Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: =, 0 = 1 = 1. ln = +,
|
|
- Hana Holubová
- před 8 lety
- Počet zobrazení:
Transkript
1 Příklad Nalezněte obecné řešení diferenciální rovnice (pomocí separace proměnných) a řešení Cauchyho úlohy: a) =, 0= b) =, = c) =2, = d) =2, 0= e) =, 0= f) 2 =0, = g) + =0, h) =, = 2 = i) =, 0= j) sin+cos=0, 2 =0 Řešení a Máme řešit LDR =, 0= Ze zadání není definiční obor řešení ničím omezen, tedy =. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných = ln =+, Obě strany uplatníme jako argument exponenciální funkce = vyjádříme neznámou a upravíme = =, =, dostáváme obecné řešení LDR =,, = Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky =
2 Řešení Cauchyho úlohy tedy je =, = = = = = 0= = Řešení b Máme řešit LDR =, = Nejprve si musíme uvědomit, že oblast řešení je = 0, protože zlomek na pravé straně je definován v tomto oboru. Nyní budeme hledat obecné řešení rovnice pomocí separace proměnných = ln =ln +, Obě strany uplatníme jako argument exponenciální funkce vyjádříme neznámou a upravíme = = =, =, dostáváme obecné řešení LDR =, Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky = = Řešení Cauchyho úlohy tedy je =, = 0 = 2
3 = = = = Řešení c Máme řešit LDR =2, = Ze zadání není definiční obor řešení ničím omezen, tedy =. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných =2 ln = +, Obě strany uplatníme jako argument exponenciální funkce vyjádříme neznámou a upravíme = = =, =, dostáváme obecné řešení LDR =,, = Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky = Řešení Cauchyho úlohy tedy je = = =, =2 =2 2=2 = = 3
4 = = = Řešení d Máme řešit LDR =2, 0= Ze zadání je definiční obor řešení omezen na nezáporné hodnoty hledané funkce. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných =2 =2+, 2 =2+ =+ 2 =+, = 2, Umocníme na druhou a dostáváme řešení, definiční obor není omezen podmínkou zmíněnou v počátku řešení (řešení má nezáporné hodnoty) =+,, = Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky 0+ = = Protože není možné, aby druhá mocnina reálného čísla byla záporná, nemá Cauchyho úloha v reálném oboru řešení. =2 + =2+ 2+=2+ Řešení e Máme řešit LDR =, 0= 4
5 Ze zadání není definiční obor řešení ničím omezen, tedy =. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných 2 = 2 = +, = +2= +, =2, dostáváme obecné řešení LDR = +, Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky Tudíž Řešení Cauchyho úlohy tedy je += 0 += = = +, = = + = = + 0= 0 += Řešení f Máme řešit LDR 2 =0, = Ze zadání není definiční obor řešení ničím omezen, tedy =. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných =2 5
6 ln =2 2 += +, Obě strany uplatníme jako argument exponenciální funkce vyjádříme neznámou a upravíme = = =, =, dostáváme obecné řešení LDR =,, = Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky = Řešení Cauchyho úlohy tedy je = = = = =, 2 =0 2 = 6 =0 2 2 =0 2 2 =0 = = = Řešení g Máme řešit LDR + =0, = Ze zadání je definiční obor řešení omezen přípustností zlomku na pravé straně, tedy =. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných = +
