2 ) 4, Φ 1 (1 0,005)
|
|
- Hynek Konečný
- před 8 lety
- Počet zobrazení:
Transkript
1 Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje více než 2 % nekvalitních výrobků. Řešení 1 Rozsah výběrového souboru je n = Náhodná veličina X slouží ke sledování, je-li výrobek kvalitní či nekvalitní. Daný soubor má tedy alternativní rozdělení s parametrem p = 0,026 neboli Alt(0,026). Víme, že alternativní rozdělení je zvláštním případem binomického rozdělení. V tomto konkrétním případě jde tedy o rozdělení Bi(1000; 0,026). Podle zadání úlohy máme rozhodnout, zda lze s pravděpodobností 0,99 tvrdit, že zásilka obsahuje více než 2 % nekvalitních výrobků. Jde o úlohu, ve které budeme testovat statistickou hypotézu. Podle teorie testu o parametru p binomického rozdělení asymptotického formulujeme nulovou a alternativní hypotézu takto: H 0 : p = 0,02, H 1 : p > 0,02 Podle Moivrovy-Laplaceovy věty pro velké n platí X~N(1000 0,026; ,026 (1 0,026)) = N(26; 25,324) Lze tedy konstatovat, že při platnosti H 0 je náhodná veličina X ,020 X 20 X 20 U = = = ,020 (1 0,020) 16,6 4, ~N(0,1) Podle teorie na hladině α = 0,01 zamítáme hypotézu H 0 : p = 0,02 a přikloníme se k alternativní hypotéze H 1 : p > 0,02, pokud U Φ 1 (1 α 2 ) Dosadíme do obou stran nerovnice (za X v U odsadíme jeho střední hodnotu) a dostaneme , Φ 1 (1 0,01 2 ) 6 4, Φ 1 (1 0,005) 1, Φ 1 (0,995) V tabulce kvantilů normovaného normálního rozdělení vyhledáme příslušnou hodnotu. Dostaneme 1, ,645 Je zřejmé, že tato nerovnice neplatí. Zjištěná hodnota testovacího kritéria je v oboru přijetí nulové hypotézy. Není tedy prokázána platnost alternativní hypotézy. Není tedy možné na dané hladině významnosti tvrdit, že v zásilce je více než 2 % nekvalitních výrobků. d b 1
2 Příklad 2 Speciální cvičení na paměťové počítání bylo testováno na 11 žácích. V následující tabulce jsou uvedeny časy v sekundách, za které vyřešili kontrolní úlohy před cvičením a po cvičení. Můžeme tvrdit, že tato cvičení zlepšují schopnost žáků při řešení úloh na hladině α = 0,05? Před cvičením 87, 61, 98, 90, 93, 74, 83, 72, 81, 75, 83 Po cvičení 50, 45, 79, 90, 88, 65, 52, 79, 84, 61, 52 Řešení 2 Stejnou úlohu jsme už řešili v MV2 11 příklad 2 metodou znaménkového testu. Tentokrát využijeme Wilcoxonův test. Nejprve vypočítáme rozdíly (před minus po) 37, 16, 19, 0, 5, 9, 29, 7, 3, 14, 31 Jednotlivým členům tohoto seznamu přiřadíme pořadí jejich absolutních hodnot. Dostaneme 11, 7, 8, 1, 3, 5, 9, 4, 2, 6, 10 Testujeme nulovou hypotézu (cvičení nemá vliv na schopnost řešení úloh) proti alternativní hypotéze (cvičení má vliv na schopnost řešení úloh). H 0 : x = 0, H 1 : x 0 Vypočteme součet pořadí kladných hodnot rozdílů a součet pořadí záporných hodnot rozdílů. S + = = 60 S = = 6 Podle teorie platí, že pokud min(s +, S ) < w n (α), pak můžeme zamítnout na hladině významnosti α nulovou hypotézu. Přitom kritickou hodnotu pravé strany nerovnice nalezneme v tabulce kritických hodnot párového Wilcoxonova testu. Zkusíme do podmínky testu dosadit. Dostaneme min(60, 6) < w 11 (0,05) Neboli 