TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY
|
|
- Libuše Bártová
- před 8 lety
- Počet zobrazení:
Transkript
1 TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě údajů zjištěných z náhodného výběru objektivně předepisuje rozhodnutí, má-li být ověřovaná hypotéza zamítnuta či nikoliv
2
3
4
5
6
7
8
9
10 DRUHY HYPOTÉZ Pro každý test musíme formulovat nulovou a alternativní hypotézu: Testovaná hypotéza se nazývá nulová hypotéza (H 0 ). Předpokládáme, že platí, pokud nemáme k dispozici dostatečný statistický důkaz její neplatnosti. Pokud zamítneme platnost nulové hypotézy, předpokládáme, že platí alternativní hypotéza (H 1 ).
11 DRUHY HYPOTÉZ Hypotézy se mohou formulovat jako oboustranné nebo jako jednostranné. Oboustranná hypotéza: H 0 : μ = 50 H 1 : μ 50 všechny ostatní možnosti odpovídají platnosti H 1 50 pouze zde platí H 0 Jednostranná hypotéza: H 0 : μ 50 H 1 : μ > 50 zde platí H 0 zde platí H 1 50 (H 0 : μ 50 H 1 : μ < 50)
12 TESTOVÉ KRITÉRIUM Testy statistických hypotéz jsou obecně založeny na testovém kritériu (náhodná veličina, jejíž rozdělení je známo pro případ platnosti i neplatnosti nulové hypotézy). toto je rozdělení testového kritéria pro nulovou hypotézu toto je rozdělení testového kritéria pro alternativní hypotézu (je to stejná náhodná veličina jako u nulové hypotézy, jen s jinými parametry)
13 TESTOVÉ KRITÉRIUM Obor možných hodnot testového kritéria je rozdělen na dvěčásti obor nezamítnutí (přijetí) a obor zamítnutí (nepřijetí) testované hypotézy. Obor zamítnutí je ta část všech možných hodnot testového kritéria, kde je vysoce nepravděpodobné, že by testové kritérium mohlo nabýt tyto hodnoty (za předpokladu, že platí nulová hypotéza). Hranice oborů tvoří kritický bod (kritická hodnota), což je kvantil testového kritéria určený na základě hladiny významnosti α.
14 TESTOVÉ KRITÉRIUM Konkrétní hodnota testového kritéria je výběrová statistika vypočítaná přímo z měřených dat (z výběru). Pokud tato hodnota padne do oboru nezamítnut tnutí ( přijetí í ), je testovaná (nulová) ) hypotéza nezamítnuta ( přijata( ijata ). Pokud tato hodnota padne do oboru zamítnut tnutí (nepřijet ijetí), je testovaná (nulová) ) hypotéza zamítnuta (nepřijata). V tom případě dále pracujeme s předpokladem, že platí alternativní hypotéza.
15 TESTOVÉ KRITÉRIUM PRO OBOUSTRANNÝ TEST hustota pravděpodobnosti náhodné veličiny, která funguje jako testové kritérium obor zamítnutí (nepřijetí) obor nezamítnutí (přijetí) obor zamítnutí (nepřijetí) α/2 α/2 a α/2 b α/2 dolní kritický bod horní kritický bod
16 TESTOVÉ KRITÉRIUM PRO JEDNOSTRANNÝ TEST obor nezamítnutí (přijetí) b α α horní kritický bod obor zamítnutí (nepřijetí) obor zamítnutí (nepřijetí) α obor nezamítnutí (přijetí) a α dolní kritický bod
17 OBECNÝ POSTUP TESTU formulace nulové hypotézy (H 0 ) a alternativní hypotézy (H 1 ). volba hladiny významnosti α volba druhu testu a testového kritéria určení kritického oboru (oboru nepřijetí) testového kritéria na základě jejího rozdělení pravděpodobnosti a hladiny významnosti rozhodnutí o výsledku testu, tj. zda zamítnout nulovou hypotézu (jestliže vypočítaná hodnota testového kritéria padne do oboru nepřijetí), nezamítnout nulovou hypotézu (jestliže vypočítaná hodnota testového kritéria padne do oboru přijetí). Říkáme, že výsledek testu je významný (signifikantní) na hladině významnosti α, pokud jeho rozhodnutí vede k zamítnutí nulové hypotézy na základě výpočtu s využitím zvolené hodnoty α.
18 POSTUP TESTOVÁNÍ NA PŘÍKLADU Úloha: Byla prověřována správnost měření výškoměru. Byla 15 x změřena výška, jejíž hodnota je přesně známa (μ 0 = 20 m). Z výsledků měření se získal průměr měřených výšek = 19,2 m se směrodatnou odchylkou S = 1,1 m. Stanovte, zda-li výškoměr měří správně. formulace H 0 a H 1 : H 0 : Výškoměr měří správně. H 0 : μ = μ 0 (výběrový soubor o parametrech a S 2 pochází ze základního souboru s rozdělením N(μ,σ 2), přičemž parametr μ se rovná normované hodnotě μ 0 ).
