Mechanické pokusy na vzduchové dráze

Rozměr: px
Začít zobrazení ze stránky:

Download "Mechanické pokusy na vzduchové dráze"

Transkript

1 Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 3 : Mechanické pokusy na vzduchové dráze Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: Klasifikace: Část I Mechanické pokusy na vzduchové dráze 1 Zadání 1. Elastické srážky: Při měření použijte 2 vozíčky o různých hmotnostech. Zvažte na digitálních vahách. Jeden z nich ponechte před srážkou v klidu, druhému udělte nenulovou počáteční rychlost pomocí startovacího zařízení. Pro každou ze 3 startovacích rychlostí proved te minimálně 10 měření. Poté obrat te konfiguraci vozíčků a měření opakujte. Celkově tedy máte alespoň 60 měření. Počet měření je bezpodmínečně nutné dodržet, bez potřebné statistiky nebudete schopni zpracovat výsledky měření. (a) Z naměřených dat rychlostí prvního vozíčku zjistěte s jakou přesností jste schopni měřit rychlost v. Tuto chybu určete zvlášt pro každou startovací rychlost a obě hmotnosti vozíčků. Do grafu naneste závislost relativní a absolutní chyby rychlosti v závislosti na velikosti startovací rychlosti. Rozmyslete si, jaký je rozdíl mezi systematickou a statistickou chybou a která z nich je pro vaše měření zásadní, t.j. se kterou budete počítat. (b) S použitím získané přesnosti měření rychlosti zjistěte s jakou přesností můžete měřit hybnost p a energii E (přesnost měření hmotnosti berte dle použitého přístroje). Určete, jak se vámi změřené celkové hybnosti resp. energie před a po srážce musí lišit, abyste je v rámci chyby měření mohli prohlásit za shodné. Pečlivě si rozmyslete, kolikrát se vám do finálního výsledku chyba rychlosti, potažmo hybnosti a energie promítne, zopakujte si jak sčítáme, odečítáme a násobíme veličiny s chybou. (c) Z rychlosti vozíčků před srážkou a po srážce zjistěte změnu hybnosti p a změnu energie E pro každou ze startovacích rychlostí a obě konfigurace vozíčků. Diskutujte, zda výsledek odpovídá očekávanému, tedy zda je změna hybnosti a energie v rámci předpokládaného chybového intervalu (s přesností 1σ, 2σ nebo 3σ). Rozhodněte, zda můžete zákony zachování považovat za ověřené. (d) Do grafu vyneste závislost celkové hybnosti po srážce p na celkové hybnosti před srážkou p a závislost celkové energie po srážce E na celkové energii před srážkou E. V obou závislostech zobrazte i errorbary (viz poznámky na konci návodu) s předpokládanou chybou měření. Do grafu zaneste přímku ideálního případu kdy p = 0, E = 0 a diskutujte zda jste graficky dokázali či nedokázali zákony zachování. 2. Průběh síly: Pomocí tlakového senzoru změřte průběh síly při odrazu vozíku. Vypočtěte změnu hybnosti pomocí integrálu průběhu síly a srovnejte ji se změnou hybnosti změřené pohybovým senzorem. Opakujte měření pro každou startovací rychlost alespoň 10x. Vyneste do grafu změnu hybnosti naměřenou silovým senzorem v závislosti na změně hybnosti určené pohybovým senzorem, opět i errorbary. Body proložte přímkou a diskutujte rozdíl směrnice a posunu přímky oproti ideálnímu případu a = 1, b = 0. 2 Vypracování 2.1 Použité přístroje Vzduchová dráha s příslušenstvím, digitální váhy, pohybový senzor PASCO (2x), silový senzor PASCO, PC, program DataStudio 1

2 2.2 Teoretický úvod Zákony zachování Zachovávající-se veličiny izolované soustavy těles, kterými se budeme v úloze zabývat jsou celková hybnost, rychlost těžiště, celkový moment hybnosti a celková energie. Jednotlivá tělesa (částice) si označíme indexy a jejich vlastnosti zapíšeme jako m i, r i, v i, p i, (1) které jsou po řadě hmotnost, poloha, rychlost a hybnost. Zákon síly pro každé těleso (v soustavě o N tělesech) má tvar N F i = F ij. (2) j=1,i j Dále budeme značit celkovou hybnost soustavy P a výslednici vnějších sil působících na soustavu F e, které definujeme N N P = P i a F e = F i e. (3) Základním vztahem, který dává tyto veličiny do souvislosti je první věta impulsová i=1 i=1 d P dt = F e. (4) Nepůsobí-li na soustavu vnější síly, platí P = const. Což je zákon zachování celkové hybnosti izolované soustavy. Pokud vyjádříme rychlosti všech bodů v soustavě jako v i = v i + V dostaneme po snadných úpravách kde M je celková hmotnost soustavy. Položíme-li P = O, máme P = P + M V, (5) P V = M = i m i v i. (6) V soustavě si tedy můžeme představovat bod R, který se pohybuje rychlostí V a chová se tak, jako kdyby v něm byla soustředěna celá hmotnost soustavy. R = i m i r i. (7) Platí: P = MV dp, dt = M d V dt = F e (8) Označíme celkovou energii soustavy jako E. Kinetická energie je definována vztahem Jsou-li vnitřní síly konzervativní, zavádíme potenciální energii U(x, y, z) tak, že i m i Celkovou energii soustavy pak definujeme E = T + U. Platí i m i kde Q e je výkon vnějších sil. Je-li soustava izolovaná, je Q e = O a tedy T = 1 2 m i v 2 i. (9) F i = i U. (10) de dt = Qe, (11) E = T + U = const. (12) 2