6 < 10 Protože poslední nerovnice je pravdivá, zamítáme nulovou hypotézu na hladině významnosti 0,05. Poznámka Všimněme si, že na hladině významnosti 0,01 bychom nulovou hypotézu nemohli zamítnout, protože w 11 (0,05) = 5. Stanovení hladiny významnosti tedy má zásadní vliv na výsledek úlohy. Poznámka Vrátíme-li se k řešení téže úlohy v MV2 11 Příklad 2, vidíme, že jsme dostali rozdílné výsledky obou testů. Znaménkový test nemá dostatek informací pro zamítnutí nulové hypotézy, protože využívá pouze počtu záporných hodnot, zatímco u Wilcoxonova testu využijeme navíc znalosti toho, že záporné hodnoty jsou poměrně malé. Říkáme, že Wilcoxonův test je silnější než znaménkový test. d b 2
3 Příklad 3 V průběhu deseti za sebou jdoucích dnů si pacient měřil 10 krát tep. Můžeme na základě těchto měření prohlásit, že medián naměřených hodnot je roven 75 tepům? Hodnoty jednotlivých měření byly 76, 76, 74, 77, 79, 81, 83, 67, 65, 90 Řešení 3a Úlohu budeme řešit pomocí jednovýběrového Wilcoxonova testu asymptotického na hladině významnosti 0,05. Chceme testovat hypotézu H 0 : x = 75 proti alternativní hypotéze H 1 : x 75. Pokud by medián hodnoty tepů byl 75, pak vypočteme následující hodnoty Y i = X i 75, kde X i jsou výsledky jednotlivých měření, takto seřazeny podle velikosti jejich absolutní hodnoty. 1, 1, 1, 2, 4, 6, 8, 8, 10, 15 Vypočteme součet pořadí kladných hodnot z tohoto seznamu. Dostaneme S = = 35 Vypočteme statistiku, která má za platnosti hypotézy H 0 : x = 75 asymptoticky normované normální rozdělení. Takovou statistikou je (ihned dosadíme) n (n + 1) 10 (10 + 1) S U = 4 = 4 = 4 = 4 n (n + 1) (2n + 1) 10 (10 + 1) ( ) ,5 = 96,25 = 7,5 9, = 0, Na hladině α zamítáme hypotézu H 0 : x = 75 a přikloníme se k alternativní hypotéze H 1 : x 75, pokud U Φ 1 (1 0,05 2 ) Hodnotu z pravé strany nalezneme v tabulce kvantilů normovaného normálního rozdělení N(0, 1). Dostaneme 0, = 0, ,960 Je zřejmé, že poslední nerovnost neplatí. Nemůžeme tedy zamítnout nulovou hypotézu. Řešení 3b Úlohu budeme řešit pomocí jednovýběrového Wilcoxonova testu asymptotického na hladině významnosti 0,05. Chceme testovat hypotézu H 0 : x = 75 proti alternativní hypotéze H 1 : x 75. Pokud by medián hodnoty tepů byl 75, pak vypočteme následující hodnoty Y i = X i 75, kde X i jsou výsledky jednotlivých měření, takto seřazeny podle velikosti jejich absolutní hodnoty. 1, 1, 1, 2, 4, 6, 8, 8, 10, 15 Vypočteme dále součet pořadí kladných hodnot a součet pořadí záporných hodnot z tohoto seznamu. S + = 35, S = 20 Podle teorie platí, že pokud min(s +, S ) < w n (α), pak můžeme zamítnout na hladině významnosti α nulovou hypotézu. Přitom kritickou hodnotu pravé strany nerovnice nalezneme v tabulce kritických hodnot párového Wilcoxonova testu. Zkusíme do podmínky testu dosadit. Dostaneme min(35, 20) < w 10 (0,05) Neboli 20 < 8 Protože poslední nerovnice je nepravdivá, nemůžeme na dané hladině nulovou hypotézu zamítnout. d b 3