19 POSTUP TESTOVÁNÍ NA PŘÍKLADU H 1 : Výškoměr neměří správně. H 1 : μ μ 0 (výběrový soubor o parametrech a S 2 pochází ze základního souboru s rozdělením N(μ,σ 2), přičemž parametr μ se nerovná normované hodnotě μ 0 ). stanovení hladiny významnosti α: Hladinu významnosti stanovíme na 0.05, tj. pro zamítnut tnutí nulové hypotézy potřebujeme pravděpodobnost podobnost nejméně 1 - α = 0.95.
20 POSTUP TESTOVÁNÍ NA PŘÍKLADU výběr r typu testu (testového kritéria) ria) vzhledem k charakteru úlohy dané formulací hypotéz z vybereme test středn ední hodnoty pro jeden výběr,, který testuje námi n zvolené hypotézy. Testové kritérium je t=(x-μ ) 0 n-1 S 15-1 t = (19,2-20) = -2,72 1,1 Pro tento test jako testové kritérium používáme t-rozdělení a jeho konkrétní vypočítaná hodnota pro naše zadání je 2,72. Tuto hodnotu budeme porovnávat k kritickými mezemi.
21 POSTUP TESTOVÁNÍ NA PŘÍKLADU stanovení kritické hodnoty Vzhledem k tomu, že pracujeme (podle formulace hypotéz a typu úlohy) s oboustranným testem, musíme zvolit 2 kritické hodnoty, tj. dolní a horní. Studentovo t-rozdělení je symetrické kolem 0, stačí nám tedy určit jednu hodnotu a použít ji s kladným i záporným znaménkem. Využijeme funkce Excelu =TINV (0,05;14), kde 0,05 je hodnota α (a funkce automaticky vrátí hodnoty pro oboustranný interval, tj. vlastně pro α = 0,025). Hodnota 14 je počet stupňů volnosti (n- 1)=15-1. Výsledná hodnota je 2,145. Tím jsou určeny kritické meze 2,145 a +2,145.
22 POSTUP TESTOVÁNÍ NA PŘÍKLADU rozhodnutí o výsledku testu Kritická hodnota 2,145 je menší než vypočítaná hodnota testového kritéria 2,72, znamená to, že 2,72 padlo do oboru nepřijetí tedynulovou hypotézu zamítáme. Závěr r testu: Výškom koměr r neměř ěří správn vně.. Odchylka naměř ěřených hodnot od správn vné hodnoty je statisticky významná.
23 POSTUP TESTOVÁNÍ NA PŘÍKLADU hodnota testového kriteria 2,72 obor nezamítnutí pro α = 0,01 kritický obor pro α = 0,01/2 = 0,005 kritický obor pro α = 0,01/2 = 0,005 obor nezamítnutí pro α = 0,05-2,98-2, ,145 2,98 t kritický obor pro α = 0,05/2 = 0,025 kritický obor pro α = 0,05/2 = 0,025
24
25
26 p-spočtená HODNOTA HLADINY VÝZNAMNOSTI p-hodnota je pravděpodobnost, že získáme stejné nebo extrémnější testové kritérium než je vypočítané, za předpokladu, že ve skutečnosti platí nulová hypotéza. p<α α p>α p < α Η 0 zamítáme p > α Η 0 nezamítáme obor zamítnutí kritický bod obor nezamítnutí 1-p maximální pravděpodobnost, se kterou můžeme zamítnout H 0
27 p HODNOTA (jednostranný test) hodnota testového kritéria p-hodnota α
28 p-hodnota (oboustranný test) p/2 α/2 α/2 p/2
29 p-hodnota p-hodnota závisí na: rozdílu mezi skutečnou a testovanou hypotézou (hodnotou, ) velikosti výběru Skutečná Testovaná hodnota (k) konstanta (k 0 ) n t t krit p
30 p-hodnota Je nutné rozlišovat mezi statistickou významností (danou p - hodnotou) a reálnou (ekologickou, ekonomickou, sociální, ) významností!! Praktická (reálná) důležitost pozorovaného rozdílu H 0 - H 1 Statistická významnost (podle p) nevýznamná významná nedůležitý n v pořádku n příliš velké důležitý n příliš malé n v pořádku apriorní (před pokusem dělaná) analýza síly testu!!
31 p-hodnota (statistická x reálná významnost) 10 velikost efektu velikost reálně důležitého efektu (rozdílu H 0 a H 1 ) Případ 1 Případ 2 Případ 3 Případ 4 Případ 5
32 CHYBA I. A II. DRUHU Chyba I. druhu (α) pravděpodobnost, že test zamítne hypotézu, která ve skutečnosti platí. Chyba II. druhu (β) pravděpodobnost, že test NEzamítne hypotézu, která ve skutečnosti NEplatí. Síla testu (1- β) pravděpodobnost, že test správně odmítne hypotézu, která ve skutečnosti neplatí.