7 = + Pravou stranu rozložíme na parciální zlomky (abychom mohli poté rozumně integrovat) + = + + =++ = Koeficienty u stejných mocnin se musí rovnat, dostáváme soustavu rovnic +=0, = =, = Tedy = + + = + ln =ln ln + +, za použití vlastností logaritmu ln =ln + +, Obě strany uplatníme jako argument exponenciální funkce = vyjádříme neznámou a upravíme = + = +, =, dostáváme obecné řešení LDR = +,, = Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky = + = Řešení Cauchyho úlohy tedy je 2 = =2 =2 +, = + = =0 7
8 + + + =0 = 2 + = 2 2 = Řešení h Máme řešit LDR =, = 2 Ze zadání je definiční obor řešení omezen přípustností zlomku, tedy = 0. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných = = +, = = Vyjádříme neznámou a dostáváme obecné řešení =,, = 0 Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky = 2 = 2 = Řešení Cauchyho úlohy tedy je = = +, = = 0 8
9 = 9 = = = 2 + = 2 Řešení i Máme řešit LDR =, 0= Ze zadání není definiční obor řešení ničím omezen, tedy =. Dále je třeba si uvědomit, že v tomto případě je jedním z možných obecných řešení takzvané triviální řešení. V tomto případě existují triviální řešení dokonce dvě, protože pravou stranu můžeme psát = Je tedy zřejmé, že řešením obecné rovnice jsou konstantní funkce =0, =, = Dále budeme hledat řešení netriviální. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných = Před integrací provedeme rozklad na parciální zlomky = = + = + = ++ Koeficienty u stejných mocnin se musí rovnat, dostáváme soustavu rovnic +=0, = =, = = + = To ale není příliš šťastné. V následné integraci dostaneme dva kladné členy v logaritmech a to by vedlo k potížím při vyjádření hledané funkce. Proto obě strany rovnice vynásobíme konstantou - a dostaenme = + = + =
10 ln +ln = +, Obě strany uplatníme jako argument exponenciální funkce Využijeme vlastností logaritmu = = =, =, Dostaneme = v několika krocích vyjádříme neznámou a upravíme =, = = = dostáváme obecné řešení LDR = = =,, = ; = neboli =ln Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. JE zřejmé, že ani jedno z obou triviálních řešení nevyhovuje počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky 0= = = =2 Řešení Cauchyho úlohy tedy je = 2, = ; =2 neboli =ln2 = = = = 0
11 0= 2 = 2 = Řešení j Máme řešit LDR sin+cos=0, 2 =0 Ze zadání není definiční obor řešení ničím omezen, tedy =. Měli bychom si povšimnout, že úloha má triviální řešení =0. Nyní budeme hledat řešení netriviální. Nejprve budeme hledat obecné řešení rovnice pomocí separace proměnných sin+cos=0 sin= cos = cos sin (pravou stranu pomocí substituce =sin,=cos) ln = ln sin +, Obě strany uplatníme jako argument exponenciální funkce vyjádříme neznámou a upravíme = = = sin = sin, =, dostáváme obecné řešení LDR = sin,, =, Nyní budeme řešit Cauchyho úlohu, neboli budeme hledat konkrétní K vyhovující počáteční podmínce. Obecné řešení dosadíme do počáteční podmínky 2 =0 sin =0 2 =0 =0 Řešením Cauchyho úlohy tedy je pouze triviální řešení =0, =
12 sin+cos=0 sin sin+ sin cos=0 cos sin+ sin sin cos=0 cos sin + cos sin =0 2 =0 0=0 2
13 Příklad 2 Nalezněte obecné řešení diferenciální rovnice (s homogenní funkcí) a řešení Cauchyho úlohy: a) =, b) = 2, 0= 0= c) = +, = d) = 2, e) = +, = =0 Řešení 2a Máme řešit rovnici =, 0= Pokud vydělíme čitatele i jmenovatele pravé strany dostaneme = = = Je zřejmé, že se jedná o diferenciální rovnici s homogenní funkcí. To je ale již v zadání vyzrazeno, můžeme tedy přímo zavést substituci Dosadíme do zadané rovnice =, =, = + + = = = = Tím se nám podařilo převést danou rovnici na separovatelný tvar. Separujeme a pokračujeme v úpravách = = + 3
