslo α příliš malé, může být chyba. druhu velká. Situaci si znázorníme na obrázku Obr W α µ 0 T tα µ 1 Obr Znázorníme si vztah chyby 1. druhu α a chyby. druhu β. Testujeme nulovou hypotézu H 0 : µ = µ 0 na hladině významnosti α. Hodnota testové statistiky je rovna T a t α je kritická hodnota. Jestliže je ale ve skutečnosti µ = µ 1, pak nulová hypotéza H 0 neplatí. Chyba. 48 x

2 druhu β odpovídá ploše obrazce \\\\ a hodnota chyby 1. druhu α odpovídá ploše obrazce ////. Je vidět, že pokud budeme hodnotu α zmenšovat, pak se bude hranice t α kritického oboru posunovat doprava a hodnota chyby. druhu β se bude zvětšovat. Proto v praxi volíme hodnotu α podle charakteru úlohy. Musíme se rozhodnout,zda je pro nás přijatelnější odmítnou testovanou hypotézu H 0 i když je ve skutečnosti pravdivá a nebo zda je přijatelnější ji přijmout, i když ve skutečnosti platí alternativní hypotéza. Testy o parametrech rozdělení Test o střední hodnotě, jednovýběrový t-test. Předpokládáme, X 1, X,... X n je náhodný výběr z normálního rozdělení N(µ; σ ). Jako odhad střední hodnoty µ použijeme výběrový průměr X a jako odhad rozptylu σ použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : µ = µ 0 proti alternativní hypotéze H 1 : µ µ 0. Za testovou statistiku volíme T = X µ 0 n, S o které je známo, že má Studentovo t(n 1) rozdělení. Kritickým oborem je W α = {T ; T > t 1 α (n 1)} doplněk k (1 α)0% intervalu spolehlivosti pro parametr µ. Při této volbě je chyba 1. druhu menší než α. To znamená, že ve 0α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu, ačkoliv neplatí. Situace je znázorněná na obrázku. W α 0 W α t 1 α (n 1) Obdobně provádíme test jednostranných hypotéz: b) H 0 : µ µ 0, H 1 : µ > µ 0, pak 0 W α = {T ; T > t 1 α (n)}; W α t 1 α (n 1) c) H 0 : µ µ 0, H 1 : µ < µ 0, pak W α = {T ; T < t α (n)}. W α t α (n 1) 0 Kritické hodnoty testu. Krajní body intervalů, které tvoří kritické obory se nazývají kritické hodnoty testu. Označují se symbolem t α, ačkoliv jsou to 1 α kvantily. Při práci s tabulkami je třeba dávat pozor, jak je přesně kritická hodnota definována. V záhlaví tabulky je toto vždy uvedeno. Poznamenejme, že pro rozsahy výběru n 30 můžeme nahradit kvantily, či kritické hodnoty Studentova t rozdělení hodnotami z normovaného normálního rozdělení. 49

3 Příklad: Soubor {X i, 1 i n} je náhodným výběrem z normálního rozdělení N(µ; σ ). Testovaná hypotéza: H 0 : µ = µ 0, alternativní hypotéza H 1 : µ µ 0. Testovací statistika: T = X µ 0 n t(n 1), S která má t rozdělení o n 1 stupních volnost. Kritický obor: W α = {T ; T > t(α)}, kde kritická hodnota t(α) je 1 α kvantil t rozdělení. a) VS-1: n = 35, X = 18, 11, S = 61, 1, S = 7, Testujeme hypotézu H 0 : µ = 180, proti alternativě H 1 : µ 180. Potom je 18, T = 35 = 1, , Kritické hodnoty t(0, 1) = 1, 64449, t(0, 05) = 1, 96, t(0, 01) =, Protože je T / W α pro všechny hladiny, přijmeme nulovou hypotézu H 0. b) VH-4: n = 7, X = 76, 74, S = 59, 74, S = 7, Testujeme hypotézu H 0 : µ = 75, proti alternativě H 1 : µ 75. Potom je 76, T = 7 = 1, , 7916 Kritické hodnoty t(0, 1) = 1, 7056, t(0, 05) =, 0555, t(0, 01) =, Protože je T / W α pro všechny hladiny, přijmeme nulovou hypotézu H Test o rozptylu normálního rozdělení. Pro náhodný výběr X 1, X,... X n je náhodný výběr z normálního rozdělení N(µ; σ ) hledáme hodnotu rozptylu σ. Jako jeho odhad použijeme výběrový rozptyl S. a) Testujeme nulovou hypotézu H 0 : σ = σ0 proti alternativní hypotéze H 1 : σ σ0. Za testovou statistiku volíme (n 1)S Y = σ0, o které je známo, že má χ (n 1) rozdělení. Kritickým oborem je W α = {Y ; Y < χ α (n 1) nebo Y > χ 1 α (n 1)} doplněk k (1 α)0% intervalu spolehlivosti pro parametr σ. Při této volbě je chyba 1. druhu menší než α. To znamená, že ve 0α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu, ačkoliv neplatí. Situace je znázorněná na obrázku. 50

4 0 W α χ α (n 1) W α χ 1 α (n 1) 0 Obdobně provádíme test jednostranných hypotéz: b) H 0 : σ σ 0, H 1 : σ > σ 0, pak W α = {Y ; Y > χ 1 α(n 1)}; W α χ 1 α (n 1) c) H 0 : σ σ 0, H 1 : σ < σ 0, pak W α = {Y ; Y < χ α(n 1)}. 0 W α χ α(n 1) Kritické hodnoty testu. Krajní body intervalů, které tvoří kritické obory se nazývají kritické hodnoty testu. Označují se symbolem χ α, ačkoliv jsou to 1 α kvantily. Při práci s tabulkami je třeba dávat pozor, jak je přesně kritická hodnota definována. V záhlaví tabulky je toto vždy uvedeno. Příklad: Soubor {X i, 1 i n} je náhodným výběrem z normálního rozdělení N(µ; σ ). Testovaná hypotéza: H 0 : σ = σ0, alternativní hypotéza H 1 : σ σ0. Testovací statistika: (n 1)S Y = σ0 χ (n 1), která má χ rozdělení o n 1 stupních volnost. Kritický obor: W α = {Y ; Y < χ α Y > χ 1 α }, kde kritická hodnoty jsou kvantily χ rozdělení. a) VS-: n = 30, X = 183, S = 64, 97. Testujeme hypotézu H 0 : σ = 70, proti alternativě H 1 : σ 70. Potom je 9.64, 97 Y = = 6, Kritické hodnoty α = 0, 1 : 17, 708, 4, 557; α = 0, 05 : 16, 047, 45, 7; α = 0, 01 : 13, 11, 5, 336. Protože je Y / W α pro všechny hladiny, přijmeme nulovou hypotézu H 0. b) VH-4: n = 7, X = 76, 74, S = 59, 74. Testujeme hypotézu H 0 : σ = 0, proti alternativě H 1 : σ 0. Potom je 6.59, 74 Y = = 15, Kritické hodnoty α = 0, 1 : 15, 375, 38, 885; α = 0, 05 : 13, 844, 41, 93; α = 0, 01 : 11, 160, 48,

