POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2
|
|
- Dagmar Procházková
- před 8 lety
- Počet zobrazení:
Transkript
1 POSLOUPNOSTI 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 n+1n, d) a n = n! n n Najděte předpis pro n-tý člen následujících posloupností a) {8, 14, 20, 26, 32,... }, b) {2, 3 2, 4 3, 5 4, 6 5,... }, c) { 1 2, 1 2, 3 8, 1 4, 5 32,... }, d) {1, 1 2, 2, 1 3, 3, 1 4, 4, 1 5,... }. 3. Vypočtěte člen pátý posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n 3 a členem a 1 = Vypočtěte šestý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2na n 3 a členem a 1 = Vypočtěte první člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = na n + 3 a členem a 5 = Vypočtěte čtvrtý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n 3 a členem a 1 = Vypočtěte pátý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 + a n = 3 a členem a 1 = Vypočtěte čtvrtý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = a 2 n 4 a členem a 1 = Vypočtěte čtvrtý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2na n 1 a členem a 1 = Vypočtěte druhý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = (n + 1)a n + 3 a členem a 4 = Vypočtěte součet prvních čtyř členů posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 3a n 2 a členem a 2 = 7. 1
2 2 12. Vypočtěte součet prvních čtyř členů posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n 4 a členem a 4 = Vypočtěte součet prvních tří členů posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n 5 a členem a 2 = Vypočtěte součet prvních tří členů posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = (n 1)a n + 3 a členem a 1 = Vypočtěte první člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 3a n n a členem a 5 = Vypočtěte třetí člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n + 4 a členem a 2 = Vypočtěte čtvrtý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = (n 1)a n + 3 a členem a 1 = Vypočtěte čtvrtý člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = (n + 1)a n 5 a členem a 1 = Vypočtěte třetí člen posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 + 3a n = 4 a členem a 5 = Vypočtěte součet čtvrtého a pátého členu posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 2a n = 4 a členem a 2 = Vypočtěte součet prvních čtyř členů posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 + 2a n = 5 a členem a 1 = Vypočtěte součet druhého a čtvrtého členu posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 na n = 3 a členem a 2 = Vypočtěte součet prvního a čtvrtého členu posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 2a n + 3 a členem a 1 = Vypočtěte součet prvního a třetího členu posloupnosti (a n ) n=1, která je dána rekurentní formulí a n+1 = 3a n 1 a členem a 4 = Určete, která z posloupností (a n ) n=1 je aritmetická, resp. geometrická, vypočtěte její deferenci, resp. kvocient a) a n = 3n 4, b) a n = 3 2 n,
3 3 c) a n = 2 n+1, d) a n = n+1 n Určete prvních šest členů aritmetické posloupnosti (a n ) n=1, je-li a) a 1 = 5, a 2 = 2, b) a 2 = 7, d = 3, c) a 1 = 2, a 2 = 2 + 5, d) a 3 = 1, a 7 = 7, e) a 1 + a 6 = 16, a 3 + a 4 = V aritmetické posloupnosti (a n ) n=1 je a 1 = 1 a diference d = 3. Vypočtěte členy a 4 a a V aritmetické posloupnosti (a n ) n=1 je a 1 = 1 a a 7 = 17. Vypočtěte diferenci a člen a V aritmetické posloupnosti (a n ) n=1 je a 2 = 5 a a 21 = 18. Vypočtěte diferenci a členy a 2 a a V aritmetické posloupnosti (a n ) n=1 je a 1 = 1 a diference d = 3. Vypočtěte součet prvních pěti členů s V aritmetické posloupnosti (a n ) n=1 je a 3 = 1 a a 7 = 1. Vypočtěte součet s V aritmetické posloupnosti (a n ) n=1 je a 3 = 8 a s 7 = 77. Vypočtěte člen a 1 a diferenci d. d. 33. V aritmetické posloupnosti (a n ) n=1 je a 1 = 3 a s 9 = 99. Vypočtěte diferenci 34. Vypočtěte člen a 21 aritmetické posloupnosti (a n ) n=1, kde a 3 = 5 a d = Vypočtěte člen a 3 aritmetické posloupnosti (a n ) n=1, kde a 10 = 25 a d = Vypočtěte diferenci d aritmetické posloupnosti (a n ) n=1, kde a 2 = 3 a a 8 = Vypočtěte diferenci d aritmetické posloupnosti (a n ) n=1, kde a 1 = 2 a s 4 = Vypočtěte člen a 30 aritmetické posloupnosti (a n ) n=1, kde a 1 = 3 a d = 3.
