Logaritmy a věty o logaritmech
|
|
- Martina Štěpánková
- před 8 lety
- Počet zobrazení:
Transkript
1 Variace 1 Logaritmy a věty o logaritmech Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na
2 1. Logaritmy Definice logaritmu daného čísla: Logaritmus daného kladného čísla při základu a > 0 a zároveň a 1 je takové číslo y, kterým musíme umocnit základ, abychom dostali logaritmované číslo x. Zapisujeme: log a x = y x = a y [Čteme logaritmus z čísla x při základu a] Určování logaritmů daných kladných čísel se nazývá logaritmování. Obrácená operace se nazývá odlogaritmování. Vlastnosti logaritmů: Logaritmus jedné při libovolném základu a > 0, a 1 je roven nule. Logaritmus z čísla stejného, jakým je i základ, je roven jedné. Logaritmus z čísla většího než jedna je, při základu větším než jedna, kladný, logaritmus z čísla menšího než jedna (ale většího než nula), je při základu větším než jedna, záporný. Je-li základ logaritmu větší než nula a menší než jedna, pak je logaritmus z čísla většího než jedna záporný, zatímco logaritmus z čísla patřícího do otevřeného intervalu (0; 1) je číslo kladné. Logaritmus při základu 10 se nazývá logaritmus dekadický. Logaritmus při základu e se nazývá logaritmus přirozený. Příklad 1: Vypočtěte log 5 25 Řešení: 2
3 Podle definice převedeme na výpočet 25 = 5 y Odtud snadno zjistíme, že y = 2 Příklad 2: Vypočtěte základ logaritmu, jestliže platí log z 216 = 3 Řešení Podle definice převedeme na výpočet z 3 = 216 Protože platí 216 = 6 3, pak z 3 = 6 3 a odtud z = 6 Příklad 3: Určete, jaké číslo musíme logaritmovat, abychom při základu logaritmu 0,1 dostali číslo -1 Řešení: Podle definice převedeme výpočet log 0,1 x = -1 na tvar 0,1-1 = x. Odtud snadno vypočteme, že x = Výpočty logaritmů - procvičovací příklady 1. Stanovte číslo x, platí-li: log 5 x = Pro který základ z platí: log z n = n? Pro který základ z platí: log z 3 = 3? Stanovte číslo x, platí-li: log 1/2 x = Vypočtěte log ,25 6. Stanovte číslo x, platí-li log 1/10 x = Vypočtěte log , Vypočtěte log 2 2 0,5 9. Určete hodnotu výrazu x: x = log 2 log Vypočtěte log ,
4 11. Vypočtěte základ z, jestliže: Vypočtěte základ z, jestliže: Pro který základ z platí: /3 14. Vypočtěte log ,5 15. Vypočtěte základ z, jestliže: ,2 16. Stanovte číslo x, platí-li: log 2 x = Stanovte číslo x, platí-li log 10 x = -1 0,1 18. Vypočtěte hodnotu výrazu x: x = log Vypočtěte log ,5 20. Vypočtěte log 2 (log 3 81) Vypočtěte základ z, jestliže: /3 22. Pro který základ z platí:
5 23. Pro který základ z platí: log z 216 = 3? Vypočtěte log , Určete log 4 (log 4 4) Věty o logaritmech Podle definice logaritmů platí: log a x = y (1) Logaritmus daného kladného čísla x je takové číslo (log a x), kterým musíme umocnit základ - viz pravá strana výrazu (1), abychom dostali logaritmované číslo - tj. x. 1. Nelze logaritmovat součet log z (a + b) log z a + log z b 2. Logaritmus součinu je roven součtu logaritmů jednotlivých činitelů (= 1. věta o logaritmování) Důkaz: vše pro a > 0, b > 0, z > 0, z 1 Protože mocniny jsou si rovny a mají shodné základy, musí se rovnat i příslušné exponenty. Proto: log z ab = log z a + log z b Např.: 5