5 Protože je Y / W α pro všechny hladiny, přijmeme nulovou hypotézu H 0. Všimneme se, že v tomto případě je hodnota statistiky V těsně nad kritickou hodnotou pro α = 0, Test pro parametr δ exponenciálního rozdělení Exp(0; δ). Pro náhodný výběr X 1, X,..., X n z exponenciálního rozdělení Exp(0; δ) hledáme hodnotu parametru δ. Testujeme nulovou hypotézu H 0 : δ = δ 0 proti alternativě H 1 : δ δ 0. Za testovou statistiku volíme T = nx δ 0, která má rozdělení χ (n). Kritickým oborem je W α = {V ; V < χ α (n 1) nebo V > χ 1 α (n 1)} doplněk k (1 α)0% intervalu spolehlivosti pro parametr δ. Příklad: Soubor {X i ; 1 i n} je výběrem s exponenciálního rozdělení Exp(0; 1, 5), kde n = 40. Testujeme hypotézu H 0 : δ = δ 0 = 1, 3 proti alternativní hypotéze H 1 : δ δ 0. Pro data dostaneme X = 60, Pro testovací statistiku dostaneme hodnotu T = nx δ 0 = 9, 98. Kritický obor na hladině významnosti α = 0, 1 dostaneme z kvantilů rozdělení χ (80). Je W = {T ; T < χ 0,05(80) = 60, 391, nebo T > χ 0,95(80) = 1, 88}. Protože je T / W nezamítneme nulovou hypotézu H 0. Pro zajímavost uvedeme interval spolehlivosti, kdy jeho hranice dostaneme z rovnic T =, 873 δ = 1, 88, resp. T = 60, 391. Dostaneme, že pro hodnoty δ 0 (1, 19; ) nebudou hodnoty testovací statistiky v kritickém oboru, tedy nulovou hypotézu nezamítneme Test o rovnosti středních hodnot. Předpokládáme, že X 1, X,..., X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1, Y,..., Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme, že jsou výběry nezávislé a že se rozptyly rovnají. Testujeme nulovou hypotézu H 0 : µ 1 µ =, obvykle = 0, proti alternativní hypotéze H 1 : µ 1 µ. 5

6 A) Dvouvýběrový t-test. Za testovou statistiku volíme X Y (µ 1 µ ) nm(n + m ) T =, (n 1)SX + (m 1)S n + m Y o které je známo, že má Studentovo t(n + m ) rozdělení. Kritickým oborem je W α = {T ; T > t 1 α (n + m )} doplněk k (1 α)0% intervalu spolehlivosti pro parametr. Při této volbě je chyba 1. druhu menší než α. To znamená, že ve 0α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu, ačkoliv neplatí. Porušení normality výběru se ve výsledcích testů výrazněji neprojeví. Shodu rozptylů před výpočtem ověříme testem pro jejich rovnost. Pokud nám test pro rovnost rozptylů dá negativní výsledek, použijeme Cochranův-Coxův test nebo neparametrický dvouvýběrový Wilcoxonův test. B) Cochranův-Coxův test volíme v případě, že není splněn předpoklad o rovnosti rozptylů. Za testovou statistiku volíme Kritickým oborem je T = X Y, S = v X + v Y, v X = S X S n, v Y = S Y m. W α = {T ; T > t }, t = v Xt n 1 (α) + v Y t m 1 (α) v X + v Y, kde t k (α) je kritická hodnota jednovýběrového t testu. Tento test má ještě některé jiné varianty, které pro menší rozsahy výběrů dávají poněkud jiné kritické obory. Uvedeme si na ukázku dvě z nich. C) Satterthwaite (1946). Kritickým oborem je W α = {T ; T > t f (α)}, f = kde t k (α) je kritická hodnota jednovýběrového t testu. D) Welch (1947). Kritickým oborem je W α = {T ; T > t h (α)}, h = S 4 v X n 1 + v Y m 1 S 4 v X n + v Y m, kde t k (α) je kritická hodnota jednovýběrového t testu. Příklad: Soubor {X i, 1 i n} je náhodným výběrem z normálního rozdělení N(µ 1 ; σ1 ) a soubor {Y i, 1 i m} je náhodným výběrem z normálního rozdělení N(µ ; σ ). Testovaná hypotéza: H 0 : µ 1 µ =, alternativní hypotéza H 1 : µ 1 µ. (Obvykle je = 0.) Testovací statistika: T = X Y (µ 1 µ ) (n 1)SX + (m 1)S Y nm(n + m ) t(n + m ), n + m, 53