4 Příklad 4 Označme p pravděpodobnost, že při hodu danou hrací kostkou padne šestka. Testujme nulovou hypotézu (šestka padne v jedné šestině případů) proti alternativní hypotéze (šestka nepadne v jedné šestině případů) H 0 : p = 1 6, H 1: p 1 6 Testování provedeme na hladině 0,05 základě pokusu, v němž ze sto dvaceti hodů padla šestka: a) dvacet devětkrát, b) dvacet osmkrát, c) devětkrát. Řešení 4 Označme X zaznamenaný počet šestek v sérii 120 hodů. Veličina X má rozdělení Bi(p, 120). Předpokládáme, že hypotéza H 0 je správná, neboli že p = 1. Uvědomme si, že jde o oboustranný 6 případ, neboli hladinu významnosti α = 0,05 musíme brát na obou stranách poloviční. Potom nalezneme pravděpodobnosti v bezprostředním okolí poloviční hladiny významnosti (řešíme oboustranný případ). To může být trochu pracnější. Nakonec ale nalezneme P(X 11) = 0,014, P(X 12) = 0,027 P(X 28) = 0,037, P(X 29) = 0,022 To znamená, že kritické hodnoty rozdělení Bi(1 6, 120), jimiž se veličina X řídí za předpokladu, že nulová hypotéza je správná jsou k 1 = k 1 ( α 2 ) = k 1 ( 0,05 2 ) = k 1(0,025) = 11, k 2 = k 2 ( α 2 ) = k 2 ( 0,05 2 ) = k 2(0,025) = 29 Rozhodnutí o tom, zda hypotézu zamítneme či nikoliv závisí na empiricky zaznamenaném počtu šestek v sérii. Konkrétně pro jednotlivé zadané případy: a) Šestka hozená ve 29 případech ze 120 je kritickou hodnotou zkoumaného rozdělení těsně za hladinou významnosti. Proto se v tomto případě nulová hypotéza zamítá na hladině významnosti α = 0,05. b) Šestka hozená ve 28 případech ze 120 leží v intervalu kritických hodnot. Proto se v tomto případě nulová hypotéza nezamítá α = 0,05. c) Šestka hozená v 9 případech ze 120 leží mimo interval kritických hodnot. Proto se v tomto případě nulová hypotéza zamítá α = 0,05. Poznámka Formulace hypotéza se zamítá na hladině významnosti α znamená, že skutečná hladina významnosti testu, tedy pravděpodobnost, s níž může dojít k zamítnutí správné hypotézy, je menší než α. Hladinu významnosti nemůžeme volit extrémně malou, protože jinak by příslušný test měl jen velmi malou sílu. Na druhou stranu případné zamítnutí nulové hypotézy má mnohem větší váhu, jestliže víme, že pravděpodobnost zamítnutí správné hypotézy je dokonce menší než 0,01 či 0,001. Z těchto důvodů může být zajímavé vědět, zda se nulová hypotéza bude zamítat i na hladině významnosti α = 0,01. V tomto případě jsou kritickými hodnotami 9 a 32. Tudíž v případě a) se nulová hypotéza nezamítá (přestože byla zamítnuta na hladině významnosti 0,05). V případě b) se nulová hypotéza nezamítá a v případě c) se zamítá. Pro hladinu významnosti 0,001 jsou kritickými hodnotami 7 a 35. d b 4
5 Příklad 5 Označme p pravděpodobnost, že při hodu danou hrací kostkou padne šestka. Existuje podezření, že tato kostka je záměrně vyrobena tak, aby šestka padala častěji než ostatní hodnoty. Testujme hypotézu, že tomu tak není, a to na základě pokusu, v němž ze sto dvaceti hodů padla šestka dvacet osmkrát. Řešení 5 Budeme testovat nulovou hypotézu (šestka padne právě v jedné šestině pokusů) proti jednostranné alternativě (šestka padne častěji než v jedné šestině pokusů). H 0 : p = 1 6, H 1: p > 1 6 Zvolíme