6 3. Logaritmus podílu je roven rozdílu logaritmů dělence a dělitele (= 2. věta o logaritmování) Důkaz: vše pro a > 0, b > 0, z > 0, z 1 Např.: 4. Logaritmus mocniny je roven součinu exponentu a logaritmu základu dané mocniny (= 3. věta o logaritmování) Důkaz: log z a n = n. log z a Např.: 6
7 4. Věty o logaritmech - procvičovací příklady 1. Který výraz x musel být logaritmován, aby platilo: 1840 Řešte pro přípustné hodnoty. 2. Který výraz x musel být logaritmován, aby platilo: log z x = 2. log z (a - 2) + 3. log z (a + 2) - 2. log z (a 2-4) Uveďte i podmínky řešitelnosti. x = a + 2 a > 2, z > 0, z 1 3. Určete log z x, je-li x = a 1/2. b 2/ Určete log z x, je-li: Který výraz x musel být logaritmován, aby platilo: 1836 Uveďte i podmínky řešitelnosti. a > 0, b > 0, z > 0, z 1 7
8 6. Který výraz x musel být logaritmován, aby platilo: log z x = 3. log z a + (n + 3). log z b a > 0, b > 0, z > 0, z 1 7. Určete log z x, je-li: x = 3m -1. n -2. r log z 3 - log z m - 2. log z n + log z r; m > 0, n > 0, r > 0, z > 0, z 1 8. Který výraz x musel být logaritmován, aby platilo: a > 0, b > 0, z > 0, z 1, m N 9. Určete log z x, je-li: Určete log z x, je-li Pro přípustné hodnoty určete log z x, je-li Který výraz x musel být logaritmován, aby platilo: log z x = 3. log z a + 2. log z b + 1 x = a 3.b 2.z; a > 0, b > 0, z > 0, z
9 13. Vypočtěte A, jestliže platí: Z dané rovnosti určete A a udejte existenční podmínky: Který výraz x musel být logaritmován, aby platilo: log z x = log z a + log z b + log z c x = abc; a > 0, b > 0, c > 0, z > 0, z Který výraz x musel být logaritmován, aby platilo: Uveďte i podmínky řešitelnosti. a > 0, b > 0, a > b, z > 0, z Určete log z x, je-li log z a - 0,5. log z b; a > 0, b > 0, z > 0, z 18. Určete log z x, je-li: Který výraz x musel být logaritmován, aby platilo: log z x = log z a + log z b - log z c x = ab/c; a > 0, b > 0, c > 0, z > 0, z
10 20. Určete log z x, je-li Který výraz x musel být logaritmován, aby platilo: 1839 Řešte pro přípustné hodnoty. 22. Určete log z x, je-li x = a -2. b log z a - 3. log z b; a > 0, b > 0, z > 0, z Který výraz x musel být logaritmován, aby platilo: Uveďte i podmínky řešitelnosti. a > 0, b > 0, c > 0, z > 0, z Určete log z x, je-li: x = 3a -2. b log z 3-2. log z a + 0,5. log z b; a > 0, b > 0, z > 0, z Který výraz x musel být logaritmován, aby platilo: log z x = m. log z n + n. log z m - log z n - log z m x= m n-1. n m-1 ; m > 0, n > 0, z > 0, z
11 Obsah 1. Logaritmy 2. Výpočty logaritmů - procvičovací příklady 3. Věty o logaritmech 4. Věty o logaritmech - procvičovací příklady
M - Příprava na 1. čtvrtletku - třída 3ODK
M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven
Variace. Lineární rovnice
Variace 1 Lineární rovnice Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice Rovnice je
Lineární rovnice pro učební obory
Variace 1 Lineární rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Rovnice Co je rovnice
Funkce a lineární funkce pro studijní obory
Variace 1 Funkce a lineární funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce
Lomené algebraické výrazy
Variace 1 Lomené algebraické výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Lomené algebraické výrazy
Variace. Mocniny a odmocniny
Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených
Logaritmus. Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým. umocníme základ a, abychom dostali číslo.