7 která má t rozdělení o n + m stupních volnost. Kritický obor: W α = {T ; T > t(α)}, kde kritická hodnota t(α) je 1 α kvantil t rozdělení. a) VS-: n = 30, X = 183, SX = 64, 97; VS-4: m = 7, Y = 181, SY = 74, 77. Testujeme hypotézu H 0 : µ 1 = µ, proti alternativě H 1 : µ 1 µ. Potom je T = 7, 9567 = 0, , 87 Kritické hodnoty t(0, 1) = 1, 64449, t(0, 05) = 1, 96, t(0, 01) =, Protože je T / W α pro všechny hladiny, přijmeme nulovou hypotézu H 0. b) VH-1: n = 35, X = 75, 4, SX = 1, 78; VH-3: m = 34, Y = 77, 53, SY = 134, 6. Testujeme hypotézu H 0 : µ 1 = µ, proti alternativě H 1 : µ 1 µ. Potom je 75, 4 77, 53 0 T = 33, 997 = 0, , 6034 Kritické hodnoty t(0, 1) = 1, 64449, t(0, 05) = 1, 96, t(0, 01) =, Protože je T / W α pro všechny hladiny, přijmeme nulovou hypotézu H Test o rovnosti rozptylů, F-test. Předpokládáme, že X 1, X,..., X n je náhodný výběr z normálního rozdělení N(µ 1 ; σ1 ) a Y 1, Y,..., Y m je náhodný výběr z normálního rozdělení N(µ ; σ ). Jako odhady středních hodnot µ 1 a µ použijeme výběrové průměry X a Y a jako odhady rozptylů σ1 a σ použijeme výběrové rozptyly SX a S Y. Předpokládáme, že jsou náhodné výběry nezávislé. Testujeme nulovou hypotézu H 0 : σ1 = σ proti alternativní hypotéze H 1 : σ1 σ. Jako výběr X i označíme ten, pro který je SX > S Y. Za testovou statistiku volíme F = S X SY, o které je známo, že má F n 1,m 1 rozdělení. Kritickým oborem je W α = {F ; F > F n 1,m 1 (α), } kde F n 1,m 1 (α) je kritická hodnota z tabulek. Poznamenejme, že při této volbě označení výběrů vyjde vždy hodnota testovací statistiky větší než jedna. Kritický obor je tedy volen tak, že tento poměr nesmí přesáhnout kritickou hodnotu. Pro obecnou situaci by měl kritický obor ještě část hodnot blízkých nule. To ve zvolené variantě testu ale nemůže nastat. Testy ve statistických softwarových produktech předpokládají volbu této varianty a testují pouze překročení horní kritické hodnoty. 54

8 Při této volbě je chyba 1. druhu menší než α. To znamená, že ve 0α% případů odmítneme pravdivou skutečnost a příjmeme alternativní hypotézu, ačkoliv neplatí. Příklad: Soubor {X i, 1 i n} je náhodným výběrem z normálního rozdělení N(µ 1 ; σ 1 ) a soubor {Y i, 1 i m} je náhodným výběrem z normálního rozdělení N(µ ; σ ). Testovaná hypotéza: H 0 : σ 1 = σ, alternativní hypotéza H 1 : σ 1 σ. Testovací statistika: F = S X SY F n,m, která má F rozdělení o n a m stupních volnost. Kritický obor: W α = {F ; F > F n,m (α)}, kde kritická hodnota je 1 α kvantil F rozdělení. Volíme jako soubor X ten, pro který je SX > S Y. Stačí pak testovat, aby poměr F nepřekročil horní hranici. a) VH-1: X n = 35, X = 75, 4, SX = 1, 78; VH-: Y n = 30, Y = 77, 4, SY =, 59. Testujeme hypotézu H 0 : σ1 = σ, proti alternativě H 1 : σ1 σ. Potom je 1, 78 F = = 1, , 59 Kritické hodnoty α = 0, 1 : 1, 79; α = 0, 05 :, 01. Protože je F / W α pro všechny hladiny, přijmeme nulovou hypotézu H 0. b) VH-3: X n = 30, X = 77, 53, SX = 134, 6; VH-4: Y n = 7, Y = 76, 74, SY = 59, 74. Testujeme hypotézu H 0 : σ1 = σ, proti alternativě H 1 : σ1 σ. Potom je 134, 6 F = =, , 74 Kritické hodnoty α = 0, 1 : 1, 89; α = 0, 05 :, 14. Protože je F W α pro všechny hladiny, zamítneme nulovou hypotézu H 0 a přijmeme hypotézu H 1. Neparametrické testy V neparametrických testech má hypotéza charakter tvzení o vlastnostech rozdělení, které nejsou odvozeny od hodnot parametrů. Uvedeme některé z nich Znaménkový test je testem o mediánu rozdělení. Používáme jej jako velice jednoduchou variantu testu na symetrii rozdělení, kdy by se měl medián rovnat střední hodnotě. Předpokládáme, že X 1, X,..., X n je náhodný výběr ze spojitého rozdělení jehož medián je x 0,5 = x. Testujeme nulovou hypotézu H 0 : x = x 0, proti alternativě H 1 : x x 0. Označme si Y i = X i x 0. Pokud je nulová hypotéza platná, pak by měl být počet kladných a záporných hodnot souboru Y i stejný. Označíme-li Y počet kladných hodnot v souboru Y i, je pak Y realizací náhodné veličiny, která má binomické rozdělení Bi(n, 1 ). Ta nabývá 55

9 hodnot z množiny {0, 1,,..., n} a hodnoty blízké nule a n se vyskytují s velmi malou pravděpodobností. Kritický obor testu je W α = {Y ; Y k 1 nebo Y k }, kde hodnoty k 1 a k nalezneme v tabulkách. Pro zvolenou hladinu testu je nalezneme tak, že je k 1 největší z hodnot a k je nejmenší z hodnot, pro které platí P (Y k 1 ) α, P (Y k ) α, jestliže má Y zmiňované binomické rozdělení Bi(n, 1 ). Pokud má výběr větší rozsah, n > 36, můžeme nahradit binomické rozdělení Bi(n, 1 ) normálním rozdělením N( n, n 4 ), která mají shodné střední hodnoty n a rozptyly n 4. Potom má náhodná veličina U = Y n n = Y n n normované normální rozdělení N(0; 1). Kritický obor je roven W α = {U; U u(α), } kde u(α) je kritická hodnota pro normální rozdělení, kterou nalezneme z tabulek. Poznamenejme, že je tato kritická hodnota u(α) = u 1 α rovna 1 α kvantil normovaného normálního rozdělení. Snadno odvodíme i jednostranné varianty testu. Test má poměrně malou sílu a k věrohodnotnějšímu výsledku je potřeba poměrně velký rozsah náhodného výběru. Příklad: Soubor dat {X i ; 1 i 6} je počet, kolikrát padne číslo {i; 1 i 6} při 150 hodech hrací kostkou. Je X i {4,, 5,, 8, 9}. Testujeme nulovou hypotézu H 0 : x = x 0,5 = 5 proti alternativní hypotéze H 1 : x 5. Pro uvedená dat je Y i { 1, 3, 0, 3, 3, 4}. Počet kladných hodnot je Y =. Z tabulek dostaneme kritické hodnoty testu na hladině významnosti α = 0, 05 a z nich kritický obor W = {Y ; Y k 1 = 0, nebo Y k = 6}. Protože je Y / W nezámítáme nulovou hypotézu H 0. Příklad: Soubor dat {X i ; 1 i 6} je počet, kolikrát padne číslo {i; 1 i 6} při 300 hodech hrací kostkou. Je X i {48, 5, 51, 40, 51, 48}. Testujeme nulovou hypotézu H 0 : x = x 0,5 = 50 proti alternativní hypotéze H 1 : x 50. Pro uvedená dat je Y i {,, 1,, 1, }. Počet kladných hodnot je Y = 3. Z tabulek dostaneme kritické hodnoty testu na hladině významnosti α = 0, 05 a z nich kritický obor W = {Y ; Y k 1 = 0, nebo Y k = 6}. Protože je Y / W nezámítáme nulovou hypotézu H Jednovýběrový Wilcoxonův test je testem symetrie rozdělení. Testujeme symetrii rozdělení vzhledem k hodnotě x 0, tedy skutečnost, že pro hustotu či pravděpodobnostní 56