3 2.2.2 Impuls síly a změna hybnosti Impuls síly I vyjadřuje časový účinek síly. Působí-li na částici síla F (t) po dobu τ = t 2 t 1, je impuls síly definován t2 I = t 1 F (t) dt = t2 t 1 d p = p 2 p 1. (13) Pokud je působící síla krátkodobá neznáme často její průběh a zavádíme střední sílu působící na těleso vztahem Srážky dvou těles F = 1 τ t2 t 1 F dt, tedy I = F τ (14) Předpokládejme elastickou srážku dvou těles o hmotnostech m 1, m 2. Kinetická energie T = p2 2m zákon zachování energie má tvar p p2 2 = p p 2 2 (15) 2m 1 2m 2 2m 1 2m 2 a zákon zachování hybnosti jako p 1 + p 2 = p 1 + p 2, (16) kde p 1, p 2 jsou hybnosti před srážkou a p 1, p 2 hybnosti po srážce. Pokud je jedno z těles klidu (např. tedy p 2 = 0 ), dostaneme vztah pro rozdělení hybnosti po srážce p 1 = m 1 m 2 m 1 + m 2 p 1 = 1 ω 1 + ω p 1, (17) p 2 = 2m 2 m 1 + m 2 p 1 = ω p 1, (18) kde ω = m1 m 2. Pokud srážka není elastická, zachovává se pouze hybnost. Stupeň pružnosti při takové srážce udáváme pomocí tzv. koeficientu restituce k = v 1 v 2 v 1 v 2. (19) Koeficient restituce můžeme také stanovit z impulsů síly při přímém (I 1 ) a zpětném (I 2 ) pohybu tělesa (viz obr. 1 (vpravo)) k = I 2 I 1. (20) Je-li ráz dokonale pružný, je k = 1, je-li dokonale nepružný, je k = 0. Koeficient restituce závisí na materiálu těles a částečně na rychlosti srážky. Je-li rychlost nárazu malá, k se blíží 1. Obrázek 1: Střední hodnota působící síly (vlevo) a impuls síly při přímém a zpětném pohybu tělesa (vpravo) [1] Obrázek 1: Střední hodnota působící síly (vlevo) a impulz síly při přímém a zpětném pohybu tělesa (vpravo) 3.3 Zákony při srážkách dvou těles Předpokládejme elastickou srážku dvou těles o hmotnostech m 1 a m 2. Víme-li, že E k = p2 2m, lze zákon zachování energie a zákon zachování hybnosti zapsat jako 3 p 1 + p 2 2m 1 2m 2 = p 1 + p 2, 2m 1 2m 2 (25) p 1 + p 2 = p 1 + p 2, (26)

4 2.3 Postup měření Všechny úkoly realizujeme s použitím vzduchové dráhy. Před začátkem měření je nutné dráhu pečlivě vyrovnat do vodorovné polohy resp. tak, aby byla jen nepatrně nakloněná směrem dolů u startovacího mechanismu. To je potřebné pro dosažení stejné startovací rychlosti při různých startech. Dále musíme vhodně zvolit tlak vzduchu, který zmenšuje tření na vzduchové dráze čím větší tlak vzduchu je, tím menší je tření, ale více se projevuje nerovnoměrnost jeho rozložení. Nakonec nastavíme odrazové plochy na vozíčcích a pohybové senzory tak, abychom dostávali kvalitní data bez chyb (ty se většinou projevují velmi významnou odchylkou určité hodnoty, nebo neregistrací některých pohybů v určitých částech dráhy). Úkol 1, tj. ověřování zákonů zachování energie a hybnosti při elastických srážkách provádíme se dvěma vozíčky různé hmotnosti. Vozíčky nejdříve zvážíme a pak umístíme na dráhu. Nejdříve měříme s těžším vozíčkem na startovní pozici (tj. na začátku dráhy) a s lehčím přibližně uprostřed (resp. do přesné polohy, která je přibližně uprostřed dráhy). Lehčímu vozíčku dodáme startovacím mechanismem hybnost a pozorujeme (pomocí pohybových senzorů v programu DataStudio) průběh srážky. Po srážce vozíčky vrátíme do původního stavu a opakujeme (celkově 10-krát). Startovací mechanismus může vozíčky vystřelovat v třech různých rychlostech. Po prvních deseti startech rychlost změníme a pozorujeme průběh srážek při zbývajících počátečních rychlostech, pro každou deset měření. Poté prohodíme těžší vozíček s lehčím a celé měření opakujeme. Nakonec tedy máme zaznamenáno alespoň 60 jednotlivých srážek. Pro druhý úkol budeme používat jen těžší vozíček (kvůli přesnější startovací rychlosti). Vozíček opět vystřelíme 10-krát pro každou startovací rychlost proti silovému senzoru na konci dráhy. Ten zde musí být dobře upevněn (zatížen), jinak se vlivem nárazu odsune. 2.4 Naměřené hodnoty Viz strany m a [kg] m b [kg] m c [kg] ± ± ± Tabulka 1: Naměřené hmotnosti vozíčků, vozíčky a a b byly použity pro srážky vozíčků, vozíček c pro měření impulsu síly 2.5 Diskuze a Závěr Z naměřených dat je patrné, že rychlost jsme schopni měřit přesněji pro těžší vozíček než pro vozíček lehčí. Chyba ještě více závisí na tom, kterou ze tří úrovní rychlosti jsme vozíček startovacím mechanismem vystřelili. Pro první úroveň (nejmenší rychlost) relativní chyba měření rychlosti dosahuje až 10 %, u druhého stupně je to do 6 % pro lehčí, resp. 3 % pro těžší vozíček, u třetího stupně (nejvyšší rychlost) je relativní chyba menší než 3 %. Přesnost měření energie byla při srážce lehčí vozíček těžší vozíček J, J a J po řadě pro nejmenší až největší startovací rychlost. Při srážce těžší vozíček lehčí vozíček byla tato přesnost J, J a J opět v pořadí velikosti startovacích rychlostí. Přesnost měření hybnosti byla při srážce lehčí vozíček těžší vozíček 0.01 kgm/s, kgm/s a kgm/s po řadě pro nejmenší až největší startovací rychlost. Při srážce těžší vozíček lehčí vozíček byla tato přesnost kgm/s, kgm/s a kgm/s opět v pořadí velikosti startovacích rychlostí. Změna energie před srážkou a po srážce byla při srážce lehčí vozíček těžší vozíček určena na J, 0.01 J, 0.02 J po řadě pro nejmenší až největší startovací rychlost. Při srážce těžší vozíček lehčí vozíček byla tato změna určena na J, J, 0.01 J opět v pořadí velikosti startovacích rychlostí. Pro malé rychlosti je tedy změna energie v rámci předpokládaného chybového intervalu, pro větší již nikoli. Změna hybnosti před srážkou a po srážce byla při srážce lehčí vozíček těžší vozíček určena na kgm/s, 0.02 kgm/s, 0.04 kgm/s po řadě pro nejmenší až největší startovací rychlost. Při srážce těžší vozíček lehčí vozíček byla tato změna určena na kgm/s, kgm/s, 0.01 kgm/s opět v pořadí velikosti startovacích rychlostí. Pro malé rychlosti je tedy změna hybnosti v rámci předpokládaného chybového intervalu, pro větší již nikoli. Zákony zachování energie a hybnosti jsme ověřit nemohli, odchylka od předpokládaného tvaru byla příliš velká a nebyla vždy v intervalu předpokládané chyby měření. Přesto je z grafů viděl, že naše data zákony zachování přibližně kopírují takže nám hrubou představu dát mohou. Měření by bylo přesnější, pokud bychom znali rychlosti vozíčků s větší přesností, tedy pokud bychom měli přesnější startovací mechanismus. Dále jsme ve 4