Logaritmus Logaritmus kladného čísla o základu kladném a různém od 1 je exponent, kterým umocníme základ a, abychom dostali číslo. Platí tedy: logax = y a y = x ( Dekadický logaritmus základ 10 označení
Nerovnice a nerovnice v součinovém nebo v podílovém tvaru
Variace 1 Nerovnice a nerovnice v součinovém nebo v podílovém tvaru Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz
M - Příprava na 2. čtvrtletku pro třídy 2P a 2VK
M - Příprava na. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument
Funkce pro studijní obory
Variace 1 Funkce pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
M - Příprava na 3. zápočtový test pro třídu 2D
M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně
Funkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
Algebraické výrazy pro učební obory
Variace 1 Algebraické výrazy pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Algebraické výrazy
M - Příprava na 1. zápočtový test - třída 3SA
M - Příprava na 1. zápočtový test - třída 3SA Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
Exponenciální a logaritmická funkce
Variace 1 Exponenciální a logaritmická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Exponenciální
M - Příprava na 3. čtvrtletní písemnou práci
M - Příprava na 3. čtvrtletní písemnou práci Určeno pro třídu ODK VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická
Variace 1 Funkce s absolutní hodnotou, funkce exponenciální a funkce logaritmická Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu
M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK
M - Příprava na 1. čtvrtletku pro třídy P a VK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu dovoleno pouze s odkazem na www.jarjurek.cz. VARIACE 1 Tento dokument byl
Variace. Číselné výrazy
Variace 1 Číselné výrazy Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné výrazy Číselné výrazy, výpočty
M - Kvadratická funkce
M - Kvadratická funkce Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument byl kompletně
Funkce - pro třídu 1EB
Variace 1 Funkce - pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv využití výukového materiálu je povoleno pouze s odkazem na www.jarjurek.cz. 1. Funkce Funkce je přiřazení, které každému
Algebraické výrazy - řešené úlohy
Algebraické výrazy - řešené úlohy Úloha č. 1 Určete jeho hodnotu pro =. Určete, pro kterou hodnotu proměnné je výraz roven nule. Za proměnnou dosadíme: = a vypočteme hodnotu výrazu. Nejprve zapíšeme rovnost,
Variace. Kvadratická funkce
Variace 1 Kvadratická funkce Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratická funkce Kvadratická
Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar
Řešte v : má rovnice tvar takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar takže rovnice v zadání má v tomto případě opět jedno řešení. Sjednocením obou případů dostaneme úplné
M - Logaritmy a věty pro počítání s nimi
M - Logritmy věty pro počítání s nimi Určeno jko učení text pro studenty dálkového studi shrnující text pro studenty denního studi. VARIACE 1 Tento dokument yl kompletně vytvořen, sestven vytištěn v progrmu
Mocniny. Nyní si ukážeme jak je to s umocňováním záporných čísel.
Mocniny Mocnina je matematická funkce, která (jednoduše řečeno) slouží ke zkrácenému zápisu násobení. Místo toho abychom složitě psali 2 2 2 2 2, napíšeme jednoduše V množině reálných čísel budeme definovat
Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel
Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu
M - Kvadratické rovnice a kvadratické nerovnice
M - Kvadratické rovnice a kvadratické nerovnice Určeno jako učební tet pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
M - Algebraické výrazy
M - Algebraické výrazy Určeno jako studijní text pro studenty dálkového studia a jako shrnující textpro studenty denního studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu
MO-ME-N-T MOderní MEtody s Novými Technologiemi
Projekt: Reg.č.: Operační program: MO-ME-N-T MOderní MEtody s Novými Technologiemi CZ.1.07/1.5.00/34.0903 Vzdělávání pro konkurenceschopnost Škola: Hotelová škola, Vyšší odborná škola hotelnictví a turismu
Soustavy rovnic pro učební obor Kadeřník
Variace 1 Soustavy rovnic pro učební obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy
Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,
E-sbírka příkladů Seminář z matematiky Evropský sociální fond Praha & EU: investujeme do vaší budoucnosti Daniel Turzík, Miroslava Dubcová, Pavla Pavlíková Obsah 1 Úpravy výrazů................................................................