10 funkci platí f(x x 0 ) = f(x + x 0 ). Nulovou hypotézu zapisujeme ve tvaru podmínky pro medián x 0,5 = x : H 0 : x = x 0, proti alternativě H 1 : x x 0. Pro náhodný výběr X 1, X,..., X n utvoříme soubor Y i = X i x 0, ve kterém vypustíme případné nulové hodnoty. Hodnoty Y i uspořádáme podle velikosti a označíme R i + jejich pořadí. Nyní je S + = R i +, S = R i +. Y i >0 Y i <0 Poznamenejme, že S + + S = 1 n(n + 1). Pokud je rozdělení symetrické, budou se vyskytovat kladné a záporné hodnoty souměrně kolem hodnoty x 0, tedy součty pořadí kladných a záporných hodnot se od sebe budou málo lišit. Kritický obor testu je stanoven jako W α : min(s +, S ) < w(α), kde w(α) je kritická hodnota testu, kterou nalezneme v tabulkách. Je-li splněna podmínka pro kritický obor zamítneme nulovou hypotézu, že rozdělení je symetrické. Poznamenejme, že pro náhodné veličiny S + a S je E(S + ) = E(S ) = 1 4 n(n + 1), a D(S+ ) = D(S ) = 1 n(n + 1)(n + 1). 4 Pro větší hodnoty rozsahu výběru (n > 60) nahradíme rozdělení rozdělením normálním, tedy skutečností, že má náhodná veličina U = S + 1 4n(n + 1) 1 4n(n + 1)(n + 1) normované normální rozdělení N(0; 1). Kritický obor testu je pak W α = {U; U > u(α), } kde u α je kritická hodnota testu pro normální rozdělení, která je rovna u(α) = u 1 α kvantilu normovaného normálního rozdělení. Příklad: Budeme testovat symetri souboru dat, která jsou počtem studentů, kteří získali u testu stejného bodového ohodnocení. Datový soubor je X i {, 3,, 8, 5, 6, 7, 6, 4, 3, 4}. Jestliže spočteme aritmetický průměr, dostaneme x = = 4, 55. Budeme testovat symetrii rozdělení kolem této hodnoty, tedy nulovou hypotézu H 0 : x = 4, 55 proti alternativní hypotéze H 1 : x 4, 55. Pro hodnoty X i x určíme součet pořadí kladných a záporných hodnot a dostaneme, že S + = 9, S = 37. (S + + S = 66) Odtud je min{s +, S } = 9. Pro kritické hodnoty w(α) testu dostaneme z tabulek hodnoty w(0, 05) =, w(0, 01) = 5. Pro obě hladiny významnosti je min{s +, S } > w(α), tedy nulovou hypotézu nezamítáme. Rozdělení je symetrické kolem hodnoty x = 4,

11 5.8. Dvouvýběrový Wilcoxonův test slouží k porovnání výběrů, kdy testujeme hypotézu, že jsou oba výběry ze stejného rozdělení. Předpokládáme, že náhodný výběr {X 1, X,..., X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1, Y,..., Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti, že pokud jsou obě rozdělení stejná, pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. Algoritmus testu: 1. Vytvoříme sdružený soubor {Z 1, Z,..., Z n+m } = {X 1, X,..., X n } {Y 1, Y,..., Y m }.. Stanovíme pořadí prvků souboru, který uspořádáme podle velikosti, přičemž prvkům, které mají stejnou velikost přiřadíme průměr jejich pořadí. Označme T 1 je součet pořadí prvků z prvního souboru; T je součet pořadí prvků z druhého souboru. Poznamenejme, že T 1 + T = 1 (n + m)(n + m + 1). 3. Položme U 1 = nm + 1 n(n + 1) T 1 a U = nm + 1 m(m + 1) T. (U 1 + U = nm.) Testovací kritérium: Kritický obor W α : min{u 1, U } w(α), kde kritickou hodnotu w(α) testu nalezneme v tabulkách. Poznámka: Pořadí souborů volíme tak, aby n m, tabulky bývají pro rozsahy m 0, 5 n 30. Pro větší rozsahy výběrů využíváme skutečnosti, že za platnosti hypotézy H 0 je E(U 1 ) = E(U ) = 1 nm a D(U 1) = D(U ) = 1 nm(n + m + 1). 1 Rozdělení obou veličin můžeme pak považovat za normální a tedy náhodná veličina U = U 1, 1 nm 1 1nm(n + m)(n + m + 1) má normované normální rozdělení N(0; 1). Kritický obor testu je W α = {U; U > u(α)}, kde u(α) je kritická hodnota pro normální rozdělení, tedy u 1 α kvantil normálního rozdělení. Poznámka: Test je citlivý na posun, tedy na situaci, kdy je F (x) = G(x ). Pro situace, kdy se soubory liší spíše rozptylem či tvarem je doporučen Kolmogorovův-Smirnovův test. Příklad: budeme testovat shodu rozdělení pro datové soubory {X i ; 1 i } a {Y i ; 1 i }, které jsou počty výskytů 1, resp. 6 v seriích po 30 hodech hrací kostkou. Dostaneme X i {4, 3, 3, 7, 7, 7,, 6, 1, 7} a Y i {6, 6, 4, 5, 8, 5, 1, 4, 4, 5}. Pro sdružené pořadí dostaneme T 1 = T = 5, tedy U 1 = U = 50. Kritické hodnoty w(α) testu nalezneme v tabulkách. Odtud dostaneme, že 58