33 CHYBA I. A II. DRUHU H 0 VE SKUTEČ NOSTI platí neplatí H 0 PODLE ROZDHODNUTÍ TESTU platí neplatí činím e správné rozhodnutí P = 1 - alfa dopouštíme se chyby I. druhu alfa dopouštíme se chyby II. druhu beta činím e správné rozhodnutí S = 1 - beta
34 CHYBA I. A II. DRUHU testové kritérium pro případ platnosti H 0 kritická hodnota testové kritérium rium pro případ p pad neplatnosti H 0 chyba II. druhu (β)( chyba I. druhu (α) Síla testu (1-β)
35 CHYBA II. DRUHU Chybu II. druhu (β) nelze určit apriorně před testem jako chybu I. druhu (α). Je nutno ji vypočítat a slouží především k výpočtu síly testu (S = 1 - β). Vycházíme z podmíněné pravděpodobnosti β= P(t<C H 0 neplatí) kde t je hodnota testového kritéria C je kritický bod
36 CHYBA II. DRUHU - VÝPOČET formulace H 0 a H 1 : H 0 : μ = 60 H 1 : μ = 65; n = 100, σ = 20 stanovení kritického bodu C: C σ 20 C=μ 0 + z α = 60 +1,645 = 63,29 n 10 C = 63,29 α = 0,05 μ 0 = 60 β=? μ 1 = 65
37 CHYBA II. DRUHU - VÝPOČET Výpočet pravděpodobnosti podobnosti odpovídaj dající hodnotě β x μ C μ 63, < = < = < = n n 20 / 10 σ σ 1 1 P P Z P(Z 0,855) 0,1963 C = 63,29 α = 0,05 μ 0 = 60 β=0,196 μ 1 = 65
38 CHYBA II. DRUHU - VÝPOČET formulace H 0 a H 1 pro jednostranný test: H 0 : μ = 60 H 1 : μ >60 Hodnota parametru Chyba II. druhu Síla testu 61 0,8739 0, ,7405 0, ,5577 0, ,3613 0, ,1963 0, ,0877 0, ,0318 0, ,0092 0, ,0021 0,9979 síla testu 1,2000 1,0000 0,8000 0,6000 0,4000 0,2000 0, skutečná hodnota parametru základního souboru
39 FAKTORY OVLIVŇUJÍCÍ SÍLU TESTU Síla testu závisí na následujících faktorech: odchylka mezi hodnotou testovaného parametru v nulové hypotéze a skutečnou hodnotou parametru velikost efektu variabilita (směrodatné odchylce nebo rozptylu) základního souboru velikost výběrového souboru na hladina významnosti α typ testu
40 FAKTORY OVLIVŇUJÍCÍ SÍLU TESTU S ES α σ n
41 ÚČEL ANALÝZY SÍLY TESTU před provedením pokusu (apriorní analýza) zjišťujeme potřebnou velikost výběru známe (zadáváme) - chybu I. druhu (alfa) - požadovanou sílu testu (1 - beta) - velikost efektu, kterou potřebujeme detekovat
42 ÚČEL ANALÝZY SÍLY TESTU po provedení pokusu (aposteriorní analýza) zjišťujeme skutečnou sílu testu známe (zadáváme) - chybu I. druhu (alfa) - velikost výběru (N) - velikost efektu
43 Metodické problémy testování je nutné vždy apriorně určovat chybu I. druhu? jaký je rozdíl mezi statistickou a reálnou významností testu? za předpokladu, že kontroluji chybu I. druhu, nakolik je průkazné nezamítnutí nulové hypotézy? jakou velikost výběru potřebuji, abych prokázal efekt určité velikosti (tj. určitý rozdíl mezi nulovou a alternativní hypotézou)?
44 Musíme vždy vycházet z chyby I. druhu? Předem ( napevno ) se určuje vždy ta chyba, jejíž důsledky považujeme za vážnější (důležitější): určíme chybu I. druhu, dopočítáme chybu II. druhu určíme chybu II. druhu, dopočítáme chybu I. druhu kompromisní -určíme vzájemný poměr závažnosti důsledků obou chyb a počítáme obě
45 TYPY TESTŮ STATISTICKÉ TESTY PARAMETRICKÉ mají vyšší sílu vyžadují splnění určitých podmínek NEPARAMETRICKÉ nižší síla testu vyžadují pouze spojité rozdělení vhodné při velmi malých výběrech PRO JEDEN VÝBĚR H0: P = K PRO DVA VÝBĚRY H0: P1 = P2 PRO VÍCE VÝBĚRŮ H0: P1 = P2 =...=Pk PRO JEDEN VÝBĚR PRO DVA VÝBĚRY PRO VÍCE VÝBĚRŮ
46 Testování hypotéz I Hypotéza: předpoklad o rozdělení a jeho parametrech (H) Testování: rozhodnutí o H na základě informací z výběru H 0 : základní (bázová) hypotéza H A : alternativní (přijatá, když nelze přijmout H 0 ) Testovací statistika: T(x 1,...x n ) f(t) H a : μ > μ H 0 0: μ = μ 0 H a : μ μ A 0 A C C C
47 Souvislosti testů s IS: H 0 (α = 0.05) H A H A α = 0.05 Testování hypotéz II Chyba prvního druhu [α]: H 0 platí, ale nebyla testem přijata Chyba druhého druhu [β]: H 0 neplatí, ale byla testem přijata f(t) H 0 β α H A A R T 1-α α F β 1-β
48 σ 2 : neznámé Test o střední hodnotě Nulová hypotéza: Testová statistika: Alternativní Hypotéza H H H a a a : μ > μ0 : μ< μ0 : μ μ 0 t H0 : μ = μ 0 x μ = 0 s/ n Oblast zamítnutí buď t t t t α, n 1 t t α/2, n 1 α, n 1 nebo t t α/2, n 1
49 Testy normální data
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg.