M - Kvadratické rovnice
M - Kvadratické rovnice Určeno jako učební tet pro studenty denního i dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
M - Příprava na pololetní písemku č. 1
M - Příprava na pololetní písemku č. 1 Určeno pro třídy 3SA, 3SB. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
7B. Výpočet limit L Hospitalovo pravidlo
7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,
Algebraické výrazy-ii
Algebraické výrazy-ii Jednou ze základních úprav mnohočlenů je jejich rozklad na součin mnohočlenů nižšího stupně. Ne všechny mnohočleny lze na součin rozložit. Pro provedení rozkladu můžeme použít: 1.
Exponenciální funkce. a>1, pro a>0 a<1 existuje jiný graf, který bude uveden za chvíli. Z tohoto
Exponenciální funkce Exponenciální funkce je taková funkce, která má neznámou na místě exponentu. Symbolický zápis by tedy vypadal takto: f:y = a x, kde a > 0 a zároveň a 1 (pokud by se a mohlo rovnat
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 2 3 x. a jeho hodnotu pro x = 2 a jeho hodnotu pro x = 6; x = 13 28 = 1 7 a jeho hodnotu pro x = 2
Obsah Definiční obory výrazů s proměnnou... Zápisy výrazů...3 Sčítání a odčítání mnohočlenů...4 Násobení mnohočlenů...5 Dělení mnohočlenů...7 Rozklad mnohočlenů na součin vytýkání...9 Rozklad mnohočlenů
Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková
Rovnice 2 Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Lineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23
CVIČNÝ TEST 1 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23 I. CVIČNÝ TEST 1 Určete výraz V, který je největším společným dělitelem výrazů V 1 V 3 :
Univerzita Karlova v Praze Pedagogická fakulta
Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:
1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:
Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky
Množiny a operace s nimi
Variace 1 Množiny a operace s nimi Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Množiny a operace s nimi
Soustavy rovnic pro učební obory
Variace 1 Soustavy rovnic pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Soustavy rovnic
Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
KFC/SEM, KFC/SEMA Rovnice, nerovnice
KFC/SEM, KFC/SEMA Rovnice, nerovnice Požadované dovednosti: Řešení lineárních rovnic a nerovnic Řešení kvadratických rovnic Řešení rovnic s odmocninou Řešení rovnic s parametrem Řešení rovnic s absolutní
16. Goniometrické rovnice
@198 16. Goniometrické rovnice Definice: Goniometrická rovnice je taková rovnice, ve které proměnná (neznámá) vystupuje pouze v goniometrických funkcích. Řešit goniometrické rovnice znamená nalézt všechny
ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
ARITMETIKA - TERCIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Stručný přehled učiva
Stručný přehled učiva TU1M2 Matematika 2 pro LP17, LP18 4. Aplikace diferenciálního počtu 4.1 Rovnice tečny a normály Má-li funkce v bodě vlastní derivaci, pak je to směrnice tečny grafu funkce v tečném
Logaritmické a exponenciální funkce
Kapitola 4 Logaritmické a exponenciální funkce V této kapitole se budeme zabývat exponenciálními a logaritmickými funkcemi. Uvedeme si definice vlastnosti a vztah mezi nimi. 4.1 Exponenciální funkce Exponenciální
. Určete hodnotu neznámé x tak, aby
Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla
2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC
22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25
6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N
KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
KOMPLEXNÍ ČÍSLA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE
6. Lineární (ne)rovnice s odmocninou
@06 6. Lineární (ne)rovnice s odmocninou rovnice Když se řekne s odmocninou, znamená to, že zadaná rovnice obsahuje neznámou pod odmocninou. není (ne)rovnice s odmocninou neznámá x není pod odmocninou
Cvičné texty ke státní maturitě z matematiky
Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179
Nerovnice, grafy, monotonie a spojitost
Nerovnice, grafy, monotonie a spojitost text pro studenty Fakulty přírodovědně-humanitní a pedagogické TU v Liberci vzniklý za podpory fondu F Martina Šimůnková 29. prosince 2016 1 Úvod Na druhém stupni
Data v počítači. Informační data. Logické hodnoty. Znakové hodnoty
Data v počítači Informační data (elementární datové typy) Logické hodnoty Znaky Čísla v pevné řádové čárce (celá čísla) v pohyblivé (plovoucí) řád. čárce (reálná čísla) Povelová data (instrukce programu)
= - rovnost dvou výrazů, za x můžeme dosazovat různá čísla, tím měníme
- FUNKCE A ROVNICE Následující základní znalosti je nezbytně nutné umět od okamžiku probrání až do konce kapitoly (většinou do napsání čtvrtletní písemné práce, na výjimky z tohoto pravidla bude upozorněno).