12 w(0, 05) = 3 a w(0, 01) = 16. Protože min{u 1 ; U } = 50 > w(α), tedy hodnota nepatří do kritického oboru nezamítáme nulovou hypotézu H 0 na obou hladinách významnosti Kolmogorovův-Smirnovův test. Nejprve popíšeme empirickou distribuční funkci, která se v testu používá. Je-li {X 1, X,..., X n } náhodný výběr z rozdělení, které má distribuční funkci F, pak empirickou distribuční funkcí nazýváme funkci F n, která je definována předpisem: F n (x) = 1 n 0, x < Xi, ξ i (x), kde ξ i (x) = n 1, x X i. Potom je lim F n(x) = F (x), x R. n Poznámka. Empirická distribuční funkce je po úsecích konstantní a má skoky velikosti 1 v bodech x = X i, 1 i n. Znázorníme si průběh empirické distribuční funkce pro náhodný výběr, pro který platí: X 1 < X < X 3 = X 4 < X y F 5 (x) X 1 X X 3 = X 4 X5 x Obr. 5.. Předpokládáme, že náhodný výběr {X 1, X,..., X n } je výběrem z rozdělení s distribuční funkcí F a náhodný výběr {Y 1, Y,..., Y m } je výběrem z rozdělení s distribuční funkcí G. Testujeme hypotézu H 0 : F = G proti alternativě H 1 : F G. Test je založen na skutečnosti, že pokud jsou obě rozdělení stejná, pak se v obou výběrech budou vyskytovat hodnoty shodné velikosti ve stejném počtu. Algoritmus testu: 1. Vypočteme empirické distribuční funkce F n a G m.. Určíme maximální rozdíl těchto funkcí, D n,m = sup{ F n (x) G m (x) ; x R}. Platí-li hypotéza H 0 je lim D n,m = 0. n,m 3. Určíme testovací statistiku MDn,m, M = nm n + m, která má rozdělení určené distribuční funkcí K(λ), kde K(λ) = 1 ( 1) k+1 e k λ, k=1 59

13 tj. 4. Kritický obor testu je ( ) lim P MDn,m < λ = K(λ), λ > 0. n,m W α : MDn,m λ α D n,m λ α M, kde kritickou hodnotu testu D n,m = λα M nalezneme v tabulkách pro hodnoty n 0, 4 m 0, n + m 8. Pro větší rozsahy výběrů použijeme aproximace a kritickou hodnotu λ α určíme z podmínky: P ( D n,m < Pro kritický obor dostaneme K(λ). = 1 e λ λ α M ) = K(λ) = 1 α 1 α = 1 e λ α λ α = W α : D n,m D n,m = 1 M ln α. 1 ln α. Příklad: Porovnáme shodu rozdělení, ze kterého pocházejí datové soubory, které jsou počtem 6, resp. 1 v seriích po 30 hodech hrací kostkou. Je X i {1, 4, 4, 4, 5, 5, 5, 6, 6, 8} a Y i {1,, 3, 3, 4, 6, 7, 7, 7, 7}. Pro empirické distribuční funkce dostaneme: x F 1 G Odtud dostaneme, že hodnota testovací statistiky je 7 5 D, = 3. Kritické hodnoty nalezneme v tabulkách, kde je D, (0, 05) = 0, 7 a D, (0, 01) = 0, 8. Protože je D, < D,, tedy hodnota D, / W α pro obě hodnoty hladiny významnosti, nezamítáme nulovou hypotézu H 0 na žádné z hladin. Pro výpočet přibližné kritické hodnoty dostaneme, že M = 0 0 = 5 a D 1 M ln α : D 0, 607, α = 0, 05; D 0, 78, α = 0, Test shody pro binomické rozdělení. Máme dány hodnoty nezávislých náhodných veličin X Bi(n, p 1 ) a Y Bi(m, p ). Testujeme nulovou hypotézu H 0 : p 1 = p proti alternativě Algoritmus testu. H 1 : p 1 p. 60

14 1. Vypočteme hodnoty x = X n a y = Y m, které jsou odhady parametrů p 1 x a p y.. Má-li výběr dostatečně velký rozsah, pak mají náhodné veličiny x a y po řadě normální rozdělení ( x N p 1 ; p ) 1(1 p 1 ) n a ( y N p ; p (1 p ) m 3. Protože jsou náhodné veličiny x a y nezávislé má náhodná veličina U = (x y) (p 1 p ) p1 (1 p 1 ) n + p (1 p ) m normované normální rozdělení N(0; 1). 4. Pokud platí nulová hypotéza H 0, je p 1 p = 0 a jestliže použijeme aproximací p 1 = x, p = y, má náhodná veličina ). U a = x(1 x) n x y + y(1 y) m normované normální rozdělení N(0; 1). 5. Kritický obor testu je pak W α = {U a ; U a u( α )}, kde kritická hodnota u( α ) je rovna 1 α kvantilu normálního rozdělení N(0; 1). Alternativní varianta testu je založena na skutečnosti, že společnou hodnotu p 1 = p odhadujeme pomocí hodnoty z = X+Y. Potom má náhodná veličina normované normální rozdělení N(0; 1). Kritický obor testu je pak n+m = nx+my n+m x y U b = ( ) z(1 z) 1 n + 1 m W α = {U b ; U b u( α )}. Protože je pro n = m hodnota U b U a dává tato varianta častěji jako výsledek testu přijetí nulové hypotézy H 0. Příklad: Budeme testovat shodu parametru v binomickém rozdělení pro soubory, které jsou počtem hodů s předepsaným počtem bodů v serii 300 hodů hrací kostkou. Je n = m = 300 a počet hodů je Největší rozdíl dostaneme pro 1 a 5. Volíme tedy X = 47 a Y = 61. Potom je x = 0, 15666, y = 0, 033 a z = 0, 18. Je tedy U a = 1, 491, U b = 1, Kritické hodnoty u(α) najdeme v tabulkách kvantilů normovaného normálního rozdělení. Je u(0, 1) = 1, 645 a u(0, 05) = 1,