14 = = = ln =ln +, Obě strany použijeme jako argument exponenciální funkce a dostaneme Provedeme zpětnou substituci = = =, =, =, = dostáváme obecné řešení zadané rovnice (v implicitním tvaru) =, Nyní budeme řešit Cauchyho úlohu. Dosadíme počáteční podmínku 0= do obecného řešení 0= = Na pravé straně máme zlomek s nulou ve jmenovateli. Výraz není přípustný, proto Cauchyho úloha nemá řešení. Vzhledem k tomu, že jsme získali řešení v implicitním tvaru, nelze ho dosadit do dané rovnice. Ověření správnosti řešení je v této situaci komplikované. Řešení 2b Máme řešit rovnici = 2, 0= Pokud vydělíme čitatele i jmenovatele pravé strany dostaneme 2 = 2 2 = = Je zřejmé, že se jedná o diferenciální rovnici s homogenní funkcí. To je ale již v zadání vyzrazeno, můžeme tedy přímo zavést substituci 4
15 Dosadíme do zadané rovnice =, =, = + + = 2 = 2 = 2 = 2 Tím se nám podařilo převést danou rovnici na separovatelný tvar. Separujeme a pokračujeme v úpravách = = + = + = Výraz na levé straně rozložíme na parciální zlomky + = =+ + 5 = Koeficienty u stejných mocnin neznámé musí být stejné. Dostáváme tedy soustavu rovnic +=, =0, = Která má řešení =, = 2, =0 Dosadíme do posledního tvaru rovnice = 2 + = ln ln + =ln +, Obě strany použijeme jako argument exponenciální funkce a dostaneme = = + =, =, + =,
16 Provedeme zpětnou substituci + = + = + = + = + = dostáváme obecné řešení zadané rovnice (v implicitním tvaru) = +, Nyní budeme řešit Cauchyho úlohu. Dosadíme počáteční podmínku 0= do obecného řešení 0=0 +0 =0+ již přímo = Řešení zadané Cauchyho úlohy tedy je = + Vzhledem k tomu, že jsme získali řešení v implicitním tvaru, nelze ho dosadit do dané rovnice. Ověření správnosti řešení je v této situaci komplikované. Řešení 2c Máme řešit rovnici = +, = Pokud vydělíme čitatele i jmenovatele pravé strany dostaneme + = = + = + =+ Je zřejmé, že se jedná o diferenciální rovnici s homogenní funkcí. To je ale již v zadání vyzrazeno, můžeme tedy přímo zavést substituci Dosadíme do zadané rovnice =, =, = + 6
17 + = + = + =+ = + = =ln +, Provedeme zpětnou substituci =ln +, dostáváme obecné řešení zadané rovnice (v implicitním tvaru) =ln +, Nyní budeme řešit Cauchyho úlohu. = ln += = Řešení Cauchyho úlohy tedy je =ln + = + ln + = +ln + ln ++ =+ln + ln ++=+ln + = ln += Řešení 2d Máme řešit rovnici = 2, = Pokud vydělíme čitatele i jmenovatele pravé strany dostaneme = = 2 2 Je zřejmé, že se jedná o diferenciální rovnici s homogenní funkcí. To je ale již v zadání vyzrazeno, můžeme tedy přímo zavést substituci 7
18 Dosadíme do zadané rovnice =, =, = + + = 2 = 2 = 2 = 2 Tím se nám podařilo převést danou rovnici na separovatelný tvar. Separujeme a pokračujeme v úpravách = 2 2 = 2 = = 2 + = ln + = ln +, Obě strany použijeme jako argument exponenciální funkce a dostaneme Provedeme zpětnou substituci = = + =, =, + =, + = + = + = + = = dostáváme obecné řešení zadané rovnice (v explicitním tvaru) =, 8