Nerovnice. Vypracovala: Ing. Stanislava Kaděrková
Nerovnice Vypracovala: Ing. Stanislava Kaděrková Název školy Název a číslo projektu Název modulu Obchodní akademie a Střední odborné učiliště, Veselí nad Moravou Motivace žáků ke studiu technických předmětů
Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Digitální učební materiál
Digitální učební materiál Číslo projektu CZ.1.7/1.5./4.8 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/ Inovace a zkvalitnění výuky prostřednictvím ICT
M - Matematika - třída 2DOP celý ročník
M - Matematika - třída DOP celý ročník Učebnice obsahující učivo celého. ročníku. VARIACE Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu
CVIČNÝ TEST 10. OBSAH I. Cvičný test 2. Mgr. Renáta Koubková. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 10 Mgr. Renáta Koubková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Pro x R řešte rovnici: 5 x 1 + 5 x + 5 x + 3 = 3 155. 2 Za předpokladu
Rozklad na součin vytýkáním
Rozklad na součin vytýkáním 1. Rozložte na součin prvočísel číslo: 165 = 210 = 546 = 2. Rozložte na součin mocnin prvočísel číslo: 96 = 432 = B. Rozklad na součin vytýkáním 1. Rozložte na součin vytýkáním:
FUNKCE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE
Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: 8 3 5 5 2 8 =20+4 1 = + c) = f) +6 +8=4 g) h)
Příklad Řešte v R rovnice: a) 8 3 5 5 2 8 =20+4 b) = + c) = d) = e) + =2 f) +6 +8=4 g) + =0 h) = Řešení a Máme řešit rovnici 8 3 5 5 2 8 =20+4 Zjevně jde o lineární rovnici o jedné neznámé. Nejprve roznásobíme
M - Lomené algebraické výrazy pro učební obory
M - Lomené algebraické výrazy pro učební obory Určeno jako studijní materiál pro třídy učebních oborů. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase.
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C)
VZOROVÝ TEST PRO 3. ROČNÍK (3. A, 5. C) max. 3 body 1 Zjistěte, zda vektor u je lineární kombinací vektorů a, b, je-li u = ( 8; 4; 3), a = ( 1; 2; 3), b = (2; 0; 1). Pokud ano, zapište tuto lineární kombinaci.
Funkce Arcsin. Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: 4 je číslo, jehož druhá mocnina se rovná 4.
..6 Funkce Arcsin Předpoklady: Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = je číslo, jehož druhá mocnina se rovná. - - - - - - y = y = Eponenciální
Edita Kolářová ÚSTAV MATEMATIKY
Přípravný kurs z matematik Edita Kolářová ÚSTAV MATEMATIKY Přípravný kurs z matematik 1 Obsah 1 Přehled použité smbolik 3 Základní pojm matematické logik a teorie množin 4.1 Element matematické logik.........................