15 Protože je U a < u(α), resp. U b < u(α) pro obě hodnoty α nezamítáme nulovou hypotézu H 0 na obou hladinách významnosti Multinomické rozdělení. Uvažujme náhodné jevy A i, 1 i k, které jsou po dvou disjunktní, P (A i ) = p i, A 1 A... A k = U, tedy p 1 + p p k = 1. Jestliže opakujeme n krát pokus, který jako výsledek dává posloupnost jevů A i nebo A i a uvažujeme kolikrát se ma i tém místě objeví jev A i, pak mluvíme o multinomickém rozdělení s parametry n a p 1, p,..., p k. Jestliže označíme jako náhodný vektor (X 1, X,..., X k ) výsledek pokusu pak pro sdruženou pravděpodobnostní funkci p dostaneme p(i 1, i,..., i k ) = P (X 1 = i 1, X = i,..., X k = i k ) = n! i 1!.i!... i k! pi 1 1 p i... p i k k, kde 0 i j, 1 j k, i 1 + i +... i k = n. Marginální rozdělení každé z veličin X j je binomické rozdělení Bi(n, p j ) a E(X j ) = np j, D(X j ) = np j (1 p j ), 1 j k. Dále je koeficient korelace cov(x i, X j ) = np i p j, i j, 1 i, j k. Takové rozdělení dostaneme, jestliže pro náhodný výběr provedeme diskretizaci jeho hodnot pomocí zvolené škály. Nechť je X 1, X,... X n náhodný výběr z rozdělení s danou distribuční funkcí. Rozdělíme interval, ve kterém se může daná náhodná veličina vyskytovat na systém k disjunktních intervalů tvaru (a 0, a 1, (a 1, a,... (a k 1, a k ). Dále označme p i = P (a i 1 < X a i ), 1 i k pravděpodobnost výskytu náhodné veličiny X v i tém intervalu škály. Potom je np i teoretická četnost výskytu hodnot náhodného výběru v i tém intervalu škály. Jestliže si označíme n i, 1 i k empirickou četnost výskytu, t.j. počet hodnot X j z náhodného výběru, které leží v i tém intervalu škály, pak platí tvrzení. Věta: Náhodná veličina ( ) χ = k (n i np i ) np i má přibližně rozdělení χ (k 1). Poznámka: Hodnota χ je vlastně vážený součet čtverců odchylek empirické a teoretické četnosti, kdy ja každá odchylka vážena proti své teoretické hodnotě. Tato hodnota má být co nejmenší. Uvedeme vzorec, který se někdy lépe hodí k výpočtu hodnoty χ. Je totiž χ = k (n i np i ) np i = k n i n inp i + (np i ) np i = k n k k k i n i + np i = np i n i np i n Test dobré shody, test χ (chí kvadrát). Testujeme, že daný náhodný výběr je výběrem ze známého rozdělení. Pokud jsou parametry rozdělení (hustoty či pravděpodobnostní funkce) známy, počítáme uvedené veličiny z rozdělení, které je určeno jejich hodnotami. Pokud tyto parametry neznáme, použijeme pro ně odhady získané některou s metod hledání bodových odhadů (metoda maximální věrohodnosti či metoda momentů). 6

16 Máme dán náhodný výběr X 1, X,..., X n z rozdělení se známým typem distribuční funkce (hustoty). Testujeme nulovou hypotézu H 0 : náhodný výběr je výběrem s daným rozdělením proti alternativě H 1 : náhodný výběr je výběrem z jiného rozdělení. Algoritmus testu. 1. Definiční obor náhodné veličiny X rozdělíme pomocí dělících bodů na škálu k intervalů tvaru (, a 1, (a 1, a,... (a k, a k 1, (a k 1, a k = ).. Vypočteme teoretické četnosti a ověříme podmínku použitelnosti testu: p i = P (a i 1 < X a i ), 1 i k np i 5, 1 i k, nebo np i 5q, kde q je podíl tříd, pro které je np i < 5, v případech kdy k Určíme empirické četnosti n i jako počty hodnot X j z náhodného výběru, které leží v intervalu (a i 1, a i, 1 i k a vypočteme hodnotu statistiky χ = k (n i np i ) np i. 4. Pro zvolenou hladinu významnosti testu stanovíme kritický obor testu W α = {χ ; χ χ k 1(α)}, kde χ k 1 (α) je kritická hodnota testu, která je rovna 1 α kvantilu rozdělení χ (k 1). Jestliže neznáme hodnoty parametrů rozdělení a ke stanovení pravděpodobností p i používáme jejich odhadů, pak je počet stupňů volnosti roven k m 1, kde m je počet neznámých parametrů. 5. Je-li hodnota χ W α zamítneme nulovou hypotézu H 0 ve prospěch alternativní hypotézy H 1. V opačném případě, kdy je χ < χ k 1 (α) nulovou hypotézu H 0 přijmeme. Poznámka: Pokud použijeme místo skutečných hodnot parametrů rozdělení jejich odhadů, pak místo k 1 stupňů volnosti rozdělení χ volíme rozdělení s k m 1 stupni volnosti, kde m je počet parametrů rozdělení. Poznámka: Metoda minimálního χ se používá k zpřesnění výsledku v případě, kdy parametry roazdělení odhadujeme. Její princip je založen na tom, že hledáme hodnoty neznámých parametrů tak, aby hodnota náhodné veličiny χ ze vzorce ( ) byla minimální. Řešení této úlohy je poměrně komplikované, zájemce odkazujeme na podrobnější literaturu ze statistiky. Příklad: Budeme testovat hypotézu, že soubor dat pochází z rovnoměrného rozdělení. Datový soubor má hodnoty: 158, 76, 6, 130, 135,, 8, 138, 14, 14, 11, Máme 13 hodnot a v případě rovnoměrného rozdělení je p i = 1 13 = 0, a np i = = 11, 77. Pro hodnotu statistiky χ dostaneme χ = 36, 38. Pro kritické hodnoty testu z tabulek odečteme: 63

