MATEMATICKÁ STATISTIKA

Rozměr: px
Začít zobrazení ze stránky:

Download "MATEMATICKÁ STATISTIKA"

Transkript

1 MATEMATICKÁ STATISTIKA 1. Úvod. Matematická statistika se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného procesu, se snažíme popsat zákonitosti skrytého náhodného procesu. K tomu používáme počtu pravděpodobnosti, který obsahuje algoritmy, pomocí nichž lze rozdělení pravděpodobnosti nalézt. Připomeňme si proto základní pojmy a skutečnosti, které budeme v dalším textu používat. Náhodná veličina je funkce, která přiřazuje náhodným jevům reálné (komplexní) hodnoty. Budeme ji označovat velkými písmeny, např. X, Y, U, Z, X i. Rozdělení pravděpodobnosti charakterizujeme pomocí reálné funkce reálné proměnné, kterou nazýváme distribuční funkcí. Je-li X náhodná veličina, pak její distribuční funkcí nazýváme funkci F : R R definovanou předpisem Typy rozdělení náhodné veličiny. F (x) = P (X x), x R. 1. Diskrétní rozdělení: Náhodná veličina má diskrétní rozdělení, jestliže nabývá pouze disktrétních hodnot. Těchto hodnot je buď konečný počet nebo nejvýše spočetně mnoho. Tvoří tedy posloupnost. Náhodná veličina je plně charakterizována pravděpodobnostmi výskytu těchto hodnot, které nazýváme pravděpodobnostní funkcí náhodné veličiny. Je-li X náhodná veličina, pak funkci p : R R definovanou předpisem p(x) = P (X = x), x R, nazýváme pravděpodobnostní funkcí náhodné veličiny X. Je pak p(x) = 1, p(x) 0 a F (x) = p(t), x R. Dále je x R t x P (X A) = p(x). x A. Spojité rozdělení: Náhodná veličina X má spojité rozdělení, jestliže je její distribuční funkce F spojitá a pro ní a její derivaci f platí, že F (x) = x f(t)dt, x R a F (x) = f(x) všude, kde derivace existuje. (Tzv. absolutní spojitost.) Funkce f(x) = F (x) se nazývá hustotou rozdělení pravděpodobnosti náhodné veličiny X. Je f(x) 0, x R a f(x)dx = 1. Dále je P (X A) = f(x)dx. A 3. Smíšené rozdělení: Náhodná veličina má smíšené rozdělení, jestliže je její distribuční funkce nespojitá a v intervalech spojitosti je primitivní funkcí své derivace. Připomeňme, že skoky odpovídají kladné pravděpodobnosti výskytu jednotlivých hodnot a že jich může být nejvýše spočetně mnoho. Je-li X náhodná veličina, která má smíšené rozdělení, pak pro její distribuční funkci F platí: F (x) = x [F (t) F (t )] + F (t)dt, x R. t x 3

2 Potom je P (X = x) = F (x) F (x ), x R a P (X A) = [F (x) F (x )] + A F (x)dx. x A Číselné charakteristiky a charakteristická funkce. Pro chování náhodné veličiny mají v řadě případů význam některé číselné charakteristiky, které často souvisí s hodnotami parametrů, které se v popisu hustoty či pravděpodobnostní funkce vyskytují. Uveďme základní z nich a současně připomeneme jejich názvy a značení. Je-li X náhodná veličina, která je popsána hustotou f, resp. pravděpodobnostní funkcí p, či obecně distribuční funkcí F, pak pro ni definujeme: Střední hodnotu E(X) = µ 1(X) = µ 1, předpisem E(X) = xf(x)dx, resp. E(X) = xp(x), x R obecně tedy E(X) = [F (x) F (x )] + xf (x)dx. x R Rozptyl D(X) = µ (X) = µ, předpisem D(X) = E[(X E(X)) ] = E(X ) [E(X)]. Směrodatnou odchylku (X) = = D(X). k tý obecný moment µ k(x) = µ k = E(X k ), k = 0, 1,.... k tý centrální moment µ k (X) = µ k = E[(X E(X)) k ], k = 0, 1,.... Je tedy µ 0 = µ 0 = 1, µ 1 = 0, µ 1 = E(X), µ = D(X) a k µ k = ( 1) i µ k i (µ 1) i. i=0 Koeficient šikmosti (X) = = µ 3(X) ((X)). 3 Koeficient špičatosti ε(x) = ε = µ 4(X) ((X)) 3. 4 Je-li X náhodná veličina, pak pro reálnou hodnotu proměnné t definujeme náhodnou veličinu e jtx předpisem: X = x e jtx = e jtx = cos tx + j sin tx, t R. Střední hodnota této náhodné veličiny je funkcí proměnné t R a nazýváme jí charakteristickou funkcí náhodné veličiny X. Označujeme ji symbolem ψ X (t) = E(e jtx ), t R. Pro charakteristickou funkci platí, že má tolik derivací v bodě t = 0, kolik má náhodná veličina momentů a ψ (k) X (0) = j k µ k(x) = j k E(X k ), k = 0, 1,.... 4