4 4 39. Mezi čísla 2 a 6 je vloženo 11 čísel tak, že spolu s danými čísly tvoří třináct po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte diferenci d, první a třetí vložené číslo. 40. Mezi čísla 1 a 13 jsou vložena tři čísla tak, že spolu s danými čísly tvoří pět po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte součet těchto pěti členů. 41. Mezi čísla 2 a 28 jsou vložena čtyři čísla tak, že spolu s danými čísly tvoří šest po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte třetí vložené číslo. 42. Mezi čísla 6 a 30 je vloženo pět čísel tak, že spolu s danými čísly tvoří sedm po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte prostřední vložené číslo. 43. Mezi čísla 7 a 17 jsou vložena tři čísla tak, že spolu s danými čísly tvoří pět po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte součet vložených čísel. 44. Přirozená čísla dělitelná čtyřmi tvoří aritmetickou posloupnost. Vypočtěte součet těchto čísel, která leží mezi čísly 7 a Vypočtěte součet všech lichých čísel, která leží mezi čísly 2 a Vypočtěte součet všech sudých čísel, která leží mezi 77 a Vypočtěte součet všech čísel dělitelných 5, která leží mezi čísly 3 a Součin prvního a šestého členu aritmetické posloupnosti je 156, devátý člen je 60. Vypočtěte první čtyři členy této posloupnosti. 49. Délky stran pravoúhlého trojúhelníka tvoří tři po sobě jdoucí členy aritmetické posloupnosti. Delší odvěsna má délku 24 cm. Vypočtěte velikosti zbývajících stran. 50. Napište prvních pět členů geometrické posloupnosti (a n ) n=1, je-li a) a 1 = 1, a 2 = 2, b) a 1 = 3, a 2 = 2 3, c) a 1 = 16, q = 1 2, d) a 2 a 1 = 15, a 3 a 2 = 60, e) a 3 = 8, a 6 = 64.
5 51. V geometrické posloupnosti (a n ) n=1 je a 1 = 81 a q = 2 3. Vypočtěte členy a 4 a a V geometrické posloupnosti (a n ) n=1 je a 2 = 5 a a 5 = 5 8. Vypočtěte kvocient q a členy a 1 a a V geometrické posloupnosti (a n ) n=1 je a 1 = 3 a q = 2. Vypočtěte součet s V geometrické posloupnosti (a n ) n=1 je a 3 = 9 a q = 3. Vypočtěte součet s V geometrické posloupnosti (a n ) n=1 je a 6 = 486 a q = 3. Vypočtěte součet s V geometrické posloupnosti (a n ) n=1 je a 5 = 8 a a 6 = 16. Vypočtěte člen a V geometrické posloupnosti (a n ) n=1 je a 3 = 5 a a 6 = 40. Vypočtěte kvocient q. 58. Mezi čísla 2 a 128 je vloženo pět čísel tak, že spolu s danými čísly tvoří sedm po sobě jdoucích členů geometrické posloupnosti. Vypočtěte prostřední z vložených čísel, součet vložených čísel a součet všech sedmi čísel. 