19 Nyní budeme řešit Cauchyho úlohu. Dosadíme obecné řešení do počáteční podmínky = Řešení Cauchyho úlohy tedy je = = = =2 =2 = 2 = 2 2 = 2 2 = 2 = 2 = = Řešení 2e Máme řešit rovnici = +, =0 Pokud vydělíme čitatele i jmenovatele pravé strany dostaneme = + = + = + Je zřejmé, že se jedná o diferenciální rovnici s homogenní funkcí. To je ale již v zadání vyzrazeno, můžeme tedy přímo zavést substituci Dosadíme do zadané rovnice 9 =, =, = + + = = = + + +
20 = + Tím se nám podařilo převést danou rovnici na separovatelný tvar. Separujeme a pokračujeme v úpravách + = + = = = = Před integrací převedeme výraz vlevo na parciální zlomky + 2+ = + 2+ =2++ = Koeficienty u stejných mocnin neznámé musí být stejné. Dostáváme tedy soustavu rovnic +=, 2= Která má řešení Dosadíme do posledního tvaru rovnice = 2, = = + 2+ = 2 ln +ln 2+ = 2ln +, Obě strany použijeme jako argument exponenciální funkce a dostaneme = = 2+ =, =, Provedeme zpětnou substituci 2+=, 2+ = 20
21 Za předpokladu 0 můžeme zjednodušit 2+ = 2+= A to je obecné řešení zadané rovnice (v implicitním tvaru) 2+=, Nyní budeme řešit Cauchyho úlohu. Dosadíme počáteční podmínku 0= do obecného řešení 2 += 02+0= =0 Cauchyho úloha má tedy řešení 2+=0 Vzhledem k tomu, že jsme získali řešení v implicitním tvaru, nelze ho dosadit do dané rovnice. Ověření správnosti řešení je v této situaci komplikované. 2
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
VíceNyní využijeme slovník Laplaceovy transformace pro derivaci a přímé hodnoty a dostaneme běžnou algebraickou rovnici. ! 2 "
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad Nalezněte pomocí Laplaceovy transformace řešení dané Cauchyho úlohy lineární diferenciální rovnice prvního řádu s konstantními koeficienty v intervalu 0,, které vyhovuje
VícePříklad 1. Řešení 1a Máme vyšetřit lichost či sudost funkce ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 3
Příklad 1 Zjistěte, zda jsou dané funkce sudé nebo liché, případně ani sudé ani liché: a) =ln b) = c) = d) =4 +1 e) =sin cos f) =sin3+ cos+ Poznámka Všechny tyto úlohy řešíme tak, že argument funkce nahradíme
VíceAlgebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 12. a) 3 +1)d. Vypočítejte určité integrály: b) 5sin 4 ) d. c) d. g) 3 d. h) tg d. k) 4 arctg 2 ) d.
ŘEŠENÉ PŘÍKLADY Z MA ČÁST Příklad Vypočítejte určité integrály: a) +)d b) 5sin) d c) d d) d e) d f) g) d d h) tgd i) d j) d k) arctg) d l) d m) sin d n) ) d o) p) q) r) s) d d ) d d d t) +d u) d v) d ŘEŠENÉ
VíceDiferenciální rovnice separace proměnných verze 1.1
Úvod Diferenciální rovnice separace proměnných verze. Následující tet popisuje řešení diferenciálních rovnic, konkrétně metodu separace proměnných. Měl by sloužit především studentům předmětu MATEMAT na
VíceDiferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1B ČÁST 2. Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3. c) (, ) = d) (, ) =
Příklad 1 Určete a načrtněte definiční obory funkcí více proměnných: a) (, ) = b) (, ) = 3 c) (, ) = d) (, ) = e) (, ) = ln f) (, ) = 1 +1 g) (, ) = arcsin( + ) Poznámka V těchto úlohách máme nalézt největší
Vícey = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
VíceVZOROVÝ TEST PRO 1. ROČNÍK (1. A, 3. C)
VZOROVÝ TEST PRO. ROČNÍK (. A, 3. C) Zjednodušte daný příklad. (a 2 3 b 3 4) 2 (a 2 b 3 8) 3 max. 3 body 2 Ve které z následujících možností je uveden správný postup usměrnění daného zlomku a správný výsledek?