3 Jestliže má náhodná veličina X momenty do určitého řádu, pak můžeme napsat Taylorův polynom charakteristické funkce. Jestliže použijeme proměnné (jt) místo t dostaneme ψ X (t) =. n µ i 1 + i! (jt)i. Potom funkce φ X (t) = ln ψ X (t) má také derivace v bodě t = 0 a jestliže označíme její Taylorův rozvoj v bodě t = 0 φ X (t) =. n k i i! (jt)i, pak koeficienty k i nazýváme kumulanty a platí pro ně: k 1 = µ 1 = E(X). k = µ (µ 1) = µ = D(X). k 3 = µ 3 3µ 1µ + (µ 1) 3 = µ 3. k 4 = µ 4 3(µ ) 4µ 1µ 3 + 1(µ 1) µ 6(µ 1) 4 = µ 4 3µ. Dále je = k 3 k 3/, ε = k 4. k Kvantily jsou další z číselných charakteristik, které používáme k popisu rozdělení náhodné veličiny. Uveďme nejprve jeho definici v nejjednodušším případě, který se nám nejčastěji v aplikacích vyskytuje. Je-li X náhodná veličina, která má spojité rozdělení a nabývá hodnot z intervalu (a, b) taková, že je její distribuční funkce F rostoucí v intervalu (a, b), pak pro číslo 0 < p < 1 je její p kvantil, či 100p% kvantil x p definován vztahem P (X x p ) = p F (x p ) = p x p = F 1 (p). V obecném případě je kvantil definován vztahem F (x p +) = F (x p ) p, F (x p ) p. Poznamenejme, že pro diskrétní rozdělení a pro spojitá rozdělení, která nemají rostoucí distribuční funkci není kvantil určen jednoznačně. Obvykle v tomto případě uvažujeme jako jeho hodnotu největší z hodnot, které splňují požadovanou podmínku. Některé z kvantilů mají výsadní postavení. Mají zvláštní názvy a jejich hodnoty bývají pro řadu rozdělení tabelovány. Nazýváme: x = x 0,5 -kvantil jako medián; x 0,5 -kvantil jako dolní kvartil; x 0,75 -kvantil jako horní kvartil. Používáme ješte kvantily x 0,1 a x 0,9 při ořezávání souborů a kvantily x 0,95, x 0,975 a x 0,99 při testování hypotéz. Modus ˆx je další číselnou charakteristikou, pomocí níž popisujememchování náhodné veličiny. Je definován tak, že je to hodnota, pro kterou je hustota či pravděpodobnodtní funkce největší. Odpovídá tedy hodnotě, které nabývá náhodná veličina nejčastěji. 5

4 Některá důležitá rozdělení Diskrétní rozdělení 1. Alternativní rozdělení A(p) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot 0 a 1 a pro její pravděpodobnostní funkci platí: p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.. Binomické rozdělení Bi(n,p) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k = 0, 1,,..., n, s pravděpodobnostmi p(k) = P (X = k) = ( n k ) p k (1 p) n k, k = 0, 1,,..., n, 0 < p < 1. Je pak E(X) = np a D(X) = np(1 p). Pro n 30 a p 0, 1 je možné binomické rozdělení Bi(n, p) nahradit Poissonovým rozdělením s parametrem λ = np. Jestliže mají náhodné veličiny X i, 1 i n rozdělení A(p) a jsou nezávislé, má pak výběrový úhrn X = n binomické rozdělení Bi(n, p). X i 3. Poissonovo rozdělení Po(λ) je diskrétní rozdělení, kdy náhodná veličina X nabývá hodnot k = 0, 1,,... s pravděpodobnostmi p(k) = P (X = k) = λk k! e λ, k = 0, 1,,..., λ > 0. Jestliže mají náhodné veličiny X i, 1 i n Poissonovo rozdělení P o(λ) a jsou nezávislé, má pak výběrový úhrn X = n X i Poissonovo rozdělení P o(nλ). Pro tuto vlastnost se Poissonovo rozdělení vyskytuje v problémech z hromadné obsluhy, kde doby mezi příchody zákazníků mají Poissonovo rozdělení Spojitá rozdělení 4. Rovnoměrné rozdělení v intervalu (a, b) je rozdělení určené hustotou f s distribuční funkci F, kde f(x) = 1 b a, a < x < b, 0, jinde. F (x) = 0, x < a, x a b a, a x b, 1, x > b. Toto rozdělení má náhodná veličina X, která nabývá hodnot z intervalu (a, b) a všechny hodnoty mají stejnou pravděpodobnost výskytu. Bývá také charakterizováno svou střední hodnotou E(X) = µ = 1(a+b) a hodnotou h = 1 (b a). Je pak a = µ h, b = µ+h, h > 0. Rozptyl této náhodné veličiny je roven D(X) = 1 3 h. Pro kvantily x p tohoto rozdělení dostaneme F (x p ) = 1 h (x µ + h) = p x p = µ + (p 1)h. Je tedy x = x 0,5 = E(X) = µ a x 1 p + x p = µ. 6

5 Na obrázku Obr. 4a je znázorněn průběh distribuční funkce F spojitého rovnoměrného rozdělení v intervalu (0, 1) a na obrázku Obr. 4b je průběh hustoty f tohoto rozdělení. y 1 F (x) 0 1 x 0 1 x Obr. 4a Obr 4b 5. Normální (Gaussovo) rozdělení Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou y 1 ( ) f(x) = 1 (x µ) π e, x (, ). Rozdělení N(0; 1) s parametry µ = 0 a = 1 se nazývá normované normální rozdělení. V dalším textu budeme náhodnou veličinu, která má rozdělení N(0; 1) obvykle označovat písmenem U. Její hustota je pak ( ) ϕ(x) = 1 π e x, x (, ). Distribuční funkci rozdělení N(0; 1), která je definovaná vztahem f(x) ( ) Φ(x) = 1 π x e t dt budeme vždy označovat symbolem Φ. Graf hustoty ϕ normovaného normálního rozdělení N(0; 1) znázorníme na obrázku Obr. 5.1 a graf distribuční funkce Φ je znázorněn na obrázku Obr π 1 ϕ(x) Φ(x) x x Obr Obr. 5.. Poznámka: Normované normální rozdělení N(0; 1) je symetrické, ϕ(x) = ϕ( x). Je tedy E(X) = 0 a dále je D(X) = 1. Odtud plyne, že pro distribuční funkci Φ platí: Φ(x) + Φ( x) = 1 Φ( x) = 1 Φ(x) a Φ(0) = 0, 5. Obecné normální rozdělení N(µ; ) je posunuté o hodnotu µ, je tedy symetrické vzhledem k této hodnotě. Je tedy E(X) = µ a dále je D(X) =. Směrodatná odchylka (X) =. 7