5 výpočtech uvažovali rychlost druhého vozíčku před srážkou za nulovou, což nebyla vždy úplně pravda, přestože tato rychlost byla velmi malá. Dále jsme uvažovali, že dráha je úplně vodorovná a nemění se tak potenciální energie vozíčků. Tento předpoklad rovněž zvyšoval chybu měření. Nejvíce ovšem měření ovlivňovalo tření, které přes použití vzduchové dráhy nebylo nulové a bylo by vhodné jej změřit a zahrnout do výpočtů. Při měření impulsu síly jsme dostali vztah I = a p + b, kde a = ± , b = ± Oproti ideálnímu případu, kdy a = 1 a b = 0 je u parametru a poměrně velká odchylka. Vzhledem k rozsahům na kterých se naměřené hodnoty pohybovaly je naopak parametr b poměrně malý. Přesnost tohoto měření je ovlivněna stejnými parametry jako u předchozího případu srážek dvou těles. Navíc je přesnost měření zatížena chybou silového senzoru, kterou neznáme. Část II Zpracování výsledků Pro statistické zpracování budeme potřebovat následující vztahy [2]: ˆ Aritmetický průměr x = 1 n x i (21) n i=1 ˆ Směrodatná odchylka σ x = 1 n (x i x) 2, (22) n 1 kde x i jsou jednotlivé naměřené hodnoty, n je počet měření, x aritmetický průměr a σ x směrodatná odchylka. Jedná-li se o nepřímé měření, spočítáme výslednou hodnotu a chybu dle následujících vztahů: Necht u = f(x, y, z,...) (23) i=1 x = (x ± σ x ), y = (y ± σ y ), z = (z ± σ z ),..., kde u je veličina nepřímo určovaná pomocí přímo měřených veličin x, y, z,... Pak u = f(x, y, z,...) σ u = 3 Použitá literatura Reference ( f x ) 2 σ 2 x + ( ) 2 f σy y 2 + u = (u ± σ u ), ( ) 2 f σz z (24) [1] Kolektiv KF, Návod k úloze: Vzduchová dráha [Online], [cit. 8. května 2013] resource/content/6/vzduchova draha pdf [2] Kolektiv KF, Chyby měření [Online], [cit. 8. května 2013] 5

6 v1 [m/s] σv1 [m/s] v 1 [m/s] σ v 1 [m/s] v 2 [m/s] σ v 2 [m/s] p [kgm/s] σp [kgm/s] p [kgm/s] σ p [kgm/s] p [kgm/s] E [J] σe [J] E [J] σ E E ± ± ± 0.02 p : E : σ: ± ± ± 0.02 p : E : σ: ± ± ± p : E : σ: Tabulka 2: Naměřená data při srážce lehčí vozíček těžší vozíček: v1 je rychlost prvního vozíčku před srážkou, σv1 chyba fitu této rychlosti (z programu DataStudio), v 1, v 2 jsou rychlosti vozíčků po srážce σv, σ v jejich chyby, p, p jsou hybnosti soustavy před srážkou a po srážce, σp a σp jejich chyby, E, E jsou energie soustavy před srážkou a po srážce, σe, σe 1, σ 2 jejich chyby, p, p jejich chyby, p a E jsou rozdíly hybnosti resp. energie před srážkou a po srážce 6