VícePraha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
Více4.1 Řešení základních typů diferenciálních rovnic 1.řádu
4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po
VíceŘešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0
Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme
VícePříklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)
Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme
Více1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
Vícekuncova/, 2x + 3 (x 2)(x + 5) = A x 2 + B Přenásobením této rovnice (x 2)(x + 5) dostaneme rovnost
. cvičení http://www.karlin.mff.cuni.cz/ kuncova/, kytaristka@gmail.com Příklady Najděte primitivní funkce k následujícím funkcím na maimální možné podmnožině reálných čísel a tuto množinu určete.. f()
VíceSoustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
VíceObyčejné diferenciální rovnice
Obyčejné diferenciální rovnice Petra Schreiberová, Petr Volný Katedra matematiky a deskriptivní geometrie, FS Katedra matematiky, FAST Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2019 OBSAH
Více4. OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE
FBI VŠB-TUO 28. března 2014 4.1. Základní pojmy Definice 4.1. Rovnice tvaru F (x, y, y, y,..., y (n) ) = 0 se nazývá obyčejná diferenciální rovnice n-tého řádu a vyjadřuje vztah mezi neznámou funkcí y
Více8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
VíceM - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
Vícearcsin x 2 dx. x dx 4 x 2 ln 2 x + 24 x ln 2 x + 9x dx.
Neurčitý integrál arcsin. Integrál najdeme integrací per partes. Pomocí této metody dostaneme arcsin = arcsin 4 = arcsin + 4 + C, (,. ln + 4 ln + 9. Tento integrál lze převést substitucí ln = y na integrál
VíceDiferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
VíceM - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceEXPONENCIÁLNÍ ROVNICE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol EXPONENCIÁLNÍ
Více. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
VíceLineární rovnice. Rovnice o jedné neznámé. Rovnice o jedné neznámé x je zápis ve tvaru L(x) = P(x), kde obě strany tvoří výrazy s jednou neznámou x.
Lineární rovnice Rovnice je zápis rovnosti mezi dvěma algebraickými výrazy, které obsahují alespoň jednu proměnnou, kterou nazýváme neznámá. Rovnice má levou stranu L a pravou stranu P. Rovnost pak zapisujeme
VíceTest M1-ZS12-2 M1-ZS12-2/1. Příklad 1 Najděte tečnu grafu funkce f x 2 x 6 3 x 2, která je kolmá na přímku p :2x y 3 0.
Test M-ZS- M-ZS-/ Příklad Najděte tečnu grafu funkce f x x 6 3 x, která je kolmá na přímku p :x y 3 0. Zřejmě D f R. Přímka p má směrnici, tečna na ní kolmá má proto směrnici. Protože směrnice tečny ke
VíceVzdělávací materiál. vytvořený v projektu OP VK CZ.1.07/1.5.00/34.0211. Anotace. Integrální počet VY_32_INOVACE_M0308. Matematika
Vzdělávací materiál vytvořený v projektu OP VK Název školy: Gymnázium, Zábřeh, náměstí Osvobození 0 Číslo projektu: Název projektu: Číslo a název klíčové aktivity: CZ..07/.5.00/3.0 Zlepšení podmínek pro
VíceLineární diferenciální rovnice 1. řádu verze 1.1
Úvod Lineární diferenciální rovnice. řádu verze. Následující tet popisuje řešení lineárních diferenciálních rovnic. řádu. Měl by sloužit především studentům předmětu MATEMAT2 na Univerzitě Hradec Králové
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší
Více1 Integrální počet. 1.1 Neurčitý integrál. 1.2 Metody výpočtů neurčitých integrálů
Integrální počet. Neurčitý integrál Neurčitým integrálem k dané funkci f() nazýváme takovou funkci F (), pro kterou platí, že f() = F (). Neboli integrálem funkce f() je taková funkce F (), ze které bychom
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceV exponenciální rovnici se proměnná vyskytuje v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto:
Eponenciální rovnice V eponenciální rovnici se proměnná vyskytuje v eponentu. Obecně bychom mohli eponenciální rovnici zapsat takto: a ( ) f ( ) f kde a > 0, b > 0 b Příkladem velmi jednoduché eponenciální