6 Rozdělení je koncentrováno ke střední hodnotě. I když nabývá náhodná veličina s tímto rozdělením teoreticky všech reálných hodnot je P ( X µ < 3) = 0, 999 a P ( X µ < 3, 5) = 0, Poznámka: Normální rozdělení si zachovává svůj charakter při lineární transformaci. Platí totiž následující tvrzení. 5.. Věta: Jestliže má náhodná veličina X rozdělení N(µ, ), má pak náhodná veličina Y = X + β rozdělení N(µ + β, ). Speciálně platí, že náhodná veličina U = X µ má normované normální rozdělení N(0, 1). Důkaz: Je-li X náhodná veličina, která má rozdělení N(µ, ) a je-li f její hustota a F je její distribuční funkce, pak pro hustotu g a distribuční funkci G náhodné veličiny Y platí: G(y) = P (Y y) = P (X + β y) = P (X y β) = P (X y β = ) = F ( y β ) > 0 P (X y β ) = 1 F ( y β ), < 0. Potom pro hustotu g rozdělení náhodné veličiny Y dostaneme: g(y) = G (y) = = d dy d dy 1 π e ( F ( y β )) = 1 ( f(y β 1 F ( y β ( y β µ) = ) )) = 1 f(y β ) 1 (y (µ+β)) π e (). To je ovšem hustota normálního rozdělení N(µ + β; () ). = 1 f(y β ) = Jestliže zvolíme = 1 a β = µ dostaneme µ + β = 0 a = 1. Náhodná veličina U má tudíž normované normální rozdělení N(0; 1). Poznámka: Transformace na normované rozdělení. Jestliže má náhodná veličina X normální rozdělení N(µ; ), pak má náhodná veličina U = X µ X = U + µ normované normální rozdělení N(0; 1). Pro její distribuční funkci F a hustotu f platí: ( ) x µ F (x) = Φ Je tedy F (u+µ) = Φ(u) a f(x) = 1 ( ) x µ ϕ f(u+µ) = ϕ(u). ( ) ( ) b µ a µ P (a < X < b) = F (b) F (a) = Φ Φ, 8

7 kde hodnoty funkce Φ odečteme z tabulek hodnot distribuční funkce Φ Kvantily normálního rozdělení. Pro kvantily u p normovaného normálního rozdělení N(0; 1) platí, že: Φ(u p ) = p, 0 < p < 1 u p = Φ 1 (p) a jejich hodnoty nalezneme v tabulkách kvantilů. Všimneme si, že platí: Pro kvantily x p Odtud plyne, že u 0,5 = 0 a u 1 p = u p. obecného normálního rozdělení N(µ; ) platí: ( ) xp µ F (x p ) = p Φ = p x p µ x = x 0,5 = ˆx = E(X) = µ. = u p x p = u p + µ. Význam kvantilů si znázorníme na obrázku hustoty ϕ a distribuční funkce Φ normovaného normálního rozdělení. Obsah obrazce vyznačeného šrafováním je roven p. 1 π 1 ϕ(x) p Φ(x) 0, u p 3 x u p 3 x Obr Obr Intervaly spolehlivosti. Ve statistice se setkáváme s úlohou, kdy potřebujeme k dané pravděpodobnosti určit interval, ve kterém se hodnota náhodné veličiny vyskytuje. Vyřešíme tuto úlohu pro normované normální rozdělení. Pro jiná rozdělení se princip řešení zachová, jenom hraniční hodnoty hledaného intervalu se určí z kvantilů odpovídajícího rozdělení Příklad: K danému číslu, 0 < < 1, určete interval tak, aby pro náhodnou veličinu U, která má normované normální rozdělení N(0; 1) platilo: a) ( ) P ( U < a) = 1 ; b) ( ) P (U < a) = 1 ; c) ( ) P (U > a) = 1. Řešení: a) Z podmínky vyplývá 1 = P ( a < U < a) = Φ(a) Φ( a) = Φ(a) (1 Φ(a)) = Φ(a) 1 Φ(a) = 1. Odtud plyne, že a = u 1 kvantil. Je tedy a < U < a u 1 < U < u 1. Viz obr b) Obdobně jako v a) dostaneme 1 = P (U < a) = Φ(a) a = u 1. Je tedy 9

8 U < a U < u 1. Viz obr c) Z podmínky pro interval plyne 1 = P (U > a) = 1 Φ(a) Φ(a) = a = u. Je tedy U > a U > u. Viz obr Poznámka: Číslo volíme malé, obvykle 0 < 0, 1 a číslo 1 se nazývá koeficient spolehlivosti (konfidenční koeficient). Získaný interval nazýváme 100(1 ) procentním intervalem spolehlivosti. Interval ( ) je oboustranný interval, intervaly ( ) a ( ) jsou jednostranné.první je pravostranný a druhý levostranný. Jsou to intervaly, ve kterých se hodnota náhodné veličiny bude vyskytovat s pravděpodobností (1 ), tedy ve 100(1 )% případech. 1 π ϕ(x) 1 π ϕ(x) x x u1 u1 u 1 1 π Obr Obr ϕ(x) 3 u x 1 Obr Sčítání náhodných veličin. Důležitou vlastnost má normální rozdělení při sčítaní náhodných veličin. Pro nezávislé náhodné veličiny platí, že i po sčítaní mají normální rozdělení. Tvrzení se odvodí pomocí charakteristické funkce. Uvedeme tuto vlastnost ve formě věty Věta: Jsou-li X, resp. Y nezávislé náhodné veličiny s normálními rozděleními N(µ 1, 1), resp. N(µ, ), pak má náhodná veličina X + Y normální rozdělení s parametry N(µ 1 + µ, 1 + ) Náhodný výběr. Ve statistice zpracováváme data, která jsou souborem výsledků náhodného pokusu. Jeho náhodnost se projeví v tom, že při jeho opakování se objeví různé výsledky. Je-li charakter náhody popsát tím, že výsledky náhodného pokusu odpovídají hodnotám náhodné veličiny s daným rozdělením, pak soubor dat je realizací uspořádané n tice náhodných veličin {X 1, X,..., X n }. Všechny náhodné veličiny mají shodné rozdělení a jsou na sobě nezávislé. Takovou uspořádanou n tici náhodných veličin nazýváme prostým náhodným výběrem z daného rozdělení. Z vět 8.6 a 8. vyplývá toto tvrzení. 10