hladinu významnosti α = 0,05. Hypotézu zamítneme tehdy, když zaznamenaný počet šestek X je příliš veliký (větší než kritická hodnota). Malý počet šestek nyní důvodem k zamítnutí hypotézy není. Kritická hodnota k 2 pro test naší hypotézy je nejmenší nezáporné celé číslo takové, že P (X k 2 p = 1 6 ) < 0,05 Po troše práce zjistíme, že k 2 = 28 Nulová hypotéza se tedy proti alternativní hypotéze zamítá na hladině významnosti 0,05. Poznámka Všimněme si, že v této jednostranné variantě byla nulová hypotéza zamítnuta, přestože v oboustranné variantě téže úlohy (vit předchozí příklad) by zamítnuta nebyla. Vidíme, že zúžením oboustranné alternativy na jednostrannou se zvýšila síla testu. d b 5
6 Příklad 6 Pěstujeme hrách s bílými a fialovými květy. Podle druhého Mendelova zákona je pravděpodobnost p, že rostlina vykvete fialově, rovna 3 4. Testujme platnost tohoto zákona na základě pokusu, v němž ze čtyřiceti náhodně vybraných rostlin jich fialově vykvetlo třicet pět. Řešení 6 Testujeme nulovou hypotézu (fialově vykvetou tři čtvrtiny rostlin) proti alternativní hypotéze (fialově pokvete jiné množství než tři čtvrtiny rostlin). H 0 : p = 3 4, H 1: p 3 4 Dle zadání je zřejmé, že náhodná veličina X, se kterou budeme pracovat, má za předpokladu platnosti nulové hypotézy rozdělení Bi(3 4, 120). Zvolíme hladinu významnosti α = 0,05. Jasně vidíme, že jde o oboustranná případ. Budeme tedy hledat kritické hodnoty k 1, k 2 pro test naší hypotézy jako největší (pro k 1 ) a nejmenší (pro k 2 ) nezáporná celá čísla taková, že P (X k 1 p = 3 4 ) < α 2, P (X k 2 p = 3 4 ) > 1 α 2 Kritické hodnoty budeme hledat pomocí výpočtu pravděpodobností dle daného rozdělení s jejich následným sčítáním. Přitom využijeme vzorec P(X = i) = ( n i ) pi (1 p) n i Výpočet můžeme velmi snadno realizovat třeba pomocí tabulky v MS Excel. n i p n_i p i (1-p) (n-i) P(x=i) P(x<=i) , ,27181E-25 8,27181E-25 8,27181E , ,75 3,30872E-24 9,92617E-23 1,00089E , ,5625 1,32349E-23 5,80681E-21 5,9069E , , ,29396E-23 2,20659E-19 2,26566E , , ,11758E-22 6,12328E-18 6,34984E , , ,47033E-22 1,32263E-16 1,38613E , , ,38813E-21 2,3146E-15 2,45321E , , ,35525E-20 3,3727E-14 3,61802E , , ,42101E-20 4,17372E-13 4,53552E ,75 2,73E+08 0, ,1684E-19 4,45197E-12 4,90552E ,75 8,48E+08 0, ,67362E-19 4,14033E-11 4,63088E ,75 2,31E+09 0, ,46945E-18 3,38754E-10 3,85063E ,75 5,59E+09 0, ,38778E-17 2,45597E-09 2,84103E ,75 1,2E+10 0, ,55112E-17 1,58693E-08 1,87104E ,75 2,32E+10 0, ,22045E-16 9,18154E-08 1,10526E ,75 4,02E+10 0, ,88178E-16 4,7744E-07 5,87966E ,75 6,29E+10 0, ,55271E-15 2,238E-06 2,82597E ,75 8,87E+10 0, ,42109E-14 9,47859E-06 1,23046E ,75 1,13E+11 0, ,68434E-14 3,63346E-05 4,86392E ,75 1,31E+11 0, ,27374E-13 0, , ,75 1,38E+11 0, ,09495E-13 0, , ,75 1,31E+11 0, ,63798E-12 0, , ,75 1,13E+11 0, ,45519E-11 0, , d b 6