VíceLineární funkce, rovnice a nerovnice 3 Soustavy lineárních rovnic
Lineární funkce, rovnice a nerovnice Soustavy lineárních rovnic motivace Využívají se napřklad při analytickém vyšetřování vzájemné polohy dvou přímek v rovině a prostoru. Při řešení některých slovních
Více4.3.8 Vzorce pro součet goniometrických funkcí. π π. π π π π. π π. π π. Předpoklady: 4306
..8 Vzorce pro součet goniometrických funkcí Předpoklady: 06 Vzorce pro součet goniometrických funkcí: sin + sin y = sin cos sin sin y = cos sin cos + cos y = cos cos cos cos y = sin sin Na první pohled
VícePříklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6
Příklad 1 Vyšetřete průběh funkce: a) = b) = c) = d) =ln1+ e) =ln f) = Poznámka K vyšetřování průběhu funkce použijeme postup uvedený v zadání. Některé kroky nejsou již tak detailní, všechny by ale měly
VíceObecnou definici vynecháme. Jednoduše řečeno: složenou funkci dostaneme, když dosadíme za argument funkci g. Potom y f g
Složená funkce Obecnou definici vynecháme Jednoduše řečeno: složenou funkci dostaneme, když do funkce y f dosadíme za argument funkci g Potom y f g Funkce f je vnější složka, funkce g vnitřní složka Pochopitelně
VíceJednoduchá exponenciální rovnice
Jednoduchá exponenciální rovnice Z běžné rovnice se exponenciální stává, pokud obsahuje proměnnou v exponentu. Obecně bychom mohli exponenciální rovnici zapsat takto: a f(x) = b g(x), kde a, b > 0. Typickým
Více9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
VíceKOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
VíceMO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: Škola: Tematický okruh: Jméno autora: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.7/1.5./34.93 Vzdělávání pro konkurenceschopnost Hotelová škola, Vyšší odborná
Více= 0,1 1,3. je oblast ohraničená přímkami =, =, =0 :0 1, : =2, =, =1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST Příklad 1 Vypočtěte integrály a) b) c) d) e) f) g) h) i) j),, = 0,1 1,3 je oblast ohraničená přímkami =,=,=0 1+, :=0,=1,=1,= +3, :=0,=,=0,=1 sin+, 3,,,, :=0,=,= : + 4 : =4+,+3=0
VíceII. 3. Speciální integrační metody
48 II. Integrální počet funkcí jedné proměnné II.. Speciální integrační metody Integrály typu f ( x, r x, r x,..., r k x ), tj. integrály obsahující proměnnou x pod odmocninou, kde k N a r,..., r k jsou
VíceVěta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceFunkce jedné reálné proměnné. lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou
Funkce jedné reálné proměnné lineární kvadratická racionální exponenciální logaritmická s absolutní hodnotou lineární y = ax + b Průsečíky s osami: Px [-b/a; 0] Py [0; b] grafem je přímka (získá se pomocí
VíceM - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
VíceInverzní Laplaceova transformace
Inverzní Laplaceova transformace Modelování systémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 6. přednáška MSP čtvrtek 30. března
VíceObsah Obyčejné diferenciální rovnice
Obsah 1 Obyčejné diferenciální rovnice 3 1.1 Základní pojmy............................................ 3 1.2 Obyčejné diferenciální rovnice 1. řádu................................ 5 1.3 Exaktní rovnice............................................
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Číslo a proměnná Gradovaný řetězec úloh Téma: soustava rovnic, parametry Autor: Stanislav Trávníček
VíceGoniometrické rovnice
Goniometrické rovnice Funkce Existují čtyři goniometrické funkce sinus, kosinus, tangens a kotangens. Výraz číslo, ze kterého je daná funkce v obecném tvaru je to x se nazývá argument. Argument může u
Více6. dubna *********** Přednáška ***********
KMA/MAT2 Přednáška a cvičení č. 8, Obyčejné diferenciální rovnice 2 6. dubna 2016 *********** Přednáška *********** 1 Existence a jednoznačnost řešení Cauchyovy úlohy Stále uvažujeme rovnici y = f(t, y).
VícePříklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
VíceDigitální učební materiál
Digitální učební materiál Číslo projektu Z..07/..00/4.080 Název projektu Zkvalitnění výuky prostřednictvím IT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím IT
VíceMatematická analýza ve Vesmíru. Jiří Bouchala
Matematická analýza ve Vesmíru Jiří Bouchala Katedra aplikované matematiky jiri.bouchala@vsb.cz www.am.vsb.cz/bouchala - p. 1/19 typu: m x (sin x, cos x) R(x, ax +...)dx. Matematická analýza ve Vesmíru.
Více9.3. Úplná lineární rovnice s konstantními koeficienty
Úplná lineární rovnice s konstantními koeficienty Cíle Nyní přejdeme k řešení úplné lineární rovnice druhého řádu. I v tomto případě si nejprve ujasníme, v jakém tvaru můžeme očekávat řešení, poté se zaměříme
VíceM - Příprava na 2. čtvrtletku - třídy 1P, 1VK
M - Příprava na 2. čtvrtletku - třídy 1P, 1VK Souhrnný studijní materiál k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo listopadu až ledna. VARIACE 1 Tento dokument byl kompletně vytvořen,
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceŘešení 1b Máme najít body, v nichž má funkce (, ) vázané extrémy, případně vázané lokální extrémy s podmínkou (, )=0, je-li: (, )= +,
Příklad 1 Najděte body, v nichž má funkce (,) vázané extrémy, případně vázané lokální extrémy s podmínkou (,)=0, je-li: a) (,)= + 1, (,)=+ 1 lok.max.v 1 2,3 2 b) (,)=+, (,)= 1 +1 1 c) (,)=, (,)=+ 1 lok.max.v
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
VíceM - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
VíceSoustavy rovnic pro učební obor Kadeřník
Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy
VíceDefiniční obor funkce
Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R
VíceFunkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
VíceMocninná funkce: Příklad 1
Mocninná funkce: Příklad 1 Zadání: Vyšetřete průběh mocninné funkce. Řešení: 1. Jako první si určíme definiční obor: D(f)=R. 2. Nyní si spočítáme zda je daná funkce sudá nebo lichá: Daná funkce je lichá.
VíceSedmé cvičení bude vysvětlovat tuto problematiku:
Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky
Více( ) ( ) Vzorce pro dvojnásobný úhel. π z hodnot goniometrických funkcí. Předpoklady: Začneme příkladem.
Vzorce pro dvojnásobný úhel Předpoklady: 0 Začneme příkladem Př : Pomocí součtových vzorců odvoď vzorec pro sin x sin x sin x + x sin x cos x + cos x sin x sin x cos x Př : Pomocí součtových vzorců odvoď
VíceRovnice a nerovnice v podílovém tvaru
Rovnice a nerovnice v podílovém tvaru Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu
Vícediferenciální rovnice verze 1.1
Diferenciální rovnice vyšších řádů, snižování řádu diferenciální rovnice verze 1.1 1 Úvod Následující text popisuje řešení diferenciálních rovnic, konkrétně diferenciálních rovnic vyšších řádů a snižování
VíceF (x) = f(x). Je-li funkce f spojitá na intervalu I, pak existuje k funkci f primitivní funkce na intervalu I.