9 5.9. Věta: Jestliže mají nezávislé náhodné veličiny X i, 1 i n normální rozdělení N(µ, ) (náhodný výběr z normálního rozdělení), má pak výběrový úhrn X = n X i normální rozdělení N(nµ, n ) a výběrový průměr X = 1 n n X i normální rozdělení N(µ, n ). Poznámka: O náhodné veličině, která je funkcí náhodného výběru mluvíme jako o statistice. Častou úlohou je nalezení vhodné statistiky, z jejíchž hodnot můžeme odvodit vlastnosti sledovaného rozdělení. Z vlastností normálního rozdělení vidíme, že statistika X, výběrový průměr je dobrým odhadem střední hodnoty µ, neboť při dostatečně rozsáhlém výběru, velké hodnotě n, se bude hodnota X jen velmi málo lišit od střední hodnoty µ. 6. Exponenciální rozdělení Ex(A, δ) je rozdělení náhodné veličiny s hustotou f a distribuční funkcí F, kde 0, x < A, f(x) = x A 1 e δ, x A; δ 0, x A, F (x) = 1 e x A δ, x A, kde A R a δ > 0. Je pak E(X) = A + δ a D(X) = δ. Pro kvantily dostaneme vyjádření x p = A δ ln (1 p). Je-li A = 0, pak rozdělení označujeme symbolem Ex(δ) a je to rozdělení, které se objevuje v úlohách kde sledujeme spolehlivost práce zařízení v čase. Je to tzv. rozdělení bez paměti. Je totiž P (X a + b X a) = P (X b), a, b > 0. Poznamenejme, že má-li náhodná veličina X exponenciální rozdělení Exp(A; δ), pak má náhodná veličina X A rozdělení Exp(0; δ) a náhodná veličina Y = X A má rozdělení δ Exp(0; 1), kterému se někdy říká normované exponenciální rozdělení. 7. Rozdělení chí kvadrát χ (n) o n stupních volnosti je rozdělení, které má náhodná veličina X = n Ui, kde U i, 1 i n jsou nezávislé náhodné veličiny s normovaným normálním rozdělením N(0, 1). Pro toto rozdělení je E(X) = n a D(X) = n. Hustota f tohoto rozdělení je dána předpisem 0, x 0, f(x) = 1 x n n Γ( n ) 1 e x, x > 0. Rozdělení je výrazně asymetrické, kvantily jsou kladné a jsou tabelovány. Až pro výrazně veliké hodnoty parametru n je možné toto rozdělení nahradit rozdělením normálním N(n, n). Pro velké hodnoty n má náhodná veličina U = X n n přibližně normované normální rozdělení N(0, 1). Pro kvantily pak platí přibližný vzorec x p. = n + up n. 11

10 Průběh hustoty rozdělení pravděpodobnosti je pro hodnoty parametru n = 3, 5 znázorněn na obrázku Obr n > 30 y n = 3 n < 5 n = x x Obr.8.1. Obr Studentovo rozdělení (t- rozdělení) t(n) o n stupních volnosti má náhodná veličina T = U n Z, kde náhodná veličina U má normované normální rozdělení N(0, 1) a náhodná veličina Z má rozdělení χ (n). Rozdělení je symetrické vzhledem k počátku, je E(T ) = 0, D(T ) = n, n > a pro hodnoty n > 30 jej nahrazujeme normovanýn normálním n rozdělením N(0, 1). Pro kvantily platí t p = t 1 p. Hustota f Studentova rozdělení je dána vzorcem f(x) = Γ( n+1 ) Γ( n ) πn ( 1 + x n ) n+1, x R. Průběh hustoty pro některé hodnoty stupňů volnosti je znázorněn na obrázku Fischerovo-Snedecorovo rozdělení (F rozdělení) F m,n o m a n stupních volnosti má náhodná veličina F = Xn Y m, kde náhodná veličina X má rozdělení χ (m) a náhodná veličina Y má rozdělení χ (n). Náhodná veličina F nabývá pouze kladných hodnot a je E(F ) = n n, n > a D(F ) = n (n + m ), n > 4. Hustota f náhodné veličiny F je dána vzorcem m(n ) (n 4) f(x) = ( ) m 1 m B( m, n) n ( x m m ) m+n n x, x > 0. Poznamenejme, že pokud má náhodná veličina F rozdělení F (m, n), pak má náhodná veličina 1 rozdělení F (n, m). Tato skutečnost plyne bezprostředně, z definice F rozdělení F a jejím důsledkem je následující vlastnost kvantilů: Pro kvantily F p (m, n) rozdělení F (m, n) platí, že F p (m, n) = 1 F 1 p (n, m), 0 < p < 1. 1

11 p kvantil F p náhodné veličiny s rozdělením F (m, n) je totiž určen podmínkou Odtud plyne, že P (F (m, n) F p ) = p P P P ( ) Xn Y m F p = p. ( 1 Y m ) ( Y m = 1 P F p Xn Xn 1 ) = p F p ( Y m Xn 1 ) ) = P (F (n, m) 1Fp = 1 p, F p což je podmínka pro 1 pkvantil náhodné veličiny s rozdělením F (n, m). Je tedy F 1 p (n, m) = 1. F p(m,n) Pro modus ˆx náhodné veličiny s rozdělením F (m, n) platí vyjádření n(m ) ˆx = m(n + ), m >. Poznámka. Funkce Γ a B jsou tzv. Eulerovy funkce a je: Γ(z) = Je dále Γ(n + 1) = n!. 0 x z 1 e x dx pro z > 0. a B(p, q) = Γ(p)Γ(q) Γ(p + q). B(p, q) = 1 0 x p 1 (1 x) q 1 dx, p > 0, q > 0 13