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Testování hypotéz Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr
4ST201 STATISTIKA CVIČENÍ Č. 7
4ST201 STATISTIKA CVIČENÍ Č. 7 testování hypotéz parametrické testy test hypotézy o střední hodnotě test hypotézy o relativní četnosti test o shodě středních hodnot testování hypotéz v MS Excel neparametrické
TESTOVÁNÍ HYPOTÉZ STATISTICKÁ HYPOTÉZA Statistické testy Testovací kritérium = B B > B < B B - B - B < 0 - B > 0 oboustranný test = B > B
TESTOVÁNÍ HYPOTÉZ Od statistického šetření neočekáváme pouze elementární informace o velikosti některých statistických ukazatelů. Používáme je i k ověřování našich očekávání o výsledcích nějakého procesu,
676 + 4 + 100 + 196 + 0 + 484 + 196 + 324 + 64 + 324 = = 2368
Příklad 1 Je třeba prověřit, zda lze na 5% hladině významnosti pokládat za prokázanou hypotézu, že střední doba výroby výlisku je 30 sekund. Přitom 10 náhodně vybraných výlisků bylo vyráběno celkem 540
Testování statistických hypotéz
Testování statistických hypotéz Na základě náhodného výběru, který je reprezentativním vzorkem základního souboru (který přesně neznáme, k němuž se ale daná statistická hypotéza váže), potřebujeme ověřit,
Aproximace binomického rozdělení normálním
Aproximace binomického rozdělení normálním Aproximace binomického rozdělení normálním Příklad Sybilla a Kassandra tvrdí, že mají telepatické schopnosti, a chtějí to dokázat následujícím pokusem: V jedné
Testování statistických hypotéz
Testování statistických hypotéz Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 11. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 27 Obsah 1 Testování statistických hypotéz 2
Testování statistických hypotéz
Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné
STATISTICKÉ HYPOTÉZY
STATISTICKÉ HYPOTÉZY ZÁKLADNÍ POJMY Bodové/intervalové odhady Maruška řešila hodnoty parametrů (průměr, rozptyl atd.) Zde bude Maruška dělat hypotézy (předpoklady) ohledně parametrů Z.S. Výsledek nebude
Ing. Michael Rost, Ph.D.
Úvod do testování hypotéz, jednovýběrový t-test Ing. Michael Rost, Ph.D. Testovaná hypotéza Pokud nás zajímá zda platí, či neplatí tvrzení o určitém parametru, např. o parametru Θ, pak takovéto tvrzení
5 Parametrické testy hypotéz
5 Parametrické testy hypotéz 5.1 Pojem parametrického testu (Skripta str. 95-96) Na základě výběru srovnáváme dvě tvrzení o hodnotě určitého parametru θ rozdělení f(x, θ). První tvrzení (které většinou
Testy statistických hypotéz
Testy statistických hypotéz Statistická hypotéza je jakýkoliv předpoklad o rozdělení pravděpodobnosti jedné nebo několika náhodných veličin. Na základě náhodného výběru, který je reprezentativním vzorkem
Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru.
1 Statistické odhady Určujeme neznámé hodnoty parametru základního souboru. Pomocí výběrové charakteristiky vypočtené z náhodného výběru. Odhad lze provést jako: Bodový odhad o Jedna číselná hodnota Intervalový
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Stručný úvod do testování statistických hypotéz
Stručný úvod do testování statistických hypotéz 1. Formulujeme hypotézu (předpokládáme, že pozorovaný jev je pouze náhodný). 2. Zvolíme hladinu významnosti testu a, tj. riziko, s nímž jsme ochotni se smířit.