7 n i p n_i p i (1-p) (n-i) P(x=i) P(x<=i) ,75 8,87E+10 0, ,82077E-11 0, , ,75 6,29E+10 0, ,32831E-10 0, , ,75 4,02E+10 0, ,31323E-10 0, , ,75 2,32E+10 0, ,72529E-09 0, , ,75 1,2E+10 0, ,49012E-08 0, , ,75 5,59E+09 0, ,96046E-08 0, , ,75 2,31E+09 0, ,38419E-07 0, , ,75 8,48E+08 0, ,53674E-07 0, , ,75 2,73E+08 0, ,8147E-06 0, , , ,0001 1,52588E-05 0, , , ,53E-05 6,10352E-05 0, , , ,65E-05 0, , , , ,24E-05 0, , , , ,18E-05 0, , , , ,38E-05 0, , , , ,79E-05 0,0625 0, , , ,34E-05 0,25 0, , ,75 1 1,01E ,00566E-05 1 Řádky s kritickými hodnotami jsou podbarveny oranžově. Nalezli jsme tedy kritické hodnoty k 1 = 23, k 2 = 35 Fialově vykvetlo 35 rostlin. To je právě kritická hodnota ležící již mimo stanovenou hladinu významnosti. Hypotéza se na hladině významnosti α = 0,05 proto zamítá. d b 7
8 Příklad 7 Realizace náhodného výběru byla roztříděna následovně: Třída n i Třída n i 1 1,0 1, ,5 3, ,5 2, ,0 3, ,0 2, ,5 4,0 18 Ověřte, zda realizace pochází z rozdělení s hustotou f(x) = 2 (x 1) pro x 1, 4 9 Riziko přípustného omylu je maximálně 5%. Řešení 7 Budeme na hladině významnosti α = 0,05 testovat hypotézu H 0 X~f(x) proti hypotéze H X f(x) Použijeme χ 2 -test dobré shody. Sestavíme tabulku Třída n j p j np j (n j np j ) 2 np j 1 1,0-1,5 1 0, , , ,5-2,0 4 0, , , ,0-2,5 5 0, , , ,5-3,0 6 0, , , ,0-3,5 6 0, ,6 6 3,5-4,0 18 0, , , Součet x , První sloupec je pro identifikaci jednotlivých tříd. Druhý sloupec uvádí hozené hodnoty v příslušné třídě. Třetí sloupec je pro zadání četnosti výskytu výsledku v realizaci náhodného pokusu. Čtvrtý sloupec je teoretická četnost dle testovaného rozdělení (v tomto případě je třeba je vypočítat). Pátý sloupec je součinem teoretické četnosti s celkovým počtem realizovaných pokusů. Poslední šestý sloupec je hodnotou Pearsonovy statistiky pro příslušnou třídu. Poslední řádek je určen pro součty (kontrolní a výsledné). Hodnoty ve čtvrtém sloupci jsme vypočítali integrací hustoty takto (d j je dolní hranice j-té třídy): d j +0,5 p j = 2 d 2 j +0,5 (x 1) dx = 9 9 [x2 2 x] = 29 [((d j + 0,5) 2 (d 2 j + 0,5)) ( d j 2 2 d j)] d d j j = 2 9 [d j 2 + d j + 0,25 d 2 j 0,5 d j d j] = 2 9 [d j + 0,25 1 ] = d j 0, Dosazením dolních hranic do posledního výrazu jsme vypočítali potřebné pravděpodobnosti. Hodnota vpravo dole je realizací t testové statistiky 6 T = (n j np j ) 2 Konkrétně v našem případě máme j=1 d b 8 np j t = 4,937662
9 Kritický obor W pro Pearsonův test dobré shody na hladině významnosti α = 0,05 je W = {t; t > χ 2 (k m 1; 1 α)} Zde k = 6 je počet tříd, m = 0 je počet neznámých parametrů. Potřebnou hodnotu vyhledáme v tabulkách. W = {t; t > χ 2 (6 0 1; 1 0,05)} = {t; t > χ 2 (5; 0,95)} = {t; t > 11,07} Protože t W, nezamítáme na hladině významnosti 0,05 hypotézu H 0 X~f(x). Realizace pochází z rozdělení s uvedenou hustotou. Riziko omylu je 5%. d b 9