8. Normální rozdělení

8. Normální rozdělení 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, 2 ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) 2 e 2 2, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá

Více

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak. 8. Normální rozdělení 8.. Definice: Normální (Gaussovo) rozdělení N(µ, ) s parametry µ a > 0 je rozdělení určené hustotou ( ) f(x) = (x µ) e, x (, ). Rozdělení N(0; ) s parametry µ = 0 a = se nazývá normované

Více

MATEMATICKÁ STATISTIKA - XP01MST

MATEMATICKÁ STATISTIKA - XP01MST MATEMATICKÁ STATISTIKA - XP01MST 1. Úvod. Matematická statistika (statistics) se zabývá vyšetřováním zákonitostí, které v sobě obsahují prvek náhody. Zpracováním hodnot, které jsou výstupem sledovaného

Více

I. D i s k r é t n í r o z d ě l e n í

I. D i s k r é t n í r o z d ě l e n í 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

p(x) = P (X = x), x R,

p(x) = P (X = x), x R, 6. T y p y r o z d ě l e n í Poznámka: V odst. 5.5-5.10 jsme uvedli příklady náhodných veličin a jejich distribučních funkcí. Poznali jsme, že se od sebe liší svým typem. V příkladech 5.5, 5.6 a 5.8 jsme

Více

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1.

1. Alternativní rozdělení A(p) (Bernoulli) je diskrétní rozdělení, kdy. p(0) = P (X = 0) = 1 p, p(1) = P (X = 1) = p, 0 < p < 1. 2. Některá důležitá rozdělení Diskrétní rozdělení. Alternativní rozdělení Ap) Bernoulli) je diskrétní rozdělení, kdy náhodná veličina X nabývá pouze dvou hodnot a a pro její pravděpodobnostní funkci platí:

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n y Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota y závisí nějakým způsobem na vstupní, je její funkcí y = f(x).

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní

X = x, y = h(x) Y = y. hodnotám x a jedné hodnotě y. Dostaneme tabulku hodnot pravděpodobnostní ..08 8cv7.tex 7. cvičení - transformace náhodné veličiny Definice pojmů a základní vzorce Je-li X náhodná veličina a h : R R je měřitelná funkce, pak náhodnou veličinu Y, která je definovaná vztahem X

Více

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y

9. T r a n s f o r m a c e n á h o d n é v e l i č i n y 9. T r a n s f o r m a c e n á h o d n é v e l i č i n Při popisu procesů zpracováváme vstupní údaj, hodnotu x tak, že výstupní hodnota závisí nějakým způsobem na vstupní, je její funkcí = f(x). Pokud

Více

Výběrové charakteristiky a jejich rozdělení

Výběrové charakteristiky a jejich rozdělení Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistické šetření úplné (vyčerpávající) neúplné (výběrové) U výběrového šetření se snažíme o to, aby výběrový

Více

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D. Střední hodnota a rozptyl náhodné veličiny, vybraná rozdělení diskrétních a spojitých náhodných veličin, pojem kvantilu Ing. Michael Rost, Ph.D. Príklad Předpokládejme že máme náhodnou veličinu X která

Více

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) =

E(X) = np D(X) = np(1 p) 1 2p np(1 p) (n + 1)p 1 ˆx (n + 1)p. A 3 (X) = Základní rozdělení pravděpodobnosti Diskrétní rozdělení pravděpodobnosti. Pojem Náhodná veličina s Binomickým rozdělením Bi(n, p), kde n je přirozené číslo, p je reálné číslo, < p < má pravděpodobnostní

Více

Charakterizace rozdělení

Charakterizace rozdělení Charakterizace rozdělení Momenty f(x) f(x) f(x) μ >μ 1 σ 1 σ >σ 1 g 1 g σ μ 1 μ x μ x x N K MK = x f( x) dx 1 M K = x N CK = ( x M ) f( x) dx ( xi M 1 C = 1 K 1) N i= 1 K i K N i= 1 K μ = E ( X ) = xf

Více

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN Rovnoměrné rozdělení R(a,b) rozdělení s konstantní hustotou pravděpodobnosti v intervalu (a,b) f( x) distribuční funkce 0 x a F( x) a x b b a 1 x b b 1 a x a a x b

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Výsledky některých náhodných pokusů jsou přímo vyjádřeny číselně (např. při hodu kostkou padne 6). Náhodnou veličinou

Více

Pravděpodobnost a statistika I KMA/K413

Pravděpodobnost a statistika I KMA/K413 Pravděpodobnost a statistika I KMA/K413 Konzultace 3 Přírodovědecká fakulta Katedra matematiky jiri.cihlar@ujep.cz Kovariance, momenty Definice kovariance: Kovariance náhodných veličin Dále můžeme dokázat:,

Více

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení

Přednáška. Další rozdělení SNP. Limitní věty. Speciální typy rozdělení. Další rozdělení SNP Limitní věty Speciální typy rozdělení VI Přednáška Další rozdělení SNP Limitní věty Speciální typy rozdělení Rovnoměrné rozdělení R(a,b) Příklad Obejít celý areál trvá strážnému 30 minut. Jaká je pravděpodobnost, že u vrátnice budete čekat

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která Náhodná veličina a její charakteristiky Náhodná veličina a její charakteristiky Představte si, že provádíte náhodný pokus, jehož výsledek jste schopni ohodnotit nějakým číslem. Před provedením pokusu jeho

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}. 5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.

Více

Vybraná rozdělení náhodné veličiny

Vybraná rozdělení náhodné veličiny 3.3 Vybraná rozdělení náhodné veličiny 0,16 0,14 0,12 0,1 0,08 0,06 0,04 0,02 0 Rozdělení Z 3 4 5 6 7 8 9 10 11 12 13 14 15 Život je umění vytvářet uspokojivé závěry na základě nedostatečných předpokladů.