Testování hypotéz. 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test
Testování hypotéz 1. vymezení základních pojmů 2. testování hypotéz o rozdílu průměrů 3. jednovýběrový t-test Testování hypotéz proces, kterým rozhodujeme, zda přijmeme nebo zamítneme nulovou hypotézu
Cvičení ze statistiky - 8. Filip Děchtěrenko
Cvičení ze statistiky - 8 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Centrální limitní věta Laplaceho věta (+ korekce na spojitost) Konfidenční intervaly
Rozhodnutí / Skutečnost platí neplatí Nezamítáme správně chyba 2. druhu Zamítáme chyba 1. druhu správně
Testování hypotéz Nechť,, je náhodný výběr z nějakého rozdělení s neznámými parametry. Máme dvě navzájem si odporující hypotézy o parametrech daného rozdělení: Nulová hypotéza parametry (případně jediný
Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel
Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,
Testování hypotéz. 4. přednáška 6. 3. 2010
Testování hypotéz 4. přednáška 6. 3. 2010 Základní pojmy Statistická hypotéza Je tvrzení o vlastnostech základního souboru, o jehož pravdivosti se chceme přesvědčit. Předem nevíme, zda je pravdivé nebo
Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.
Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení
Testy. Pavel Provinský. 19. listopadu 2013
Testy Pavel Provinský 19. listopadu 2013 Test a intervalový odhad Testy a intervalové odhady - jsou vlastně to samé. Jiný je jen úhel pohledu. Lze přecházet od jednoho k druhému. Například: Při odvozování
Statistika. Testování hypotéz statistická indukce Úvod do problému. Roman Biskup
Statistika Testování hypotéz statistická indukce Úvod do problému Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika by Birom
Náhodné veličiny, náhodné chyby
Náhodné veličiny, náhodné chyby Máme náhodnou veličinu X, jejíž vlastnosti zkoumáme. Pokud známe její rozložení (např. z nějaké dřívější studie) nebo alespoň předpokládáme znalost rozložení, můžeme ji
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký
Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina
Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi
Testování statistických hypotéz. Obecný postup
poznámky k MIII, Tomečková I., poslední aktualizace 9. listopadu 016 9 Testování statistických hypotéz Obecný postup (I) Vyslovení hypotézy O datech vyslovíme doměnku, kterou chceme ověřit statistickým
Normální (Gaussovo) rozdělení
Normální (Gaussovo) rozdělení f x = 1 2 exp x 2 2 2 f(x) je funkce hustoty pravděpodobnosti, symetrická vůči poloze maxima x = μ μ střední hodnota σ směrodatná odchylka (tzv. pološířka křivky mezi inflexními
Epidemiologické ukazatele. lních dat. analýza kategoriáln. Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat. a I E
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Epidemiologické ukazatele Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. 1
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky Statistickou hypotézou rozumíme hypotézu o populaci (základním souboru) např.: Střední hodnota základního souboru je rovna 100.
Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.
Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině
12. prosince n pro n = n = 30 = S X
11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli
STATISTICKÉ TESTY VÝZNAMNOSTI
STATISTICKÉ TESTY VÝZNAMNOSTI jsou statistické postupy, pomocí nichž ověřujeme, zda mezi proměnnými existuje vztah (závislost, rozdíl). Pokud je výsledek šetření statisticky významný (signifikantní), znamená
Neparametrické metody
Neparametrické metody Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální rozdělení. Např. Grubbsův test odlehlých hodnot
2 ) 4, Φ 1 (1 0,005)
Příklad 1 Ze zásilky velkého rozsahu byl náhodně vybrán soubor obsahující 1000 kusů. V tomto souboru bylo zjištěno 26 kusů nekvalitních. Rozhodněte, zda je možné s 99% jistotou tvrdit, že zásilka obsahuje
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 1
PRAVDĚPODOBNOST A STATISTIKA Neparametrické testy hypotéz čast 1 Neparametrické testy hypotéz - úvod Neparametrické testy statistických hypotéz se používají v případech, kdy neznáme rozdělení pozorované
Jednostranné intervaly spolehlivosti
Jednostranné intervaly spolehlivosti hledáme jen jednu z obou mezí Princip: dle zadání úlohy hledáme jen dolní či jen horní mez podle oboustranného vzorce s tou změnou, že výraz 1-α/2 ve vzorci nahradíme
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
Pravděpodobnost a aplikovaná statistika
Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 8. KAPITOLA STATISTICKÉ TESTOVÁNÍ HYPOTÉZ 22.11.2016 Opakování: CLV příklad 1 Zadání: Před volbami je v populaci státu 52 % příznivců
Testování hypotéz. testujeme (většinou) tvrzení o parametru populace. tvrzení je nutno předem zformulovat
Testování hypotéz testujeme (většinou) tvrzení o parametru populace tvrzení je nutno předem zformulovat najít odpovídající test, podle kterého se na základě informace z výběrového souboru rozhodneme, zda
analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. Záznam epidemiologických dat Epidemiologické ukazatele
Testování statistických hypotéz z a analýza kategoriáln lních dat Prof. RNDr. Jana Zvárová, DrSc. 1 Záznam epidemiologických dat Rizikový faktor Populace Přítomen Nepřítomen Celkem Nemocní a b a+b Kontroly