59. Mezi čísla 1 a 81 jsou vložena tři čísla tak, že spolu s danými čísly tvoří pět po sobě jdoucích členů geometrické posloupnosti. Vypočtěte prostřední z vložených čísel. 60. Mezi čísla 2 a 64 jsou vložena čtyři čísla tak, že spolu s danými čísly tvoří šest po sobě jdoucích členů geometrické posloupnosti. Vypočtěte všech šesti čísel. 61. Mezi čísla 3 a 648 jsou vložena dvě čísla tak, že spolu s danými čísly tvoří první čtyři členy geometrické posloupnosti. Vypočtěte třetí člen této posloupnosti. 62. Mezi čísla 4 a 108 jsou vložena dvě čísla tak, že spolu s danými čísly tvoří čtyři po sobě jdoucí členy geometrické posloupnosti. Vypočtěte součet vložených čísel. 63. Mezi čísla 25 a 9 je vloženo pět čísel tak, že spolu s danými čísly tvoří sedm po sobě jdoucích členů aritmetické posloupnosti. Vypočtěte prostřední z vložených čísel, součet vložených čísel a součet všech sedmi čísel. 5
6 6 64. Rozhodněte, zda posloupnost (a n ) n=1 je shora omezená, zdola omezená, monotónní, je-li a) a n = n+1 n, b) a n = n n+2, c) a n = cos π 2, d) a n = n Rozhodněte, zda posloupnost (a n ) n=1 je monotónní, je-li a) a n = 5n 7, b) a n = n 2 3, c) a n = log 3 n, d) a n = 3 n+2, e) a n = 3n + 2, f) a n = 2n 2 + 5, g) a n = ( 1 2 )n 1, h) a n = n 2 + 3n Vypočtěte a znázorněte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 2n + 5, b) a n = 2n 2 3, c) a n = ( 1) n 1, d) a n = 2n 3 n+1, e) a n = sin nπ 2, f) a n = 3 n 5, g) a n = n, h) a n = n 2 + 3n 4.
Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2
Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti
Otázky z kapitoly Posloupnosti
Otázky z kapitoly Posloupnosti 8. září 08 Obsah Aritmetická posloupnost (8 otázek). Obtížnost (0 otázek)........................................ Obtížnost (0 otázek).......................................
Sbírka příkladů. Posloupnosti. Mgr. Anna Dravecká. Gymnázium Jihlava
Sbírka příkladů Posloupnosti Mgr. Anna Dravecká Gymnázium Jihlava Anotace Sbírka příkladů Posloupnosti je vytvořen jakou souhrn příkladů vhodné pro samostatné domácí procvičování základních poznatků z
Aritmetická posloupnost
1. Zjistěte vzorec posloupnosti 6; 3; 2; 3/2; 1,2; 1; 6/7; 3/4;... 2. V aritmetické posloupnosti z daných údajů vypočítejte naznačené hodnoty: a 4 = 11 a (a) 1 =? a 1 = 2 n =? a 5 = 14 d =? (d) d = 3 a
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
Aritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití.