Více

10. N á h o d n ý v e k t o r

10. N á h o d n ý v e k t o r 10. N á h o d n ý v e k t o r 10.1. Definice: Náhodný vektor. Uspořádanou n tici (X 1, X 2,..., X n ) náhodných veličin X i, 1 i n, nazýváme náhodným vektorem. Poznámka: Pro jednoduchost budeme zavádět

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2017/2018 Tutoriál č. 2:, náhodný vektor Jan Kracík jan.kracik@vsb.cz náhodná veličina rozdělení pravděpodobnosti náhodné

Více

15. T e s t o v á n í h y p o t é z

15. T e s t o v á n í h y p o t é z 15. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Normální rozložení a odvozená rozložení

Normální rozložení a odvozená rozložení I Normální rozložení a odvozená rozložení I.I Normální rozložení Data, se kterými pracujeme, pocházejí z různých rozložení. Mohou být vychýlena (doleva popř. doprava, nebo v nich není na první pohled vidět

Více

Poznámky k předmětu Aplikovaná statistika, 5.téma

Poznámky k předmětu Aplikovaná statistika, 5.téma Poznámky k předmětu Aplikovaná statistika, 5.téma 5. Některá významná rozdělení A. Diskrétní rozdělení (i) Diskrétní rovnoměrné rozdělení na množině {,..., n} Náhodná veličina X, která má diskrétní rovnoměrné

Více

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc.

Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Náhodné veličiny III Mgr. Rudolf Blažek, Ph.D. prof. RNDr. Roman Kotecký Dr.Sc. Katedra teoretické informatiky Fakulta informačních technologií České vysoké učení technické v Praze c Rudolf Blažek, Roman

Více

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod.

P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. P13: Statistické postupy vyhodnocování únavových zkoušek, aplikace normálního, Weibullova rozdělení, apod. Matematický přístup k výsledkům únavových zkoušek Náhodnost výsledků únavových zkoušek. Únavové

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více

Náhodná veličina a rozdělení pravděpodobnosti

Náhodná veličina a rozdělení pravděpodobnosti 3.2 Náhodná veličina a rozdělení pravděpodobnosti Bůh hraje se světem hru v kostky. Jsou to ale falešné kostky. Naším hlavním úkolem je zjistit, podle jakých pravidel byly označeny, a pak toho využít pro

Více

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin

z Matematické statistiky 1 1 Konvergence posloupnosti náhodných veličin Příklady k procvičení z Matematické statistiky Poslední úprava. listopadu 207. Konvergence posloupnosti náhodných veličin. Necht X, X 2... jsou nezávislé veličiny s rovnoměrným rozdělením na [0, ]. Definujme

Více

Praktická statistika. Petr Ponížil Eva Kutálková

Praktická statistika. Petr Ponížil Eva Kutálková Praktická statistika Petr Ponížil Eva Kutálková Zápis výsledků měření Předpokládejme, že známe hodnotu napětí U = 238,9 V i její chybu 3,3 V. Hodnotu veličiny zapíšeme na tolik míst, aby až poslední bylo

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost, náhodná veličina a způsoby jejího popisu Ing. Michael Rost, Ph.D. Podmíněná pravděpodobnost Pokud je jev A vázán na uskutečnění jevu B, pak tento jev nazýváme jevem podmíněným

Více

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B.

správně - A, jeden celý příklad správně - B, jinak - C. Pro postup k ústní části zkoušky je potřeba dosáhnout stupně A nebo B. Zkouška z předmětu KMA/PST. Anotace předmětu Náhodné jevy, pravděpodobnost, podmíněná pravděpodobnost. Nezávislé náhodné jevy. Náhodná veličina, distribuční funkce. Diskrétní a absolutně spojitá náhodná

Více

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP IV Přednáška Diskrétní náhodná proměnná Charakteristiky DNP Základní rozdělení DNP Diskrétní náhodná veličina Funkce definovaná na Ω, přiřazující každému elementárnímu jevu E prvky X(E) D R kde D je posloupnost

Více

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost Pravděpodobnost Náhodné veličiny a jejich číselné charakteristiky Petr Liška Masarykova univerzita 19.9.2014 Představme si, že provádíme pokus, jehož výsledek dokážeme ohodnotit číslem. Před provedením

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 4. Teoretická rozdělení Mgr. David Fiedor 9. března 2015 Osnova Úvod 1 Úvod 2 3 4 5 Vybraná rozdělení náhodných proměnných normální rozdělení normované normální rozdělení

Více

NÁHODNÁ VELIČINA. 3. cvičení

NÁHODNÁ VELIČINA. 3. cvičení NÁHODNÁ VELIČINA 3. cvičení Náhodná veličina Náhodná veličina funkce, která každému výsledku náhodného pokusu přiřadí reálné číslo. Je to matematický model popisující více či méně dobře realitu, který

Více

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně 7 Náhodný vektor Nezávislost náhodných veličin Definice 7 Nechť je dán pravděpodobnostní prostor (Ω, A, P) Zobrazení X : Ω R n, které je A-měřitelné, se nazývá (n-rozměrný) náhodný vektor Měřitelností

Více

5. B o d o v é o d h a d y p a r a m e t r ů

5. B o d o v é o d h a d y p a r a m e t r ů 5. B o d o v é o d h a d y p a r a m e t r ů Na základě hodnot náhodného výběru z rozdělení určitého typu odhadujeme parametry tohoto rozdělení, tak aby co nejlépe odpovídaly hodnotám výběru. Formulujme

Více

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení

SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI. 7. cvičení SPOJITÉ ROZDĚLENÍ PRAVDĚPODOBNOSTI 7. cvičení Intenzita poruch Funkce modelující dobu do výskytu události životnost, dobu do poruchy, dobu do relapsu (návratu onemocnění), apod. používáme spolu s distribuční

Více

Interpolace, ortogonální polynomy, Gaussova kvadratura

Interpolace, ortogonální polynomy, Gaussova kvadratura Interpolace, ortogonální polynomy, Gaussova kvadratura Petr Tichý 20. listopadu 2013 1 Úloha Lagrangeovy interpolace Dán omezený uzavřený interval [a, b] a v něm n + 1 různých bodů x 0, x 1,..., x n. Nechť

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC Přednáška 03 Přírodovědecká fakulta Katedra matematiky KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC jiri.cihlar@ujep.cz Diskrétní rozdělení Důležitá diskrétní rozdělení pravděpodobnosti

Více

Deskriptivní statistické metody II. Míry polohy Míry variability

Deskriptivní statistické metody II. Míry polohy Míry variability Deskriptivní statistické metody II. Míry polohy Míry variability Jana Vránová, 3.lékařská fakulta UK, Praha Náhodný výběr všechny prvky výběru {x i }, i = 1, 2,, n, se chápou jako náhodné veličiny, které

Více

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D.