10 Příklad 8 Realizace náhodného výběru byla roztříděna následovně: Třída n i Třída n i 1 0,0 0, ,5 0, ,1 0, ,6 0, ,2 0, ,7 0, ,3 0, ,8 0, ,4 0, ,9 1,0 95 Ověřte na hladině významnosti 0,05, zda realizace pochází z rozdělení s hustotou f(x) = ax 2 pro x 0, 1 Řešení 8 Budeme na hladině významnosti α = 0,05 testovat hypotézu H 0 X~f(x) proti hypotéze H X f(x) Použijeme χ 2 -test dobré shody. Sestavíme tabulku Třída n j p j np j (n j np j ) 2 np j 1 0,0 0,1 0 0,001 0,2 0,2 2 0,1 0,2 0 0,007 1,4 1,4 3 0,2 0,3 0 0,019 3,8 3,8 4 0,3 0,4 1 0,037 7,4 5, ,4 0,5 1 0,061 12,2 10, ,5 0,6 2 0,091 18,2 14, ,6 0,7 6 0,127 25,4 14, ,7 0,8 35 0,169 33,8 0, ,8 0,9 60 0,217 43,4 6, ,9 1,0 95 0,271 54,2 30,71292 Součet x ,55903 První sloupec je pro identifikaci jednotlivých tříd. Druhý sloupec uvádí hozené hodnoty v příslušné třídě. Třetí sloupec je pro zadání četnosti výskytu výsledku v realizaci náhodného pokusu. Čtvrtý sloupec je teoretická četnost dle testovaného rozdělení (v tomto případě je třeba je vypočítat). Pátý sloupec je součinem teoretické četnosti s celkovým počtem realizovaných pokusů. Poslední šestý sloupec je hodnotou Pearsonovy statistiky pro příslušnou třídu. Poslední řádek je určen pro součty (kontrolní a výsledné). Abychom mohli vypočítat teoretické hodnoty pravděpodobnosti do čtvrtého sloupce, musíme nejprve určit hodnotu konstanty a v předpisu hustoty. Musí platit: 1 1 = ax 2 dx = [a x3 1 3 ] = a [ x3 1 3 ] = a [ ] = a [ ] = a [1 3 0] = a 1 3 = a Odtud a = 3 Nyní víme, že daná hustota má tvar f(x) = 3x 2 pro x 0, 1 Hodnoty ve čtvrtém sloupci jsme vypočítali integrací hustoty takto (d j je dolní hranice j-té třídy): d b 10
11 d j +0,1 x 3 p j = 3x 2 dx = [3 3 ] d d j j d j +0,1 = 0,3d j 2 + 0,03d j + 0,001 = [x 3 d ] j +0,1 dj = 3 dj + 0,3d 2 3 j + 0,03d j + 0,0,01 d j Dosazením dolních hranic do posledního výrazu jsme vypočítali potřebné pravděpodobnosti. Hodnota vpravo dole je realizací t testové statistiky 6 T = (n j np j ) 2 j=1 Konkrétně v našem případě máme t = 87,55903 Kritický obor W pro Pearsonův test dobré shody na hladině významnosti α = 0,05 je W = {t; t > χ 2 (k m 1; 1 α)} Zde k = 10 je počet tříd, m = 0 je počet neznámých parametrů. Potřebnou hodnotu vyhledáme v tabulkách. W = {t; t > χ 2 (10 0 1; 1 0,05)} = {t; t > χ 2 (9; 0,95)} = {t; t > 16,92} Protože t W, zamítáme na hladině významnosti 0,05 hypotézu H 0 X~f(x). Realizace nepochází z rozdělení s uvedenou hustotou. Riziko omylu je 5%. np j d b 11
Příklad 1. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 11
Příklad 1 Vyhláška Ministerstva zdravotnictví předpokládala, že doba dojezdu k pacientovi od nahlášení požadavku nepřekročí 17 minut. Hodnoty deseti náhodně vybraných dob příjezdu sanitky k nemocnému byly:
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu)
Jednovýběrový Wilcoxonův test a jeho asymptotická varianta (neparametrická obdoba jednovýběrového t-testu) Frank Wilcoxon (1892 1965): Americký statistik a chemik Nechť X 1,..., X n je náhodný výběr ze
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, TESTY DOBRÉ SHODY (angl. goodness-of-fit tests)
Testy dobré shody Máme dvě veličiny, u kterých bychom chtěli prokázat závislost, např. hmotnost a pohlaví narozených dětí. Běžný statistický postup pro ověření závislosti dvou veličin je zamítnutí jejich
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Parametry hledáme tak, aby součet čtverců odchylek byl minimální. Řešením podle teorie je =