Aritmetická a geometrická posloupnost, definice, vlastnosti, vzorce, užití. ARITMETICKÁ POSLOUPNOST 1. Posloupnost je dána n-týn členem. Určete druh posloupnosti, d, q: 2 5n a) a n = AP; d = -5/4 4 n 2
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T DUBNA 07 : 9. dubna 07 D : 830 P P P : 30 M. M. : 30 : 8,8 M. :, % S : -7,5 M. P : -,5 :,4 Zopakujte si základní informace ke zkoušce: n Test obsahuje 30 úloh a
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 017, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU
SBÍRKA ÚLOH PRO PŘÍPRAVU NA PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY NA VŠ EKONOMICKÉHO SMĚRU Tento materiál vznikl v rámci realizace projektu: Globální vzdělávání pro udržitelný rozvoj v sítí spolupracujících škol,
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
MATEMATIKA. 2Pravidla správného zápisu odpovědí. 1Základní informace k zadání zkoušky DIDAKTICKÝ TEST. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 30 bodů Pro přijetí uchazečů je rozhodné umístění v sestupném pořadí uchazečů podle dosaženého bodového hodnocení. 1Základní informace k zadání zkoušky
6. Bez použití funkcí min a max zapište formulí predikátového počtu tvrzení, že každá množina
Instrukce: Příklady řešte výhradně elementárně, bez použití nástrojů z diferenciálního a integrálního počtu. Je-li součástí řešení úlohy podmnožina reálných čísel, vyjádřete ji jako disjunktní sjednocení
STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH
STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH RNDr. Milada Rezková RNDr. Vlasta Sudzinová Mgr. Eva Valentová 2016 Předmluva Tento učební text je určen studentům 4. ročníku čtyřletých gymnázií,
Vzorcem pro n-tý člen posloupnosti, např.:, Rekurentně zadáním prvního členu a rekurentního vzorce, který vyjadřuje, např.: výčtem prvků graficky
Posloupnosti Motivace Víš, jaký bude následující člen v řadách 2, 4, 6, 8,? a 2, 4, 8, 16,?? Urči součet řady Jak převedeš číslo na zlomek? 1 Definice posloupnosti Posloupnost je funkce. Definiční obor
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 40 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Vypočtěte pro a 1; 3 hodnotu výrazu 4 + a 3 + a 3 ( 2). 1 bod VÝCHOZÍ TEXT
Číselné posloupnosti
Číselné posloupnosti Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 43 Pojem posloupnosti Každé zobrazení N do R nazýváme číselná posloupnost. 1 a 1, 2 a 2, 3 a
1. Základní poznatky z matematiky
. Základní poznatky z matematiky. Určete opačné číslo k číslu (3 5). a) 8 b) 8 c) 8 d) 8. Čísla,, 0, 3,, 8 9, seřaďte od největšího k nejmenšímu. a), 3,, 8 9,, 0, b), 3,, 8 9,, 0, c) 3,,, 8 9,, 0, d),,
Kód trezoru 1 je liché číslo.
1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden
CVIČNÝ TEST 11. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 11 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je k dispozici m přepravek na ovoce. Prázdná přepravka
9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b
008 verze 0A. Řešeními nerovnice x + 4 0 jsou právě všechna x R, pro která je x ( 4, 4) b) x = 4 c) x R x < 4 e) nerovnice nemá řešení b. Rovnice x + y x = je rovnicí přímky b) dvojice přímek c) paraboly
Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník 3 hodiny týdně PC a dataprojektor Kombinatorika Řeší jednoduché úlohy
Test Matematika Var: 101
Test Matematika Var: 101 Pokyny: Vyplňte příslušné kolečko odpovídající správné odpovědi u každé otázky ve zvláštním odpovědním formuláři, který Vám byl rozdán spolu se zadáním testu. 1. Přímky p: y =
[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY
Daniel Nechvátal :: maturitní otázky z matematiky 008 :: MOCNINY A ODMOCNINY ) Zjednodušte následující výrazy a určete, pro které hodnoty proměnných mají smysl a) ( ) ( ) [ ] ( ) ( ) [ ] : n n n n b) [
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava
VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava I Úprav algebraických výrazů zlomk, rozklad kvadratického trojčlenu,
Posloupnosti a jejich limity
KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2017