Úvod do teorie odhadu. Ing. Michael Rost, Ph.D. Úvod do teorie odhadu Ing. Michael Rost, Ph.D. Náhodný výběr Náhodným výběrem ze základního souboru populace, která je popsána prostřednictvím hustoty pravděpodobnosti f(x, θ), budeme nazývat posloupnost

Více

5. T e s t o v á n í h y p o t é z

5. T e s t o v á n í h y p o t é z 5. T e s t o v á n í h y p o t é z Na základě hodnot náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Rozeznáváme dva základní typy testů:

Více

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní

Více

VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová

VYBRANÁ ROZDĚLENÍ. SPOJITÉ NÁH. VELIČINY Martina Litschmannová VYBRANÁ ROZDĚLENÍ SPOJITÉ NÁH. VELIČINY Martina Litschmannová Opakování hustota pravděpodobnosti f(x) Funkce f(x) je hustotou pravděpodobností (na intervalu a x b), jestliže splňuje následující podmínky:

Více

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek Náhodná veličina Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 10. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 71 Obsah 1 Náhodná veličina 2 Diskrétní náhodná veličina 3

Více

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová Opakování Základní pojmy z teorie pravděpodobnosti Co je to náhodný pokus? Děj, jehož výsledek není předem jednoznačně určen podmínkami, za nichž

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.025 0.02 0.015 0.01 0.005 Nominální napětí v pásnici Std Mean 140 160 180 200 220 240 260 Std Téma 2: Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Pravděpodobnostní posuzování

Více

Pravděpodobnost a matematická statistika

Pravděpodobnost a matematická statistika Pravděpodobnost a matematická statistika Příklady k přijímacím zkouškám na doktorské studium 1 Popisná statistika Určete aritmetický průměr dat, zadaných tabulkou hodnot x i a četností n i x i 1 2 3 n

Více

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1 Minikurz aplikované statistiky Marie Šimečková, Petr Šimeček Minikurz aplikované statistiky p.1 Program kurzu základy statistiky a pravděpodobnosti regrese (klasická, robustní, s náhodnými efekty, ev.

Více

Testování statistických hypotéz

Testování statistických hypotéz Testování statistických hypotéz 1 Testování statistických hypotéz 1 Statistická hypotéza a její test V praxi jsme nuceni rozhodnout, zda nějaké tvrzeni o parametrech náhodných veličin nebo o veličině samotné

Více

Inovace bakalářského studijního oboru Aplikovaná chemie

Inovace bakalářského studijního oboru Aplikovaná chemie http://aplchem.upol.cz CZ.1.07/2.2.00/15.0247 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Základy zpracování dat chemometrie, statistika Doporučenáliteratura

Více

MATEMATICKÁ STATISTIKA. Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci

MATEMATICKÁ STATISTIKA.   Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci MATEMATICKÁ STATISTIKA Dana Černá http://www.fp.tul.cz/kmd/ Katedra matematiky a didaktiky matematiky Technická univerzita v Liberci Matematická statistika Matematická statistika se zabývá matematickým

Více

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu. 6. NÁHODNÝ VEKTOR Průvodce studiem V počtu pravděpodobnosti i v matematické statistice se setkáváme nejen s náhodnými veličinami, jejichž hodnotami jsou reálná čísla, ale i s takovými, jejichž hodnotami

Více

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc.

Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. Pravděpodobnost a matematická statistika Doc. RNDr. Gejza Dohnal, CSc. dohnal@nipax.cz Pravděpodobnost a matematická statistika 2010 1.týden (20.09.-24.09. ) Data, typy dat, variabilita, frekvenční analýza

Více

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd.

ÚVOD. Rozdělení slouží: K přesnému popisu pravděpodobnostního chování NV Střední hodnota, rozptyl, korelace atd. ROZDĚLENÍ NV ÚVOD Velké skupiny náhodných pokusů vykazují stejné pravděpodobnostní chování Mince panna/orel Výška mužů/žen NV mohou být spojeny s určitým pravděpodobnostním rozdělení (již známe jeho hustotu

Více

7. Rozdělení pravděpodobnosti ve statistice

7. Rozdělení pravděpodobnosti ve statistice 7. Rozdělení pravděpodobnosti ve statistice Statistika nuda je, má však cenné údaje, neklesejte na mysli, ona nám to vyčíslí Jednou z úloh statistiky je odhad (výpočet) hodnot statistického znaku x i,

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

Cvičení ze statistiky - 7. Filip Děchtěrenko

Cvičení ze statistiky - 7. Filip Děchtěrenko Cvičení ze statistiky - 7 Filip Děchtěrenko Minule bylo.. Probrali jsme spojité modely Tyhle termíny by měly být známé: Rovnoměrné rozdělení Střední hodnota Mccalova transformace Normální rozdělení Přehled

Více

Statistika II. Jiří Neubauer

Statistika II. Jiří Neubauer Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Zaměříme se především na popis dvourozměrných náhodných veličin (vektorů). Definice Nechť X a Y jsou

Více

1 Rozptyl a kovariance

1 Rozptyl a kovariance Rozptyl a kovariance Nechť X je náhodná veličina s konečnou střední hodnotou EX Potom rozptyl náhodné veličiny X definujeme jako: DX E(X EX, pokud střední hodnota na pravé straně existuje Podobně jako

Více

6. T e s t o v á n í h y p o t é z

6. T e s t o v á n í h y p o t é z 6. T e s t o v á n í h y p o t é z Na základě hodnot z realizace náhodného výběru činíme rozhodnutí o platnosti hypotézy o hodnotách parametrů rozdělení nebo o jeho vlastnostech. Používáme k tomu vhodně

Více

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace Jan Slovák Masarykova univerzita Fakulta informatiky 28. 11 2. 12. 2016 Obsah přednášky 1 Literatura 2 Střední

Více

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11.