7 v1 [m/s] σv1 [m/s] v 1 [m/s] σ v 1 [m/s] v 2 [m/s] σ v 2 [m/s] p [kgm/s] σp [kgm/s] p [kgm/s] σ p [kgm/s] p [kgm/s] E [J] σe [J] E [J] σ E E ± ± ± σ: ± ± ± 0.01 p : E : σ: ± ± ± 0.02 p : E : σ: Tabulka 3: Naměřená data při srážce těžší vozíček lehčí vozíček: v1 je rychlost prvního vozíčku před srážkou, σv1 chyba fitu této rychlosti (z programu DataStudio), v 1, v 2 jsou rychlosti vozíčků po srážce σv, σ v jejich chyby, p, p jsou hybnosti soustavy před srážkou a po srážce, σp a σp jejich chyby, E, E jsou energie soustavy před srážkou a po srážce, σe, σe 1, σ 2 jejich chyby, p, p jejich chyby, p a E jsou rozdíly hybnosti resp. energie před srážkou a po srážce 7

8 v1 [m/s] σv1 [m/s] v 1 [m/s] σ v 1 [m/s] p [kgm/s] σp [kgm/s] p [kgm/s] σ p [kgm/s] I [kgm/s] p [kgm/s] σ p [kgm/s] ± ± ± ± ± ± 0.02 Tabulka 4: Naměřená data při měření impulsu síly: v1, v 1 jsou rychlosti vozíčku před srážkou a po srážce,, σ σv1 v 1 jejich chyby (chyby fitu z programu DataStudio) p, p jsou hybnosti vozíčku před srážkou a po srážce, σp, σp jejich chyby, I je Impuls síly naměřený na silovém senzoru, p je rozdíl hybností vozíčku před a po srážce, σ p jeho chyba 8

9 Obrázek 2: Graf závislosti hybnosti soustavy po srážce p na hybnosti soustavy před srážkou p. 9

10 Obrázek 3: Graf závislosti energie soustavy po srážce E na hybnosti soustavy před srážkou E. 10

11 Obrázek 4: Graf závislosti impulsu síly I na změně hybnosti soustavy před srážkou a po srážce p. Fit má předpis I = a p + b, kde a = ± , b = ±

12 Obrázek 5: Graf závislosti relativní a absolutní chyby na rychlosti vozíčku. 12

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3. Vzduchová dráha - ZZE, srážky, impuls síly Autor David Horák Datum měření 21. 11. 2011 Kruh 1 Skupina 7 Klasifikace 1. PRACOVNÍ ÚKOLY: 1) Elastické srážky:

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 1: Mechanické pokusy na vzduchové dráze Datum měření: 1. 11. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: Zopakujte si,

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 3: Mechanické pokusy na vzduchové dráze. Abstrakt

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 3: Mechanické pokusy na vzduchové dráze. Abstrakt FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Úloha 3: Mechanické pokusy na vzduchové dráze Datum měření: 16. 10. 2009 Jméno: Jiří Slabý Pracovní skupina: 1 Ročník a kroužek: 2. ročník, 1. kroužek, pátek 13:30

Více

Mechanické pokusy na vzduchové dráze

Mechanické pokusy na vzduchové dráze Číslo úlohy: 3 Jméno: Spolupracoval: Fyzikální praktikum FJFI ČVUT v Praze Mechanické pokusy na vzduchové dráze Vojtěch HORNÝ Jaroslav Zeman Datum měření: 30. 11. 2009 Číslo kroužku: pondělí 13:30 Číslo

Více

Práce tepelného stroje

Práce tepelného stroje Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 12 : Práce tepelného stroje Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 23.11.2012 Klasifikace: Část I Práce tepelného stroje 1 Zadání

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 8 : Studium ultrazvukových vln Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 8 : Studium ultrazvukových vln Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 26.10.2012 Klasifikace: 1 Zadání 1. Změřte velikost přijímaného

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT

Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/ III-2 Inovace a zkvalitnění výuky prostřednictvím ICT Projekt ŠABLONY NA GVM registrační číslo projektu: CZ.1.07/1.5.00/34.0948 III-2 Inovace a zkvalitnění výuky prostřednictvím ICT 1. Mechanika 1. 6. Energie 1 Autor: Jazyk: Aleš Trojánek čeština Datum vyhotovení:

Více

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 56 12 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Těžiště I. impulsová věta - věta o pohybu těžiště II. impulsová věta Zákony zachování v izolované soustavě hmotných bodů Náhrada pohybu skutečných objektů pohybem

Více

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení

ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE. Úloha 5: Měření tíhového zrychlení ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: číslo skupiny: Spolupracovali: 1 Úvod 1.1 Pracovní úkoly [1] Úloha 5: Měření tíhového zrychlení Jméno: Ročník, kruh: Klasifikace: 1. V domácí

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. Ing. Bohumil Koktavý,CSc. FYZIKA PRŮVODCE GB01-P02 DYNAMIKA HMOTNÉHO BODU STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA 2 OBSAH

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 4: Cavendishův experiment Datum měření: 3. 1. 015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace: 1 Zadání 1. DÚ: V přípravě odvoďte vztah pro

Více

Dynamika soustav hmotných bodů

Dynamika soustav hmotných bodů Dynamika soustav hmotných bodů Mechanický model, jehož pohyb je charakterizován pohybem dvou nebo více bodů, nazýváme soustavu hmotných bodů. Pro každý hmotný bod můžeme napsat pohybovou rovnici. Tedy

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Náhodné (statistické) chyby přímých měření

Náhodné (statistické) chyby přímých měření Náhodné (statistické) chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s

mechanická práce W Studentovo minimum GNB Mechanická práce a energie skalární veličina a) síla rovnoběžná s vektorem posunutí F s 1 Mechanická práce mechanická práce W jednotka: [W] = J (joule) skalární veličina a) síla rovnoběžná s vektorem posunutí F s s dráha, kterou těleso urazilo 1 J = N m = kg m s -2 m = kg m 2 s -2 vyjádření

Více

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje);

Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); Newtonovy pohybové zákony: Hmotný bod - model (modelové těleso), který je na dané rozlišovací úrovni přiřazen reálnému objektu (součástce, části stroje); předpokládáme soustředění hmoty tělesa a všech

Více

Náhodné chyby přímých měření

Náhodné chyby přímých měření Náhodné chyby přímých měření Hodnoty náhodných chyb se nedají stanovit předem, ale na základě počtu pravděpodobnosti lze zjistit, která z možných naměřených hodnot je více a která je méně pravděpodobná.