17 χ (0, 05) = 1, 03, χ (0, 05) = 3, 34, χ (0, 01) = 6, a χ (0, 005) = 8, 30. Pro všechny hladiny významnosti je hodnota testovací statistiky větší než kritická hodnota, patří tedy do kritického oboru a tudíž nulovou hypotézu H 0 zamítáme na všech hladinách. Jestliže ze souboru vypustíme první dvě hodnoty, které se nejvíce odlišují od průměru, dostaneme skupinu 11 dat. Pro ně je p i = 1 11 = 0, a np i = = 1, 64. V tomto případě dostaneme χ = 8, 68. Kritické hodnoty testu z tabulek jsou: χ (0, 05) = 18, 31, atd. Protože je hodnota testovací statistiky χ menší než kritická hodnota testu nezamítáme hypotézu H 0 na žádné z hladin Test závislosti a nezávislosti. Pro náhodné veličiny X a Y se nejčastěji k popisu závislosti používá koeficient korelace ρ(x, Y ), který je definován vztahem ρ(x, Y ) = E((X E(X))(Y E(Y ))) E(XY ) E(X)E(Y ) =, D(X)D(Y ) D(X)D(Y ) který je nulový pro nezávislé náhodné veličiny a je roven ±1 v případě lineární závislosti Y = ax + b. Pro normální rozdělení je úplnou charakteristikou závislosti náhodných veličin. Platí totiž: Jestliže má náhodný vektor (X, Y ) normální rozdělení, pak je jeho sdružená hustota dána vzorcem f(x, y) = 1 πσ 1 σ 1 ρ e (x µ 1 ) σ 1 + (y µ ) σ ρ(x µ 1 )(y µ ) σ 1 σ (1 ρ ), kde náhodná veličina X má marginální rozdělení N(µ 1 ; σ1 ) a Y má marginální rozdělení N(µ 1 ; σ ) a ρ je koeficient korelace mezi X a Y. Náhodné veličiny X a Y jsou nezávislé právě když je ρ = 0. Podmíněné náhodné veličiny X y, resp.y x mají také normální rozdělení se středními hodnotami E(X y) = µ 1 + β 1, (y µ ), β 1 = ρ σ 1 σ resp. E(Y x) = µ + β 1 (x µ 1 ), β 1 = ρ σ σ 1 a rozptyly D(X y) = σ 1(1 ρ ), resp. D(Y x) = σ (1 ρ ). Podmíněná střední hodnota je lineární funkcí y, resp. x, a její směrnice β 1, resp. β 1, je regresní koeficinet. Pdmíněný rozptyl je konstantní. Odhad závislosti či nezávislosti pro náhodné výběry provádíme pomocí výběrového koeficientu korelace, který je obdobou výběrových momentů. Výběrový koeficient korelace je definován pro dvourozměrný náhodný výběr (X i, Y i ), 1 i n jako kde S X = 1 n 1 r(x, Y ) = S XY S X S Y, n (X i X), SY = 1 n (Y i Y ), S XY = 1 n (X i X)(Y i Y ). n 1 n 1 64

18 Vztah lze úpravami, kterými jsme odvodili vyjádření pro výběrový rozptyl upravit na tvar r(x, Y ) = n (X i Y i ) nxy ( n ) ( n ) Xi n(x) Yi n(y ) Test závislosti či nezávislosti je založen na tomto tvrzení: Je-li (X i, Y i ), 1 i n náhodný výběr z dvourozměrného normálního rozdělení, pak má náhodná veličina (statistika) T = r 1 r n t(n ) t rozdělení s n stupni volnosti. Algoritmus testu Testovaná hypotéza: H 0 : ρ = 0 nezávislost; H 1 : ρ 0 závislost. Kritický obor W α = {T ; T > t n (α)}, kde t n (α) je kritická hodnota t testu, tedy 1 α kvantil Studentova t rozdělení pro n stupňů volnosti. Existují tabulky, které uvadějí kritické hodnoty r n (α) přímo pro hodnoty statistiky r. Kritický obor je pak W α = {r; r > r n (α)} Testy normality Uvedeme zde test normality rozdělení pro soubor dat, který je náhodným výběrem {X i ; 1 i n}. Použijeme testy, které jsou založeny na výběrové šikmosti a špičatosti, nebo na jejich kombinaci. Připomeneme: A 3 = M 3 (M ) 3/ výběrová šikmost; a A 4 = M 4 Je pak M, resp. A 4 = M 4 M 3 výběrová špičatost. E(A 3 ) = 0, D(A 3 ) = 6(n ) (n + 1)(n + 3) E(A 4 ) = 3 6 n + 1, resp. E(A 4) = 6 n + 1, D(A 4 ) = 4n(n )(n 3) (n + 1) (n + 3)(n + 5). Pro menší rozsahy výběru jsou kritické hodnoty pro statistiky A 3 a A 4 uvedeny v tabulkách. Pro větší rozsahy výběrů, n > 00 pro A 3 a n > 500 pro A 4, lze použít aproximace normálním rozdělením, které vychází z centrální limitní věty. Počítáme s tím, že náhodné veličiny U 3 = A 3 a U 4 = A 4 E(A 4 ) D(A3 D(A 4 ) mají normované normální rozdělení. Kritické hodnoty testu nalezneme pomocí kvantilů normálního rozdělení. Kriticým oborem testu je W α = {U 3 ; U 3 > u α/ }, 65

19 nebo W α {U 4 ; U 4 > u α/, kde u α je α kvantil nornálního rozdělení N(0; 1). Existuje podstatné vylepšení postupu, které se dá použít v případě výběrů menšího rozsahu. Test založený na šikmosti: Postupně vypočteme b = 3(n + 7n 70)(n + 1)(n + 3) (n )(n + 5)(n + 7)(n + 9), W = (b 1) 1, δ = a = W 1, Z 3 = δ ln U 3 a + (U3 ) + 1. a 1 ln W Potom má náhodná veličina Z 3 přibližně normální rozdělení N(0; 1) a hypotézu o normalitě rozdělení zamítáme v případě, že Z 3 u α/. Test se dá použít pro n > 8. Test založený na špičatosti: Postupně vypočteme B = 6(n 5n + ) 6(n + 3)(n + 5) (n + 7)(n + 9) n(n )(n 3), Z 4 = 1 9A 3 9A A = B 1 A 1+U 4 A 4. ( 1 B + + 4B ), Náhodná veličina Z 4 má přibližně normální rozdělení N(0; 1) a hypotézu o normalitě zamítáme, pokud je Z 4 u α/. Aproximace je použitelná pro n 0. Testy založené současně na šikmosti a špičatosti: Pro výběry kde je rozsah n > 00 můžeme použít skutečnosti, že náhodná veličina U 3 + U 4 χ má rozdělení χ o dvou stupních volnosti. Hypotézu o normalitě zamítáme, pokud je U 3 + U 4 χ (α). Pro menší rozsahy, kde n 0 lze použít skutečnosti, že má náhodná veličina Z 3 + Z 4 χ přibližně rozdělení χ o dvou stupních volnosti. Hypotézu o normalitě zamítáme, pokud je Z 3 + Z 4 χ (α). 66

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

12. cvičení z PST. 20. prosince 2017

12. cvičení z PST. 20. prosince 2017 1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace

Více

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně

Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný

Více

7. Analýza rozptylu.

7. Analýza rozptylu. 7. Analýza rozptylu. Uvedeme obecnou ideu, která je založena na minimalizaci chyby metodou nejmenších čtverců. Nejdříve uvedeme několik základních tvrzení. Uvažujeme náhodný vektor Y = (Y, Y,..., Y n a

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1

PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1 PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B

TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,

Více

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.