Příklad 1 Metodou nejmenších čtverců nalezněte odhad lineární regresní funkce popisující závislost mezi výnosy pšenice a množstvím použitého hnojiva na základě hodnot výběrového souboru uvedeného v tabulce.
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Pearsonůvχ 2 test dobré shody. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. Př. : Ve vjezdové skupině kolejí byly sledovány počty přijíždějících vlaků za hodinu. Za 5 dní (tedy 360 hodin) přijelo celkem 87 vlaků. Výsledky sledování jsou uvedeny v tabulce.
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Test dobré shody v KONTINGENČNÍCH TABULKÁCH
Test dobré shody v KONTINGENČNÍCH TABULKÁCH Opakování: Mějme náhodné veličiny X a Y uspořádané do kontingenční tabulky. Řekli jsme, že nulovou hypotézu H 0 : veličiny X, Y jsou nezávislé zamítneme, když
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.
UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
6. T e s t o v á n í h y p o t é z
6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica
DVOUVÝBĚROVÉ A PÁROVÉ TESTY Komentované řešení pomocí programu Statistica Úloha A) koncentrace glukózy v krvi V této části posoudíme pomocí párového testu, zda nový lék prokazatelně snižuje koncentraci
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Zpracování náhodného vektoru. Ing. Michal Dorda, Ph.D.
Ing. Michal Dorda, Ph.D. 1 Př. 1: Cestující na vybraném spoji linky MHD byli dotazováni za účelem zjištění spokojenosti s kvalitou MHD. Legenda 1 Velmi spokojen Spokojen 3 Nespokojen 4 Velmi nespokojen
t-test, Studentův párový test Ing. Michael Rost, Ph.D.
Testování hypotéz: dvouvýběrový t-test, Studentův párový test Ing. Michael Rost, Ph.D. Úvod do problému... Již známe jednovýběrový t-test, při kterém jsme měli k dispozici pouze jeden výběr. Můžeme se
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
prosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Příklady na testy hypotéz o parametrech normálního rozdělení
Příklady na testy hypotéz o parametrech normálního rozdělení. O životnosti 75W žárovky (v hodinách) je známo, že má normální rozdělení s = 5h. Pro náhodný výběr 0 žárovek byla stanovena průměrná životnost
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
NÁHODNÁ ČÍSLA. F(x) = 1 pro x 1. Náhodná čísla lze generovat některým z následujících generátorů náhodných čísel:
NÁHODNÁ ČÍSLA TYPY GENERÁTORŮ, LINEÁRNÍ KONGRUENČNÍ GENERÁTORY, TESTY NÁHODNOSTI, VYUŽITÍ HODNOT NÁHODNÝCH VELIČIN V SIMULACI CO JE TO NÁHODNÉ ČÍSLO? Náhodné číslo definujeme jako nezávislé hodnoty z rovnoměrného
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
NEPARAMETRICKÉ TESTY
NEPARAMETRICKÉ TESTY Neparametrický jednovýběrový Jeden výběr jehož medián srovnáváme s nějakou hodnotou Wilcoxonův jednovýběrový test 1) Máme data z družice Hipparcos pro deklinaci (obdoba zeměpisné šířky)
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7
Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
Vybraná rozdělení náhodné veličiny
3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Statistické metody v ekonomii. Ing. Michael Rost, Ph.D.