KAPITOLA 7: 7. Úvod Primitivní funkce [MA-6:P7.] Definice: Funkce F je primitivní funkcí k funkci f na intervalu I, jestliže pro každé I eistuje F a platí F f. Poznámky: Obsahuje-li I některý z krajních
VícePříklad 1. Řešení 1a Máme určit obsah rovinné plochy ohraničené křivkami: ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 14. a) =0, = 1, = b) =4, =0
Příklad Určete obsah rovinné plochy ohraničené křivkami: a) =0,=,= b) =4,=0 c) =,=,=3,=0 d) =+, =0 e) + )=,= f) = +4,+= g) =arcsin,=0,= h) =sin,=0, 0; i) =,=,=4,=0 j) =,= k) = 6,= +5 4 l) =4,+=5 m) = +
VíceLogaritmická rovnice
Ročník:. Logaritmická rovnice (čteme: logaritmus z x o základu a) a základ logaritmu x argument logaritmu Vzorce Použití vzorců a principy počítání s logaritmy jsou stejné jako u logaritmů základních,
Více, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
VíceMATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Více1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
VíceGONIOMETRICKÉ FUNKCE
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol GONIOMETRICKÉ
VíceSoustavy rovnic pro učební obory
Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceNerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
VíceMatematika pro všechny
Projekt OPVK - CZ.1.07/1.1.00/.007 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Závislosti a funkční vztahy Gradovaný řetězec úloh Téma: Goniometrické rovnice Autor: Ondráčková
VíceJan Kotůlek. verze 3 ze dne 25. února 2011
Integrace racionálních lomených funkcí Jan Kotůlek (kombinované studium, první soustředění) verze 3 ze dne 5. února 0 Abstrakt Tento článek je koncipován jako rozšířený zápis průběhu prvního soustředění
Více1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
VíceLogaritmické rovnice a nerovnice
Přírodovědecká fakulta Masarykovy univerzity Logaritmické rovnice a nerovnice Bakalářská práce Brno 008 Lenka Balounová Prohlašuji, že jsem tuto práci vypracovala sama a čerpala jsem pouze z materiálů
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceNeurčitý integrál. Robert Mařík. 4. března 2012
Neurčitý integrál Robert Mařík 4. března 0 V tomto souboru jsou vysvětleny a na příkladech s postupným řešením demonstrovány základní integrační metody. Ikonka za integrálem načte integrál do online aplikace
Více9.4. Rovnice se speciální pravou stranou
Cíle V řadě případů lze poměrně pracný výpočet metodou variace konstant nahradit jednodušším postupem, kterému je věnována tato kapitola. Výklad Při pozorném studiu předchozího textu pozornějšího studenta
VíceNejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceObyčejné diferenciální rovnice
1 Obyčejné diferenciální rovnice Příklad 0.1 (Motivační). Rychlost chladnutí hmotného bodu je přímo úměrná rozdílu jeho teploty minus teploty okolí. Předpokládejme teplotu bodu 30 o C v čase t = 0 a čase
VíceLineární funkce, rovnice a nerovnice 4 lineární nerovnice
Lineární funkce, rovnice a nerovnice 4 lineární nerovnice 4.1 ekvivalentní úpravy Při řešení lineárních nerovnic používáme ekvivalentní úpravy (tyto úpravy nijak neovlivní výsledek řešení). Jsou to především
VíceM - Příprava na 4. zápočtový test - třídy 1DP, 1DVK
M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento
VíceSPECIÁLNÍCH PRIMITIVNÍCH FUNKCÍ INTEGRACE RACIONÁLNÍCH FUNKCÍ
VÝPOČET PEIÁLNÍH PRIMITIVNÍH FUNKÍ Obecně nelze zadat algoritmus, který by vždy vedl k výpočtu primitivní funkce. Nicméně eistují jisté třídy funkcí, pro které eistuje algoritmus, který vždy vede k výpočtu
VíceŘešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
VíceKonvexnost, konkávnost
20. srpna 2007 1. f = x 3 12x 2. f = x 2 e x 3. f = x ln x Příklad 1. Určete intervaly, na kterých je funkce konvexní a konkávní a určete inflexní body f = x 3 12x Příklad 1. f = x 3 12x Řešení: Df = R
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 8 Ing. Petra Schreiberová, Ph.D. Ostrava 01 Ing. Petra Schreiberová, Ph.D. Vysoká škola báňská Technická
VíceKapitola 11: Lineární diferenciální rovnice 1/15
Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +
Více( ) ( ) ( ) ( ) Logaritmické rovnice III. Předpoklady: Př. 1: Vyřeš rovnici. Podmínky: Vnitřky logaritmů: x > 0.
.9. Logaritmické rovnice III Předpoklad: 90 Př. : Vřeš rovnici log log. + log + log Podmínk: Vnitřk logaritmů: > 0. Zlomk: + log 0 log 0,00 + log 0 log 0,00 00 Problém: Jednotlivé stran nemůžeme upravit
VíceFunkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Více