11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0. 11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,

Více

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace

Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje

Více

2 ) 4, Φ 1 (1 0,005)

2 ) 4, Φ 1 (1 0,005) Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje

Více

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)

12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními

Více

MATEMATICKÁ STATISTIKA

MATEMATICKÁ STATISTIKA MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat

Více

Testy. Pavel Provinský. 19. listopadu 2013

Testy. Pavel Provinský. 19. listopadu 2013 Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování

Více

Statistika, Biostatistika pro kombinované studium. Jan Kracík

Statistika, Biostatistika pro kombinované studium. Jan Kracík Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování

Více

12. prosince n pro n = n = 30 = S X

12. prosince n pro n = n = 30 = S X 11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli

Více

5 Parametrické testy hypotéz

5 Parametrické testy hypotéz 5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)

Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze

Více

Testy statistických hypotéz

Testy statistických hypotéz Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Příklady na testy hypotéz o parametrech normálního rozdělení

Příklady na testy hypotéz o parametrech normálního rozdělení Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců

Více

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.

Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. 1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový

Více

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)

You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com) Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,

Více

Aproximace binomického rozdělení normálním

Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné

Více

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368

676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368 Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

4ST201 STATISTIKA CVIČENÍ Č. 7

4ST201 STATISTIKA CVIČENÍ Č. 7 4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické

Více

Ing. Michael Rost, Ph.D.

Ing. Michael Rost, Ph.D. Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení

Více

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci

Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Zpracování dat v edukačních vědách - Testování hypotéz Kamila Fačevicová Katedra matematické analýzy a aplikací matematiky, Přírodovědecká fakulta, UP v Olomouci Obsah seminářů 5.11. Úvod do matematické

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

Regresní analýza 1. Regresní analýza

Regresní analýza 1. Regresní analýza Regresní analýza 1 1 Regresní funkce Regresní analýza Důležitou statistickou úlohou je hledání a zkoumání závislostí proměnných, jejichž hodnoty získáme při realizaci experimentů Vzhledem k jejich náhodnému

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2

Více

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)

STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y)

n = 2 Sdružená distribuční funkce (joint d.f.) n. vektoru F (x, y) = P (X x, Y y) 5. NÁHODNÝ VEKTOR 5.1. Rozdělení náhodného vektoru Náhodný vektor X = (X 1, X 2,..., X n ) T n-rozměrný vektor, složky X i, i = 1,..., n náhodné veličiny. Vícerozměrná (n-rozměrná) náhodná veličina n =

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}. 5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.

Statistické metody v ekonomii. Ing. Michael Rost, Ph.D. Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 Opakování t- vs. neparametrické Wilcoxonův jednovýběrový test Opakování

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

Cvičení ze statistiky - 8. Filip Děchtěrenko

Cvičení ze statistiky - 8. Filip Děchtěrenko Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013

Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika. 1 Úvodní poznámky. Verze: 13. června 2013 Bakalářské studium na MFF UK v Praze Obecná matematika Zaměření: Stochastika Podrobnější rozpis okruhů otázek pro třetí část SZZ Verze: 13. června 2013 1 Úvodní poznámky 6 Smyslem SZZ by nemělo být toliko

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.

Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé. 1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test

letní semestr 2012 Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika t-test Párový Šárka Hudecová Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 motivační příklad Párový Příklad (Platová diskriminace) firma

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

Jednofaktorová analýza rozptylu

Jednofaktorová analýza rozptylu Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato

Více

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal

II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal Základy navrhování průmyslových experimentů DOE II. Statistické metody vyhodnocení kvantitativních dat Gejza Dohnal! Testování statistických hypotéz kvalitativní odezva kvantitativní chí-kvadrát test homogenity,

Více

STATISTICKÉ TESTY VÝZNAMNOSTI

STATISTICKÉ TESTY VÝZNAMNOSTI STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 010 1.týden (0.09.-4.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1 Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.

Více

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica

JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu

Více

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)

Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení

Přednáška 9. Testy dobré shody. Grafická analýza pro ověření shody empirického a teoretického rozdělení Přednáška 9 Testy dobré shody Grafická analýza pro ověření shody empirického a teoretického rozdělení χ 2 test dobré shody ověření, zda jsou relativní četnosti jednotlivých variant rovny číslům π 01 ;

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.

Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D. Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít

Více

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3!

1 Klasická pravděpodobnost. Bayesův vzorec. Poslední změna (oprava): 11. května 2018 ( 6 4)( 43 2 ) ( 49 6 ) 3. = (a) 1 1 2! + 1 3! Výsledky příkladů na procvičení z NMSA0 Klasická pravděpodobnost. 5. ( 4( 43 ( 49 3. 8! 3! 0! = 5 Poslední změna (oprava:. května 08 4. (a! + 3! + ( n+ n! = n k= ( k+ /k! = n k=0 ( k /k!; (b n k=0 ( k

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická

Více

Neparametrické metody

Neparametrické metody Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek

Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek 10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.

Více

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2] Použitá literatura: [1]: J.Reif, Z.Kobeda: Úvod do pravděpodobnosti a spolehlivosti, ZČU Plzeň, 2004 (2. vyd.) [2]: J.Reif: Metody matematické

Více

Náhodné veličiny, náhodné chyby

Náhodné veličiny, náhodné chyby Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji

Více

STATISTICKÉ HYPOTÉZY

STATISTICKÉ HYPOTÉZY STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude

Více

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová

VYBRANÉ DVOUVÝBĚROVÉ TESTY. Martina Litschmannová VYBRANÉ DVOUVÝBĚROVÉ TESTY Martina Litschmannová Obsah přednášky Vybrané dvouvýběrové testy par. hypotéz test o shodě rozptylů (F-test), testy o shodě středních hodnot (t-test, Aspinové-Welchův test),

Více

PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení

PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce

Více

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:

NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel: NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného

Více