Intervalové odhady. Interval spolehlivosti pro střední hodnotu v N(µ, σ 2 ) Interpretace intervalu spolehlivosti. Interval spolehlivosti ilustrace
Intervalové odhady Interval spolehlivosti pro střední hodnotu v Nµ, σ 2 ) Situace: X 1,..., X n náhodný výběr z Nµ, σ 2 ), kde σ 2 > 0 známe měli jsme: bodové odhady odhadem charakteristiky je číslo) nevyjadřuje
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů
STATISTICA Téma 6. Testy na základě jednoho a dvou výběrů 1) Test na velikost rozptylu Test na velikost rozptylu STATISTICA nemá. 2) Test na velikost střední hodnoty V menu Statistika zvolíme nabídku Základní
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test)
Jarqueův a Beryho test normality (Jarque-Bera Test, JB test) Autoři: Carlos M. Jarque and Anil K. Bera Předpoklady: - Výběrová data mohou obsahovat chybějící pozorování (chybějící hodnoty) vhodné zejména
Testování hypotéz. 1 Jednovýběrové testy. 90/2 odhad času
Testování hypotéz 1 Jednovýběrové testy 90/ odhad času V podmínkách naprostého odloučení má voák prokázat schopnost orientace v čase. Úkolem voáka e provést odhad časového intervalu 1 hodiny bez hodinek
Charakteristika datového souboru
Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex
Testování hypotéz o parametrech regresního modelu
Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,
Testování hypotéz o parametrech regresního modelu
Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO
Zápočtová práce STATISTIKA I
Zápočtová práce STATISTIKA I Obsah: - úvodní stránka - charakteristika dat (původ dat, důvod zpracování,...) - výpis naměřených hodnot (v tabulce) - zpracování dat (buď bodové nebo intervalové, podle charakteru
Dva případy chybného rozhodnutí při testování: a) Testační statistika padne mimo obor přijetí nulové H hypotézy O, tj.
Uvedeme obecný postup statistického testování:. Formulace nulové H 0a alternativní hpotéz H A.. Volba hladin významnosti α.. Volba testační statistik např... Určení kritického oboru testové charakteristik.
12. cvičení z PST. 20. prosince 2017
1 cvičení z PST 0 prosince 017 11 test rozptylu normálního rozdělení Do laboratoře bylo odesláno n = 5 stejných vzorků krve ke stanovení obsahu alkoholu X v promilích alkoholu Výsledkem byla realizace
You created this PDF from an application that is not licensed to print to novapdf printer (http://www.novapdf.com)
Testování statistických hypotéz Testování statistických hypotéz Princip: Ověřování určitého předpokladu zjišťujeme, zda zkoumaný výběr pochází ze základního souboru, který má určité rozdělení zjišťujeme,
Základní statistické metody v rizikovém inženýrství
Základní statistické metody v rizikovém inženýrství Petr Misák Ústav stavebního zkušebnictví Fakulta stavební, VUT v Brně misak.p@fce.vutbr.cz Základní pojmy Jev souhrn skutečností zobrazujících ucelenou
Statistika, Biostatistika pro kombinované studium. Jan Kracík
Statistika, Biostatistika pro kombinované studium Letní semestr 2014/2015 Tutoriál č. 6: ANOVA Jan Kracík jan.kracik@vsb.cz Obsah: Testování hypotéz opakování ANOVA Testování hypotéz (opakování) Testování
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum I. ÚVOD vv této přednášce budeme hovořit o jednovýběrových a dvouvýběrových testech týkajících se střední hodnoty
SEMESTRÁLNÍ PRÁCE. Leptání plasmou. Ing. Pavel Bouchalík
SEMESTRÁLNÍ PRÁCE Leptání plasmou Ing. Pavel Bouchalík 1. ÚVOD Tato semestrální práce obsahuje písemné vypracování řešení příkladu Leptání plasmou. Jde o praktickou zkoušku znalostí získaných při přednáškách
Cvičení ze statistiky - 9. Filip Děchtěrenko
Cvičení ze statistiky - 9 Filip Děchtěrenko Minule bylo.. Dobrali jsme normální rozdělení Tyhle termíny by měly být známé: Inferenční statistika Konfidenční intervaly Z-test Postup při testování hypotéz
JEDNOVÝBĚROVÉ TESTY. Komentované řešení pomocí programu Statistica
JEDNOVÝBĚROVÉ TESTY Komentované řešení pomocí programu Statistica Vstupní data Data umístěná v excelovském souboru překopírujeme do tabulky ve Statistice a pojmenujeme proměnné, viz prezentace k tématu
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin
Parametrické testy hypotéz o středních hodnotách spojitých náhodných veličin EuroMISE Centrum Kontakt: Literatura: Obecné informace Zvárová, J.: Základy statistiky pro biomedicínskéobory I. Vydavatelství
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
Statistické metody uţívané při ověřování platnosti hypotéz
Statistické metody uţívané při ověřování platnosti hypotéz Hypotéza Domněnka, předpoklad Nejčastěji o rozdělení, středních hodnotách, závislostech, Hypotézy ve vědeckém výzkumu pracovní, věcné hypotézy
prosince oboustranný symetrický 95% interval spolehlivosti pro střední hodnotu životnosti τ. X i. X = 1 n.. Podle CLV má veličina
10 cvičení z PSI 5-9 prosince 016 101 intervalový odhad Veličina X, představující životnost žárovky, má exponenciální rozdělení s parametrem τ Průměrná životnost n = 64 náhodně vybraných žárovek je x =
Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)
Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 4. až 5.4 hod. http://www.osu.cz/~tvrdik
Problematika analýzy rozptylu. Ing. Michael Rost, Ph.D.