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Matematika T BŘEZNA 07 D : 4 BŘEZNA 07 P P P : 964 : 0 M M : 0 : 8,8 M : 8,8 % S : -7,5 M P : -,5 :,8 Zopakujte si základní informace ke zkoušce: n Test obsahuje 0 úloh a na
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán rovinný obrazec, v obrázku vyznačený barevnou výplní, který představuje
a se nazývá aritmetická právě tehdy, když existuje takové číslo d R
Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK. březen 014 Název zpracovaného celku: ARITMETICKÁ POSLOUPNOST A JEJÍ UŽITÍ ARITMETICKÁ POSLOUPNOST Teorie: Posloupnost každé ( ) n n1
MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1
MAT-2003 Úloha 4 Posloupnost je zadána pro všechna přirozená čísla n rekurentním vztahem a n+1 =a n 4 a 1 =50. Pro jaké nejmenší přirozené číslo n bude součet prvních n členů záporný? max. 4b, kde Úloha
Opakovací kurs středoškolské matematiky podzim
. Opakovací kurs středoškolské matematiky podzim František Mráz Ústav technické matematiky, Frantisek.Mraz@fs.cvut.cz I. Mocniny, odmocniny, algeraické výrazy Upravte (zjednodušte), případně určete číselnou
3. ledna list a odevzdejte tento zvláštní list (listy) i všechny ostatní listy, které jste při řešení
Jméno a příjmení: Písemná část zkoušky z předmětu AN1E 3. ledna 2019 Skutečná písemná práce bude obsahovat 5 příkladů. Zvolte si pořadí, v jakém budete příklady řešit. Vaše řešení nemusí být kulturně zapsané,
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015
Požadavky k opravným zkouškám z matematiky školní rok 2014-2015 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
Úvod, základní pojmy, funkce
Úvod, základní pojmy, funkce Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 1. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 69 Obsah 1 Matematická logika 2 Množiny 3 Funkce,
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
4.3.4 Základní goniometrické vzorce I
.. Základní goniometrické vzorce I Předpoklady: 0 Dva vzorce, oba známe už z prváku. Pro každé R platí: + =. Důkaz: Použijeme definici obou funkcí v jednotkové kružnici: T sin() T 0 - cos() S 0 R - Obě
Příklady k přednášce 3
Příklad k přednášce 3 1. Určete, zda závislost a daná uvedeným vztahem je funkce = f(). V případě záporné odpovědi stanovte, kterými funkcemi je možné příslušnou závislost popsat. 1. =3 2, (, + ) je funkcí,
2. Vlastnosti elementárních funkcí, složené, inverzní a cyklometrické funkce,
. Určete vlastnosti funkcí: (i) f : y = x (ii) f : y = x 4 (iii) f : y = cotgx (iv) f 4 : y = arccosx (v) f 5 : y = 4 x (vi) f 6 : y = ( 4 )x (vii) f 7 : y = lnx (viii) f 8 : y = x. Uveďte příklad: (i)
1. Písemka skupina A1..
1. Psemka skupina A1.. Nartněte grafy funkc (v grafu oznate všechny průseky funkce s osami) 3 y y sin( ) y y log ( 1) 1 y 1 y = arccotg - 1) Urete, jestli je funkce y = - + 1 omezená zdola nebo shora?
Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C
Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76
pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A
Přijímací zkouška na MFF UK pro bakalářské studijní programy fyzika, informatika a matematika 2018, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé úlohy
----- Studijní obory. z matematiky. z matematiky. * Aplikovaná matematika * Matematické metody v ekonomice
Minimum Maximum Minimum Maximum Studijní obory z matematiky z matematiky z matematiky z matematiky * Aplikovaná matematika * Matematické metody v ekonomice * Obecná matematika Navazující magisterský studijní
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Obsah Obsah NIŽŠÍ úroveň obtížnosti 4 MAGZD10C0K01 říjen 2010..........................
Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014
Požadavky k opravným zkouškám z matematiky školní rok 2013-2014 1. ročník (první pololetí, druhé pololetí) 1) Množiny. Číselné obory N, Z, Q, I, R. 2) Absolutní hodnota reálného čísla, intervaly. 3) Procenta,
CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 36 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Určete iracionální číslo, které je vyjádřeno číselným výrazem (6 2 π 4