Více

FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě

FJFI ČVUT V PRAZE. Úloha 8: Závislost odporu termistoru na teplotě ZÁKLADY FYZIKÁLNÍCH MĚŘENÍ FJFI ČVUT V PRAZE Datum měření: 29. 4. 2009 Pracovní skupina: 3, středa 5:30 Spolupracovali: Monika Donovalová, Štěpán Novotný Jméno: Jiří Slabý Ročník, kruh:. ročník, 2. kruh

Více

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem

Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem FJFI ČVUT v Praze Fyzikální praktikum I Úloha 9 Verze 161010 Rozšíření rozsahu miliampérmetru a voltmetru, cejchování kompenzátorem Abstrakt: V úloze si osvojíte práci s jednoduchými elektrickými obvody.

Více

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek

EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření. Jan Krystek EXPERIMENTÁLNÍ MECHANIKA 2 Přednáška 5 - Chyby a nejistoty měření Jan Krystek 9. května 2019 CHYBY A NEJISTOTY MĚŘENÍ Každé měření je zatíženo určitou nepřesností způsobenou nejrůznějšími negativními vlivy,

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Funkce kvadratická funkce Mirek Kubera žák načrtne grafy požadovaných funkcí, formuluje a zdůvodňuje vlastnosti studovaných funkcí, modeluje závislosti

Více

Rychlost, zrychlení, tíhové zrychlení

Rychlost, zrychlení, tíhové zrychlení Úloha č. 3 Rychlost, zrychlení, tíhové zrychlení Úkoly měření: 1. Sestavte nakloněnou rovinu a změřte její sklon.. Změřte závislost polohy tělesa na čase a stanovte jeho rychlost a zrychlení. 3. Určete

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

Fyzikální praktikum FJFI ČVUT v Praze

Fyzikální praktikum FJFI ČVUT v Praze Fyzikální praktikum FJFI ČVUT v Praze Úloha 9: Rozšíření rozsahu miliampérmetru a voltmetru. Cejchování kompenzátorem. Datum měření: 15. 10. 2015 Skupina: 8, čtvrtek 7:30 Vypracoval: Tadeáš Kmenta Klasifikace:

Více

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ

6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ 6 6 DYNAMIKA SOUSTAVY HMOTNÝCH BODŮ Pohyblivost mechanické soustavy charakterizujeme počtem stupňů volnosti. Je to číslo, které udává, kolika nezávislými parametry je určena poloha jednotlivých členů soustavy

Více

Laboratorní práce č. 1: Měření délky

Laboratorní práce č. 1: Měření délky Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 1: Měření délky G Gymnázium Hranice Přírodní vědy moderně a interaktivně FYZIKA 3.

Více

Kalorimetrická měření I

Kalorimetrická měření I KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Kalorimetrická měření I Úvod Teplo Teplo Q je určeno energií,

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 10 : Harmonické oscilace, Pohlovo torzní kyvadlo Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 9.11.2012 Klasifikace: Část I Lineární

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 23. října 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální energie

Více

Mechanika tuhého tělesa

Mechanika tuhého tělesa Mechanika tuhého tělesa Tuhé těleso je ideální těleso, jehož tvar ani objem se působením libovolně velkých sil nemění Síla působící na tuhé těleso má pouze pohybové účinky Pohyby tuhého tělesa Posuvný

Více

Práce, výkon, energie

Práce, výkon, energie Práce, výkon, energie (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 11. listopadu 2009 Obsah Mechanická práce Výkon, příkon, účinnost Mechanická energie Kinetická energie Potenciální

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer

Laboratorní úloha č. 3 Spřažená kyvadla. Max Šauer Laboratorní úloha č. 3 Spřažená kyvadla Max Šauer 17. prosince 2003 Obsah 1 Úkol měření 2 2 Seznam použitých přístrojů a pomůcek 2 3 Výsledky měření 2 3.1 Stanovení tuhosti vazbové pružiny................

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Program semináře 1. Základní pojmy - metody měření, druhy chyb, počítání s neúplnými čísly, zaokrouhlování 2. Chyby přímých měření - aritmetický průměr a směrodatná odchylka,

Více

pracovní list studenta

pracovní list studenta Výstup RVP: Klíčová slova: pracovní list studenta Dynamika Vojtěch Beneš žák měří vybrané veličiny vhodnými metodami, zpracuje a vyhodnotí výsledky měření, určí v konkrétních situacích síly působící na

Více

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu.

3. Změřte závislost proudu a výkonu na velikosti kapacity zařazené do sériového RLC obvodu. Pracovní úkoly. Změřte účiník: a) rezistoru, b) kondenzátoru C = 0 µf) c) cívky. Určete chybu měření. Diskutujte shodu výsledků s teoretickými hodnotami pro ideální prvky. Pro cívku vypočtěte indukčnost

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 9 : Akustika

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 9 : Akustika Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 9 : Akustika Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 2.11.2012 Klasifikace: 1 Zadání 1. Domácí úkol: Spočítejte, jakou vlastní

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s.