Problematika analýzy rozptylu Ing. Michael Rost, Ph.D. Úvod do problému Již umíte testovat shodu dvou středních hodnot prostřednictvím t-testů. Otázka: Jaké předpoklady musí být splněny, abyste mohli použít
Příklad 1. Korelační pole. Řešení 1 ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 13
Příklad 1 Máme k dispozici výsledky prvního a druhého testu deseti sportovců. Na hladině významnosti 0,05 prověřte, zda jsou výsledky testů kladně korelované. 1.test : 7, 8, 10, 4, 14, 9, 6, 2, 13, 5 2.test
12. cvičení z PSI prosince (Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem)
cvičení z PSI 0-4 prosince 06 Test střední hodnoty dvou normálních rozdělení se stejným neznámým rozptylem) Z realizací náhodných veličin X a Y s normálním rozdělením) jsme z výběrů daného rozsahu obdrželi
4EK211 Základy ekonometrie
4EK211 Základy ekonometrie ZS 2015/16 Cvičení 1: Opakování ze statistiky LENKA FIŘTOVÁ KATEDRA EKONOMETRIE, FAKULTA INFORMATIKY A STATISTIKY VYSOKÁ ŠKOLA EKONOMICKÁ V PRAZE Z čeho studovat 1) Z KNIHY Krkošková,
Neparametrické testy
Neparametrické testy Dosud jsme se zabývali statistickými metodami, které zahrnovaly předpoklady o rozdělení dat. Zpravidla jsme předpokládali normální (Gaussovo) rozdělení. Například: Grubbsův test odlehlých
Jednofaktorová analýza rozptylu
I I.I Jednofaktorová analýza rozptylu Úvod Jednofaktorová analýza rozptylu (ANOVA) se využívá při porovnání několika středních hodnot. Často se využívá ve vědeckých a lékařských experimentech, při kterých
Jana Vránová, 3.lékařská fakulta UK, Praha. Hypotézy o populacích
Jana Vránová, 3.lékařská fakulta UK, Praha Hypotézy o populacích Příklad IQ test: Předpokládejme, že z nějakého důvodu ministerstvo školství věří, že studenti absolventi středních škol v Hradci Králové
Statistika. Teorie odhadu statistická indukce. Roman Biskup. (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at) .
Statistika Teorie odhadu statistická indukce Intervalový odhad µ, σ 2 a π Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 21. února 2012 Statistika
Co je to statistika? Úvod statistické myšlení. Základy statistického hodnocení výsledků zkoušek. Petr Misák
Základy statistického hodnocení výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Co je to statistika? Statistika je jako bikiny. Odhalí téměř vše, ale to nejdůležitější nám zůstane skryto. (autor neznámý)
Testování hypotéz Biolog Statistik: Matematik: Informatik:
Testování hypotéz Biolog, Statistik, Matematik a Informatik na safari. Zastaví džíp a pozorují dalekohledem. Biolog "Podívejte se! Stádo zeber! A mezi nimi bílá zebra! To je fantastické! " "Existují bílé
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie
UNIVERZITA PARDUBICE Fakulta chemicko-technologická Katedra analytické chemie Licenční studium Pythagoras Statistické zpracování experimentálních dat Semestrální práce ANOVA vypracoval: Ing. David Dušek
11. cvičení z PSI prosince hodnota pozorovaná četnost n i p X (i) = q i (1 q), i N 0.
11 cvičení z PSI 12-16 prosince 2016 111 (Test dobré shody - geometrické rozdělení Realizací náhodné veličiny X jsme dostali následující četnosti výsledků: hodnota 0 1 2 3 4 5 6 pozorovaná četnost 29 15
10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.