M - Příprava na 2. zápočtový test - třídy 1DP, 1DVK
M - Příprava na. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a další šíření výukového materiálu povoleno pouze s uvedením odkazu na http://www.jarjurek.cz VARIACE 1 Tento dokument
a a
1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)
. je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy platit = 0
Příklad 1 Určete definiční obor funkce: a) = b) = c) = d) = e) = 9 f) = Řešení 1a Máme určit definiční obor funkce =. Výraz je zlomkem. Ten je smysluplný pro jakýkoli jmenovatel různý od nuly. Musí tedy
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
M - Pythagorova věta, Eukleidovy věty
M - Pythagorova věta, Eukleidovy věty Určeno jako učební text pro studenty dálkového studia. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací
Prvočísla a čísla složená
Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,
M - Příprava na 2. čtvrtletku pro třídu 1MO
M - Příprava na 2. čtvrtletku pro třídu 1MO Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento dokument
Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.
Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky
POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ
POSLOUPNOSTI A ŘADY Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
Definiční obor funkce
Vlastnosti funkcí Definiční obor funkce Konstantní funkce D f = R Lineární funkce D f = R Kvadratická funkce D f = R Exponenciální funkce D f = R Logaritmická funkce D f = 0, + Nepřímá úměrnost D f = R
Ch - Složení roztoků a výpočty koncentrací
Ch - Složení roztoků a výpočty koncentrací Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento dokument
c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice
Několik dalších ukázek: Eponenciální rovnice. Řešte v R: a) 5 +. 5 - = 5 - b) 5 9 4 c) 7 + = 5 d) = e) + + = f) 6 4 = g) 4 8.. 9 9 S : a) na každé straně rovnice musí být základ 5, aby se pak základy mohly
Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační
MATEMATIKA. Výrazy a rovnice 1. pracovní sešit
MATEMATIKA Výrazy a rovnice pracovní sešit Napsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzentky: Mgr. Barbora Stušová; doc. RNDr. Naďa Vondrová, Ph.D. OBSAH
Poznámka: Násobení je možné vyložit jako zkrácený zápis pro součet více sčítanců. Například:
ARNP 1 2015 Př. 5 Základní operace s přirozenými čísly Přesná definice přirozeného čísla je složitá spokojíme se s tím, že o libovolném čísle dokážeme rozhodnout, zda je, či není přirozeným číslem (5,
Maturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
CVIČNÝ TEST 29. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 29 Mgr. Kateřina Nováková OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Smrk má vysokou klíčivost, jen 5 % semen nevyklíčí.
Matice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
Funkce arcsin. Některé dosud probírané funkce můžeme spojit do dvojic: 4 - je číslo, které když dám na druhou tak vyjde 4.
.. Funkce arcsin Některé dosud probírané funkce můžeme spojit do dvojic: Kvadratická funkce Druhá odmocnina y =, 0; ) y = - je číslo, které když dám na druhou tak vyjde - - - - - - y = y = Eponenciální
M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK
M - Příprava na 4. zápočtový test - třídy 1DP, 1DVK Autor: Mgr. Jaromír Juřek Kopírování a jakékoliv další využití výukového materiálu je dovoleno pouze s uvedením odkazu na www.jarjurek.cz VARIACE 1 Tento
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU
LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU LINEÁRNÍ ROVNICE S ABSOLUTNÍ HODNOTOU je lineární rovnice, ve které se vyskytuje jeden nebo více výrazů v absolutní hodnotě. ABSOLUTNÍ HODNOTA x reálného čísla x je
3. Mocnina a odmocnina. Pythagorova věta
. Mocnina a odmocnina. Pythagorova věta 7. ročník -. Mocnina, odmocnina, Pythagorovavěta.. Mocnina... Vymezení pojmu Součin stejných činitelů můţeme napsat v podobě mocniny. Například : součin...... můţeme