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů. = 30 s. Řešení úloh. kola 60. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů.a) Doba jízdy na prvním úseku (v 5 m s ): t v a 30 s. Konečná rychlost jízdy druhého úseku je v v + a t 3 m s. Pro rovnoměrně

Více

Práce, energie a další mechanické veličiny

Práce, energie a další mechanické veličiny Práce, energie a další mechanické veličiny Úvod V předchozích přednáškách jsme zavedli základní mechanické veličiny (rychlost, zrychlení, síla, ) Popis fyzikálních dějů usnadňuje zavedení dalších fyzikálních

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Literatura: Novák, R. Úvod do teorie měření. Ústí nad Labem: UJEP, 2003 Sprušil, B., Zieleniecová, P.: Úvod do teorie fyzikálních měření. Praha: SPN, 1985 Brož, J. a kol.

Více

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství

České vysoké učení technické v Praze Fakulta biomedicínského inženýrství České vysoké učení technické v Praze Fakulta biomedicínského inženýrství Úloha KA03/č. 5: Měření kinematiky a dynamiky pohybu osoby v prostoru pomocí ultrazvukového radaru Ing. Patrik Kutílek, Ph.., Ing.

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ Prof. RNDr. Zdeněk Chobola,CSc., Vlasta Juránková,CSc. FYZIKA PRŮVODCE GB01-P03 MECHANIKA TUHÝCH TĚLES STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU

Více

Úvod do teorie měření. Eva Hejnová

Úvod do teorie měření. Eva Hejnová Úvod do teorie měření Eva Hejnová Podmínky získání zápočtu: Podmínkou pro získání zápočtu je účast na cvičeních (maximálně tři absence) a úspěšné splnění jednoho písemného testu alespoň na 50 % max. počtu

Více

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF

Dynamika systémů s proměnnou hmotností. Vojtěch Patočka Univerzita Karlova - MFF Dynamika systémů s proměnnou hmotností Buquoyovy úlohy Práce a energie v řešení Buquoyových úloh Mnohočásticové modely Problém rakety Pružné a nepružné srážky Fundemtální zákon vs. kinematická podmínka

Více

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9. 9. Tření a stabilita 9.1 Tření smykové v obecné kinematické dvojici Doposud jsme předpokládali dokonale hladké povrchy stýkajících se těles, kdy se silové působení přenášelo podle principu akce a reakce

Více

Úloha 5: Spektrometrie záření α

Úloha 5: Spektrometrie záření α Petra Suková, 3.ročník 1 Úloha 5: Spektrometrie záření α 1 Zadání 1. Proveďte energetickou kalibraci α-spektrometru a určete jeho rozlišení. 2. Určeteabsolutníaktivitukalibračníhoradioizotopu 241 Am. 3.

Více

Měření tíhového zrychlení matematickým a reverzním kyvadlem

Měření tíhového zrychlení matematickým a reverzním kyvadlem Úloha č. 3 Měření tíhového zrychlení matematickým a reverzním kyvadlem Úkoly měření: 1. Určete tíhové zrychlení pomocí reverzního a matematického kyvadla. Pro stanovení tíhového zrychlení, viz bod 1, měřte

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. úloha č. 4 Název: Určení závislosti povrchového napětí na koncentraci povrchově aktivní látky Pracoval: Jakub Michálek

Více

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa

pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa pracovní list studenta Kmitání Studium kmitavého pohybu a určení setrvačné hmotnosti tělesa Výstup RVP: Klíčová slova: Eva Bochníčková žák měří vybrané veličiny vhodnými metodami, zpracuje získaná data

Více

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině

KMITÁNÍ PRUŽINY. Pomůcky: Postup: Jaroslav Reichl, LabQuest, sonda siloměr, těleso kmitající na pružině KMITÁNÍ PRUŽINY Pomůcky: LabQuest, sonda siloměr, těleso kmitající na pružině Postup: Těleso zavěsíme na pružinu a tu zavěsíme na pevně upevněný siloměr (viz obr. ). Sondu připojíme k LabQuestu a nastavíme

Více

Dynamika vázaných soustav těles

Dynamika vázaných soustav těles Dynamika vázaných soustav těles Většina strojů a strojních zařízení, s nimiž se setkáváme v praxi, lze považovat za soustavy těles. Složitost dané soustavy závisí na druhu řešeného případu. Základem pro

Více

Přípravný kurz z fyziky na DFJP UPa

Přípravný kurz z fyziky na DFJP UPa Přípravný kurz z fyziky na DFJP UPa 26. 28.8.2015 RNDr. Jan Zajíc, CSc. ÚAFM FChT UPa Pohyby rovnoměrné 1. Člun pluje v řece po proudu z bodu A do bodu B rychlostí 30 km.h 1. Při zpáteční cestě z bodu

Více

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY.

TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. TERMODYNAMIKA Ideální plyn TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY. Ideální plyn je zjednodušená představa skutečného plynu. Je dokonale stlačitelný

Více

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš

pracovní list studenta RC obvody Měření kapacity kondenzátoru Vojtěch Beneš Výstup RVP: Klíčová slova: pracovní list studenta RC obvody Vojtěch Beneš žák porovná účinky elektrického pole na vodič a izolant kondenzátor, kapacita kondenzátoru, nestacionární děj, nabíjení, časová

Více

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8 Obsah 1 Tuhé těleso 1 2 Moment síly 2 3 Skládání sil 3 3.1 Skládání dvou různoběžných sil................. 3 3.2 Skládání dvou rovnoběžných, různě velkých sil......... 3 3.3 Dvojice sil.............................