0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti
STATISTICKÉ ZJIŠŤOVÁNÍ
STATISTICKÉ ZJIŠŤOVÁNÍ ÚVOD Základní soubor Všechny ryby v rybníce, všechny holky/kluci na škole Cílem určit charakteristiky, pravděpodobnosti Průměr, rozptyl, pravděpodobnost, že Maruška kápne na toho
Matematika III. 3. prosince Vysoká škola báňská - Technická univerzita Ostrava. Matematika III
Vysoká škola báňská - Technická univerzita Ostrava 3. prosince 2018 Úvod do testování hypotéz Základní metody statistické indukce Intervalové odhady (angl. confidence intervals) umožňují odhadnout nejistotu
5. T e s t o v á n í h y p o t é z
5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
I. D i s k r é t n í r o z d ě l e n í
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Jana Vránová, 3. lékařská fakulta UK
Jana Vránová, 3. lékařská fakulta UK Vznikají při zkoumání vztahů kvalitativních resp. diskrétních znaků Jedná se o analogii s korelační analýzou spojitých znaků Přitom předpokládáme, že každý prvek populace
15. T e s t o v á n í h y p o t é z
15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:
p(x) = P (X = x), x R,
6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme
Tomáš Karel LS 2012/2013
Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není
PSY117/454 Statistická analýza dat v psychologii seminář 9. Statistické testování hypotéz
PSY117/454 Statistická analýza dat v psychologii seminář 9 Statistické testování hypotéz Základní výzkumné otázky/hypotézy 1. Stanovení hodnoty parametru =stanovení intervalu spolehlivosti na μ, σ, ρ,
7.1. Podstata testu statistické hypotézy
7. TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ 7.1. Podstata testu statistické hypotézy Statistická hypotéza určitý předpoklad o parametrech nebo tvaru rozdělení zkoumaného st. znaku. Testování hypotéz proces ověřování
Matematické modelování Náhled do ekonometrie. Lukáš Frýd
Matematické modelování Náhled do ekonometrie Lukáš Frýd Výnos akcie vs. Výnos celého trhu - CAPM model r it = r ft + β 1. (r mt r ft ) r it r ft = α 0 + β 1. (r mt r ft ) + ε it Ekonomický (finanční model)
MÍRY ZÁVISLOSTI (KORELACE A REGRESE)
zhanel@fsps.muni.cz MÍRY ZÁVISLOSTI (KORELACE A REGRESE) 2.5 MÍRY ZÁVISLOSTI 2.5.1 ZÁVISLOST PEVNÁ, VOLNÁ, STATISTICKÁ A KORELAČNÍ Jednorozměrné soubory - charakterizovány jednotlivými statistickými znaky
ROZDĚLENÍ NÁHODNÝCH VELIČIN
ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Intervalový odhad. Interval spolehlivosti = intervalový odhad nějakého parametru s danou pravděpodobností = konfidenční interval pro daný parametr
StatSoft Intervalový odhad Dnes se budeme zabývat neodmyslitelnou součástí statistiky a to intervaly v nejrůznějších podobách. Toto téma je také úzce spojeno s tématem testování hypotéz, a tedy plynule
Mann-Whitney U-test. Znaménkový test. Vytvořil Institut biostatistiky a analýz, Masarykova univerzita J. Jarkovský, L. Dušek
10. Neparametrické y Mann-Whitney U- Wilcoxonův Znaménkový Shrnutí statistických ů Typ srovnání Nulová hypotéza Parametrický Neparametrický 1 skupina dat vs. etalon Střední hodnota je rovna hodnotě etalonu.
Náhodné veličiny jsou nekorelované, neexistuje mezi nimi korelační vztah. Když jsou X; Y nekorelované, nemusí být nezávislé.
1. Korelační analýza V životě většinou nesledujeme pouze jeden statistický znak. Sledujeme více statistických znaků zároveň. Kromě vlastností statistických znaků nás zajímá také jejich těsnost (velikost,
Návrh a vyhodnocení experimentu
Návrh a vyhodnocení experimentu Návrh a vyhodnocení experimentů v procesech vývoje a řízení kvality vozidel Ing. Bohumil Kovář, Ph.D. FD ČVUT Ústav aplikované matematiky kovar@utia.cas.cz Mladá Boleslav
jevu, čas vyjmutí ze sledování byl T j, T j < X j a T j je náhodná veličina.
Parametrické metody odhadů z neúplných výběrů 2 1 Metoda maximální věrohodnosti pro cenzorované výběry 11 Náhodné cenzorování Při sledování složitých reálných systémů často nemáme možnost uspořádat experiment
Ranní úvahy o statistice
Ranní úvahy o statistice Neúplný návod ke čtení statistických výsledků Dušan Merta květen 2016 Co nás čeká 1 Základní pojmy 2 Testování hypotéz 3 Confidence interval 4 Odds ratio 2 / 26 Základní pojmy
Jednovýběrové testy. Komentované řešení pomocí MS Excel
Jednovýběrové testy Komentované řešení pomocí MS Excel Vstupní data V dalším budeme předpokládat, že tabulka se vstupními daty je umístěna v oblasti A1:C23 (viz. obrázek) Základní statistiky vložíme vzorce
STATISTICKÉ ODHADY Odhady populačních charakteristik
STATISTICKÉ ODHADY Odhady populačních charakteristik Jak stanovit charakteristiky rozložení sledované veličiny v základní populaci? Populaci většinou nemáme celou k dispozici, musíme se spokojit jen s