1 Posloupnosti a řady.
1 Posloupnosti a řady. 1.1 Posloupnosti reálných čísel. Definice 1.1: Posloupností reálných čísel nazýváme zobrazení f množiny N všech přirozených čísel do množiny R všech reálných čísel. Pokud nemůže
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Matematická analýza I
Matematická analýza I Cvičení 1 (4. 10. 2016) Definice absolutní hodnoty. Řešení nerovnic s absolutními hodnotami. Geometrická interpretace řešení nerovnice x + 1 < 3. Komplexní čísla a operace s nimi,
Soubor příkladů z Matematické analýzy 1 (M1100) 1
Soubor příkladů z Matematické analýzy (M00). Opakování. Upravte následující výrazy: 3 3 +3 3 3 6+ (+) 3 [ a+b a b ] ( b ) (a a b a+b b a b a b ) (a b) 3 [(a b) 4 (a+b) 5 ] 6 3 a 4 a 3 a 3 aa 3 (f) 3 +
x (D(f) D(g)) : (f + g)(x) = f(x) + g(x), (2) rozdíl funkcí f g znamená: x (D(f) D(g)) : (f g)(x) = f(x) g(x), (3) součin funkcí f.
1. Funkce Deinice 1.1. Zobrazení nazýváme reálná unkce, jestliže H() R. Další speciikaci můžeme provést podle deiničního oboru zobrazení. Deinice 1.2. Reálná unkce se nazývá (1) unkce jedné reálné proměnné,
Matematická indukce, sumy a produkty, matematická logika
Matematická indukce, sumy a produkty, matematická logika 8.9. -.0.009 Matematická indukce Jde o následující vlastnost přirozených čísel: Předpokládejme:. Nějaké tvrzení platí pro.. Platí-li tvrzení pro
CVIČNÝ TEST 12. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21
CVIČNÝ TEST 12 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 19 IV. Záznamový list 21 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Písmena A, B, C a D vyjadřují každé jednu z číslic
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol
Přípravné úlohy k maturitě z matematiky RNDr Miroslav Hruška Přípravné úlohy k maturitě z matematiky Miroslav Hruška, 009 Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce,
Název: Výskyt posloupností v přírodě
Název: Výskyt posloupností v přírodě Autor: Mgr. Lukáš Saulich Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět, mezipředmětové vztahy: matematika a její aplikace Ročník: 6. (4. ročník
Gymnázium Jiřího Ortena, Kutná Hora
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Cvičení z matematiky algebra (CZMa) Systematizace a prohloubení učiva matematiky: Číselné obory, Algebraické výrazy, Rovnice, Funkce, Posloupnosti, Diferenciální
Přijímací zkouška na MFF UK v Praze
Přijímací zkouška na MFF UK v Praze pro bakalářské studijní programy fyzika, informatika a matematika 2016, varianta A U každé z deseti úloh je nabízeno pět odpovědí: a, b, c, d, e. Vaším úkolem je u každé
Kapitola 1: Reálné funkce 1/13
Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální
h = 0, obr. 7. Definice Funkce f je ohraničená shora, jestliže x Df Funkce f je ohraničená zdola, jestliže x Df d R
.4. Cíle V této kapitole jsou deinován nejdůležitější pojm týkající se vlastností unkcí. Při dalším studiu budou tto vlastnosti často používán. Je proto nutné si jejich deinice dobře zapamatovat. Deinice.4..
. (x + 1) 2 rostoucí v intervalech (, 1) a. ) a ( 2, + ) ; rostoucí v intervalu ( 7, 2) ; rostoucí v intervalu,
Příklad Najděte intervaly monotonie a lokální etrémy funkce f() = +. ( + ) ( rostoucí v intervalech (, ) a 7, + ) klesající v intervalu ( ), 7 5 5 v bodě = 7 5 je lokální minimum 4. Najděte intervaly monotonie
SMART Notebook verze Aug
SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 8.9.2012 Pro ročník: 9. Vzdělávací obor předmět: Matematika Klíčová slova: funkce,
6. FUNKCE A POSLOUPNOSTI
6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat
CVIČNÝ TEST 37. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 37 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na staré hliněné desce je namalován čtverec
Goniometrie a trigonometrie
Goniometrie a trigonometrie Vzorce pro goniometrické funkce Nyní si řekneme něco o velmi důležitých vlastnostech a odvodíme si také některé velmi důležité vzorce pro výpočty s goniometrickými funkcemi.
MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel
MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní
II. Úlohy na vložené cykly a podprogramy
II. Úlohy na vložené cykly a podprogramy Společné zadání pro příklady 1. - 10. začíná jednou ze dvou možností popisu vstupních dat. Je dána posloupnost (neboli řada) N reálných (resp. celočíselných) hodnot.
Posloupnosti a řady. 28. listopadu 2015
Posloupnosti a řady Přednáška 5 28. listopadu 205 Obsah Posloupnosti 2 Věty o limitách 3 Řady 4 Kritéria konvergence 5 Absolutní a relativní konvergence 6 Operace s řadami 7 Mocninné a Taylorovy řady Zdroj
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 2. prosince 2014 Předmluva
MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
Funkce. b) D =N a H je množina všech kladných celých čísel,
Funkce ) Napište funkční předpisy a najděte definiční obory funkcí f pro které platí: f ( ) je povrch krychle o straně b) f ( ) je objem kvádru s čtvercovou podstavou o straně a povrchem rovným c) f (
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 2009/2010
Šablona pro zadávání otázek pro přijímací řízení pro akademický rok 00/010 Zadavatel: Ekonomický přehled: kód 1 Matematické myšlení: kód Společensko historický přehled: kód Zadejte kód místo x do níže
CVIČNÝ TEST 20. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 20 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Jsou dána tři celá čísla A, B, C. Zvětšíme-li číslo A o 1, číslo
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
1. Písemka skupina A...
. Písemka skupina A.... jméno a příjmení Načrtněte grafy funkcí (v grafu označte všechny průsečíky funkce s osami a asymptoty). y y sin 4 y y arccos ) Určete, jestli je funkce y ln prostá? ) Je funkce
Příklady ke cvičením z matematické analýzy- ZS 2008/2009- Série I.
Příklady ke cvičením z matematické analýzy- ZS 008/009- Série I. Jako slunce zastiňuje hvězdy svým jasem, tak i vzdělaný člověk může zastínit slávu druhých lidí ze společnosti, bude-li předkládat matematické
Matematika PRŮŘEZOVÁ TÉMATA
Matematika ročník TÉMA 1-4 Operace s čísly a - provádí aritmetické operace v množině reálných čísel - používá různé zápisy reálného čísla - používá absolutní hodnotu, zapíše a znázorní interval, provádí
Kapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
Matematický KLOKAN kategorie Kadet
Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Kadet Úlohy za body. Hodnota kterého z výrazů je sudé číslo? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 2. Hvězda na obrázku
Přijímací zkouška z matematiky 2017
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 2017 Kód uchazeče ID:.................. Varianta: 14 Příklad 1. (3b) Mějme dvě čísla zapsaná v pětkové soustavě: 4112 5 a 2443
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
CVIČNÝ TEST 19. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 19 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 Určete, kolikrát je rozdíl čísel 289 a 255 větší než jejich součet.
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
49. roënìk matematickè olympi dy, III. kolo kategorie A. BÌlovec, 9.ñ12. dubna 2000
49. roënìk matematickè olympi dy, III. kolo kategorie BÌlovec, 9.ñ. dubna 000 . Nechť n je přirozené číslo. Dokažte, že součet 4 n + 4 n je dělitelný třinácti, právě když n je sudé. (J. Šimša) Řešení.
Funkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
Základy matematické analýzy (BI-ZMA)
Příklady ke cvičení z předmětu Základy matematické analýzy (BI-ZMA) Matěj Tušek Katedra matematiky České vysoké učení technické v Praze BI-ZMA ZS 009/00 Evropský sociální fond Praha & EU: Investujeme do
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná
PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, 1000..a 0,1, 0,01, 0,001.. Čísla navzájem opačná Racionální čísla Zlomky Rozšiřování a krácení zlomků
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_11 ŠVP Podnikání RVP 64-41-L/51