Více

Úvod do problematiky měření

Úvod do problematiky měření 1/18 Lord Kelvin: "Když to, o čem mluvíte, můžete změřit, a vyjádřit to pomocí čísel, něco o tom víte. Ale když to nemůžete vyjádřit číselně, je vaše znalost hubená a nedostatečná. Může to být začátek

Více

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů

FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE. Úloha 11: Termická emise elektronů FYZIKÁLNÍ PRAKTIKUM FJFI ČVUT V PRAZE Datum měření: 15.4.2011 Jméno: Jakub Kákona Pracovní skupina: 4 Ročník a kroužek: Pa 9:30 Spolupracovníci: Jana Navrátilová Hodnocení: Úloha 11: Termická emise elektronů

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení

5. Pro jednu pružinu změřte závislost stupně vazby na vzdálenosti zavěšení pružiny od uložení 1 Pracovní úkoly 1. Změřte dobu kmitu T 0 dvou stejných nevázaných fyzických kyvadel.. Změřte doby kmitů T i dvou stejných fyzických kyvadel vázaných slabou pružnou vazbou vypouštěných z klidu při počátečních

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

2 Přímé a nepřímé měření odporu

2 Přímé a nepřímé měření odporu 2 2.1 Zadání úlohy a) Změřte jednotlivé hodnoty odporů R 1 a R 2, hodnotu odporu jejich sériového zapojení a jejich paralelního zapojení, a to těmito způsoby: přímou metodou (RLC můstkem) Ohmovou metodou

Více

PRAKTIKUM II Elektřina a magnetismus

PRAKTIKUM II Elektřina a magnetismus Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: VIII Název: Měření impedancí rezonanční metodou Pracoval: Pavel Brožek stud. skup. 12

Více

Test jednotky, veličiny, práce, energie, tuhé těleso

Test jednotky, veličiny, práce, energie, tuhé těleso DUM Základy přírodních věd DUM III/2-T3-16 Téma: Práce a energie Střední škola Rok: 2012 2013 Varianta: A Zpracoval: Mgr. Pavel Hrubý TEST Test jednotky, veličiny, práce, energie, tuhé těleso 1 Účinnost

Více

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 10 Z GEODÉZIE 1 (Souřadnicové výpočty 4, Orientace osnovy vodorovných směrů) 1. ročník bakalářského studia studijní program G studijní obor G doc. Ing. Jaromír Procházka, CSc. prosinec

Více

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa

Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa Pohyby tuhého tělesa Moment síly vzhledem k ose otáčení Skládání a rozkládání sil Dvojice sil, Těžiště, Rovnovážné polohy tělesa Mechanika tuhého tělesa těleso nebudeme nahrazovat

Více

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK

Fyzikální vzdělávání. 1. ročník. Učební obor: Kuchař číšník Kadeřník. Implementace ICT do výuky č. CZ.1.07/1.1.02/ GG OP VK Fyzikální vzdělávání 1. ročník Učební obor: Kuchař číšník Kadeřník 1 1 Mechanika 1.1 Pohyby přímočaré, pohyb rovnoměrný po kružnici 1.2 Newtonovy pohybové zákony, síly v přírodě, gravitace 1.3 Mechanická

Více

Fyzika - Kvinta, 1. ročník

Fyzika - Kvinta, 1. ročník - Fyzika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence k učení Učivo fyzikální

Více

Fyzikální praktikum II

Fyzikální praktikum II Kabinet výuky obecné fyziky, UK MFF Fyzikální praktikum II Úloha č. 19 Název úlohy: Měření s torzním magnetometrem Jméno: Ondřej Skácel Obor: FOF Datum měření: 12.10.2015 Datum odevzdání:... Připomínky

Více

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona.

3. Diskutujte výsledky měření z hlediska platnosti Biot-Savartova zákona. 1 Pracovní úkol 1. Změřte závislost výchlk magnetometru na proudu protékajícím cívkou. Měření proveďte pro obě cívk a různé počt závitů (5 a 10). Maximální povolený proud obvodem je 4. 2. Výsledk měření

Více

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV

Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Praktikum IV Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktikum IV Úloha č. A13 Určení měrného náboje elektronu z charakteristik magnetronu Název: Pracoval: Martin Dlask. stud. sk.: 11 dne:

Více

Kinetická teorie ideálního plynu

Kinetická teorie ideálního plynu Přednáška 10 Kinetická teorie ideálního plynu 10.1 Postuláty kinetické teorie Narozdíl od termodynamiky kinetická teorie odvozuje makroskopické vlastnosti látek (např. tlak, teplotu, vnitřní energii) na

Více

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole

5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5. Stanovení tíhového zrychlení reverzním kyvadlem a studium gravitačního pole 5.1. Zadání úlohy 1. Určete velikost tíhového zrychlení pro Prahu reverzním kyvadlem.. Stanovte chybu měření tíhového zrychlení.

Více

Pokusy na vzduchové dráze

Pokusy na vzduchové dráze Pokusy na vzduchové dráze 1 Pomůcky: Vzduchová dráha, zdroj stlačeného vzduchu, digitální váhy, sada závaží, vozíček s odrazovou plochou, pružná gumička, špulka nitě, 1x pohybový sensor PASCO, PC (DataStudio),

Více

Charakterizují kvantitativně vlastnosti předmětů a jevů.