UNIVERZITA OBRANY Fakulta ekonomiky a managementu. Aplikace STAT1. Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 3. 11. UNIVERZITA OBRANY Fakulta ekonomiky a managementu Aplikace STAT1 Výsledek řešení projektu PRO HORR2011 a PRO GRAM2011 Jiří Neubauer, Marek Sedlačík, Oldřich Kříž 3. 11. 2012 Popis a návod k použití aplikace

Více

AVDAT Náhodný vektor, mnohorozměrné rozdělení

AVDAT Náhodný vektor, mnohorozměrné rozdělení AVDAT Náhodný vektor, mnohorozměrné rozdělení Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Opakování, náhodná veličina, rozdělení Náhodná veličina zobrazuje elementární

Více

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet? Náhodné veličiny Náhodné veličiny Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Příklad Vytáhneme tři karty z balíčku zajímá nás, kolik je mezi nimi es.

Více

ÚVOD DO TEORIE ODHADU. Martina Litschmannová

ÚVOD DO TEORIE ODHADU. Martina Litschmannová ÚVOD DO TEORIE ODHADU Martina Litschmannová Obsah lekce Výběrové charakteristiky parametry populace vs. výběrové charakteristiky limitní věty další rozdělení pravděpodobnosti (Chí-kvadrát (Pearsonovo),

Více

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Téma 2: Pravděpodobnostní vyjádření náhodných veličin 0.05 0.0 0.05 0.0 0.005 Nominální napětí v pásnici Std Mean 40 60 80 00 0 40 60 Std Téma : Pravděpodobnostní vyjádření náhodných veličin Přednáška z předmětu: Spolehlivost a bezpečnost staveb 4. ročník

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

KGG/STG Statistika pro geografy

KGG/STG Statistika pro geografy KGG/STG Statistika pro geografy 5. Odhady parametrů základního souboru Mgr. David Fiedor 16. března 2015 Vztahy mezi výběrovým a základním souborem Osnova 1 Úvod, pojmy Vztahy mezi výběrovým a základním

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz.

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz. Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2015/2016 Tutoriál č. 5: Bodové a intervalové odhady, testování hypotéz Jan Kracík jan.kracik@vsb.cz Obsah: Výběrová rozdělení

Více

Charakteristika datového souboru

Charakteristika datového souboru Zápočtová práce z předmětu Statistika Vypracoval: 10. 11. 2014 Charakteristika datového souboru Zadání: Při kontrole dodržování hygienických norem v kuchyni se prováděl odběr vzduchu a pomocí filtru Pallflex

Více

8 Střední hodnota a rozptyl

8 Střední hodnota a rozptyl Břetislav Fajmon, UMAT FEKT, VUT Brno Této přednášce odpovídá kapitola 10 ze skript [1]. Také je k dispozici sbírka úloh [2], kde si můžete procvičit příklady z kapitol 2, 3 a 4. K samostatnému procvičení

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodná veličina Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 12. února 2012 Statistika by Birom Základy teorie

Více

Základní typy pravděpodobnostních rozdělení

Základní typy pravděpodobnostních rozdělení Základní typy pravděpodobnostních rozdělení Petra Schreiberová, Jiří Krček Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava Ostrava 208 OBSAH Diskrétní rozdělení

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodný výběr Nechť X je náhodná proměnná, která má distribuční funkci F(x, ϑ). Předpokládejme, že známe tvar distribuční funkce (víme jaké má rozdělení) a neznáme parametr

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Normální rozdělení a centrální limitní věta Vilém Vychodil KMI/PRAS, Přednáška 9 Vytvořeno v rámci projektu 2963/2011 FRVŠ V. Vychodil (KMI/PRAS, Přednáška 9) Normální rozdělení

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A4. Cvičení, letní semestr DOMÁCÍ ÚLOHY. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A4 Cvičení, letní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 200 (1) 120 krát jsme házeli hrací kostkou.

Více

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení

LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení LIMITNÍ VĚTY DALŠÍ SPOJITÁ ROZDĚLENÍ PR. 8. cvičení Způsoby statistického šetření Vyčerpávající šetření prošetření všech jednotek statistického souboru (populace) Výběrové šetření ze základního souboru

Více

NMAI059 Pravděpodobnost a statistika

NMAI059 Pravděpodobnost a statistika NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Diskrétní náhodná veličina. November 12, 2008

Diskrétní náhodná veličina. November 12, 2008 Diskrétní náhodná veličina November 12, 2008 (Náhodná veličina (náhodná proměnná)) Náhodná veličina (nebo též náhodná proměnná) je veličina X, jejíž hodnota je jednoznačně určena výsledkem náhodného pokusu.

Více

ROZDĚLENÍ NÁHODNÝCH VELIČIN

ROZDĚLENÍ NÁHODNÝCH VELIČIN ROZDĚLENÍ NÁHODNÝCH VELIČIN 1 Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

12. prosince n pro n = n = 30 = S X

12. prosince n pro n = n = 30 = S X 11 cvičení z PSI 1 prosince 018 111 test střední hodnoty normálního rozdělení při známém rozptylu Teploměrem o jehož chybě předpokládáme že má normální rozdělení se směrodatnou odchylkou σ = 3 jsme provedli

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více