Statistické metody v ekonomii Ing. Michael Rost, Ph.D. Jihočeská univerzita v Českých Budějovicích Proč neparametrické testy? Pokud provádíte formální analýzu či testování hypotéz (zejména provádíte-li
Regrese. 28. listopadu Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly:
Regrese 28. listopadu 2013 Pokud chceme daty proložit vhodnou regresní křivku, musíme obvykle splnit tři úkoly: 1. Ukázat, že data jsou opravdu závislá. 2. Provést regresi. 3. Ukázat, že zvolená křivka
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
PRAVDĚPODOBNOST A STATISTIKA. Testování hypotéz o rozdělení
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz o rozdělení Testování hypotéz o rozdělení Nechť X e náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládeme, že neznáme tvar distribuční funkce
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y
9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).
y = 0, ,19716x.
Grafické ověřování a testování vybraných modelů 1 Grafické ověřování empirického rozdělení Při grafické analýze empirického rozdělení vycházíme z empirické distribuční funkce F n (x) příslušné k náhodnému
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
PSY117/454 Statistická analýza dat v psychologii Přednáška 10
PSY117/454 Statistická analýza dat v psychologii Přednáška 10 TESTY PRO NOMINÁLNÍ A ORDINÁLNÍ PROMĚNNÉ NEPARAMETRICKÉ METODY... a to mělo, jak sám vidíte, nedozírné následky. Smrť Analýza četností hodnot
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik
KGG/STG Statistika pro geografy
KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení
Matematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz
Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI. Josef Křepela, Jiří Michálek. OSSM při ČSJ
HODNOCENÍ VÝKONNOSTI ATRIBUTIVNÍCH ZNAKŮ JAKOSTI Josef Křepela, Jiří Michálek OSSM při ČSJ Červen 009 Hodnocení způsobilosti atributivních znaků jakosti (počet neshodných jednotek) Nechť p je pravděpodobnost
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Cvičení 9: Neparametrické úlohy o mediánech
Cvičení 9: Neparametrické úlohy o mediánech Úkol 1.: Párový znaménkový test a párový Wilcoxonův test Při zjišťování kvality jedné složky půdy se používají dvě metody označené A a B. Výsledky: Vzorek 1
Jednofaktorová analýza rozptylu
Jednofaktorová analýza rozptylu David Hampel Ústav statistiky a operačního výzkumu, Mendelova univerzita v Brně Kurz pokročilých statistických metod Global Change Research Centre AS CR, 5 7 8 2015 Tato
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky)
STATISTIKA A INFORMATIKA - bc studium OZW, 1.roč. (zkušební otázky) 1) Význam a využití statistiky v biologických vědách a veterinárním lékařství ) Rozdělení znaků (veličin) ve statistice 3) Základní a
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
Poznámky k předmětu Aplikovaná statistika, 11. téma
Poznámky k předmětu Aplikovaná statistika, 11. téma Testy založené na χ 2 rozdělení V přehledu významných rozdělení jsme si uvedli, že Poissonovým rozdělením se modeluje počet událostí, které nastanou
Přednáška X. Testování hypotéz o kvantitativních proměnných
Přednáška X. Testování hypotéz o kvantitativních proměnných Testování hypotéz o podílech Kontingenční tabulka, čtyřpolní tabulka Testy nezávislosti, Fisherůvexaktní test, McNemarůvtest Testy dobré shody
Pravděpodobnost a matematická statistika
Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n