Charakterizují kvantitativně vlastnosti předmětů a jevů. Měřicí aparatura 1 / 34 Fyzikální veličiny Charakterizují kvantitativně vlastnosti předmětů a jevů. Můžeme je dělit: Podle rozměrů: Bezrozměrné (index lomu, poměry) S rozměrem fyzikální veličiny velikost

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 7: Rozšíření rozsahu miliampérmetru a voltmetru, Cejchování kompenzátorem

Fyzikální praktikum FJFI ČVUT v Praze. Úloha č. 7: Rozšíření rozsahu miliampérmetru a voltmetru, Cejchování kompenzátorem Fyzikální praktikum FJFI ČVUT v Praze Úloha č. 7: Rozšíření rozsahu miliampérmetru a voltmetru, Cejchování kompenzátorem Jméno: Ondřej Ticháček Pracovní skupina: 6 Kruh: ZS 6 Datum měření: 19.10.2012 Klasifikace:

Více

GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA

GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA GRAVITAČNÍ SÍLA A HMOTNOST TĚLESA Vzdělávací předmět: Fyzika Tematický celek dle RVP: Pohyb těles. Síly Tematická oblast: Pohyb a síla Cílová skupina: Žák 7. ročníku základní školy Cílem pokusu je sledování

Více

4. Práce, výkon, energie a vrhy

4. Práce, výkon, energie a vrhy 4. Práce, výkon, energie a vrhy 4. Práce Těleso koná práci, jestliže působí silou na jiné těleso a posune jej po určité dráze ve směru síly. Příklad: traktor táhne přívěs, jeřáb zvedá panel Kdy se práce

Více

Název: Měření síly a její vývoj při běžných činnostech

Název: Měření síly a její vývoj při běžných činnostech Název: Měření síly a její vývoj při běžných činnostech Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Fyzika (Biologie) Tematický

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 17. 12. 2012 Číslo DUM: VY_32_INOVACE_19_FY_B Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh:

Více

(2) 2 b. (2) Řešení. 4. Platí: m = Ep

(2) 2 b. (2) Řešení. 4. Platí: m = Ep (1) 1. Zaveďte slovy fyzikální veličinu účinnost 2. Vyjádřete 1 Joule v základních jednotkách SI. 3. Těleso přemístíme do vzdálenosti 8,1 m, přičemž na ně působíme silou o velikosti 158 N. Jakou práci

Více

Posouzení přesnosti měření

Posouzení přesnosti měření Přesnost měření Posouzení přesnosti měření Hodnotu kvantitativně popsaného parametru jakéhokoliv objektu zjistíme jedině měřením. Reálné měření má vždy omezenou přesnost V minulosti sloužila k posouzení

Více

Téma: Dynamika - Úvod do stavební dynamiky

Téma: Dynamika - Úvod do stavební dynamiky Počítačová podpora statických výpočtů Téma: Dynamika - Úvod do stavební dynamiky 1) Úlohy stavební dynamiky 2) Základní pojmy z fyziky 3) Základní zákony mechaniky 4) Základní dynamická zatížení Katedra

Více

4. Statika základní pojmy a základy rovnováhy sil

4. Statika základní pojmy a základy rovnováhy sil 4. Statika základní pojmy a základy rovnováhy sil Síla je veličina vektorová. Je určena působištěm, směrem, smyslem a velikostí. Působiště síly je bod, ve kterém se přenáší účinek síly na těleso. Směr

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Měření součinitele smykového tření dynamickou metodou

Měření součinitele smykového tření dynamickou metodou Měření součinitele smykového tření dynamickou metodou Online: http://www.sclpx.eu/lab1r.php?exp=6 Měření smykového tření na nakloněné rovině pomocí zvukové karty řešil např. Sedláček [76]. Jeho konstrukce

Více

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD

Úloha č.2 Vážení. Jméno: Datum provedení: TEORETICKÝ ÚVOD Jméno: Obor: Datum provedení: TEORETICKÝ ÚVOD Jednou ze základních operací v biochemické laboratoři je vážení. Ve většině případů právě přesnost a správnost navažovaného množství látky má vliv na výsledek

Více

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4)

Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas (1, 2, 3), V. Vícha (4) Řešení úloh krajského kola 60. ročníku fyzikální olympiády Kategorie A Autoři úloh: J. Thomas 1,, ), V. Vícha 4) 1.a) Mezi spodní destičkou a podložkou působí proti vzájemnému pohybu síla tření o velikosti

Více

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná.

2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 1 Pracovní úkoly 1. Změřte tloušťku tenké vrstvy ve dvou různých místech. 2. Vyhodnoťte získané tloušťky a diskutujte, zda je vrstva v rámci chyby nepřímého měření na obou místech stejně silná. 3. Okalibrujte

Více

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin.

INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV. Černoleská 1997, Benešov. Elektrická měření. Tematický okruh. Měření elektrických veličin. Číslo projektu CZ.107/1.5.00/34.0425 Název školy INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov Předmět Elektrická měření Tematický okruh Měření elektrických veličin Téma Měření

Více

Normální (Gaussovo) rozdělení

Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení Normální (Gaussovo) rozdělení popisuje vlastnosti náhodné spojité veličiny, která vzniká složením různých náhodných vlivů, které jsou navzájem nezávislé, kterých je velký

Více

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt

František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009. Abstrakt Automatický výpočet chyby nepřímého měření František Batysta batysfra@fjfi.cvut.cz 19. listopadu 2009 Abstrakt Pro správné vyhodnocení naměřených dat je třeba také vypočítat chybu měření. Pokud je neznámá

Více

0.1 Úvod do lineární algebry

0.1 Úvod do lineární algebry Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

Chyby měřidel a metody měření vybraných fyzikálních veličin

Chyby měřidel a metody měření vybraných fyzikálních veličin Chyby měřidel a metody měření vybraných fyzikálních veličin Viz oskenovaný text ze skript Sprušil, Zieleniecová: Úvod do teorie fyzikálních měření http://physics.ujep.cz/~ehejnova/utm/materialy_studium/chyby_meridel.pdf

Více