SIMULACE STAVOVÝCH ZMĚN IDEÁLNÍHO PLYNU
|
|
- Denis Bartoš
- před 6 lety
- Počet zobrazení:
Transkript
1 SIMULACE SAOÝCH ZMĚN IDEÁLNÍHO PLYNU FILÍPEK Josef, CZ Resumé uzařené termodynamické soustaě se ohřeem, ochlazoáním a ůsobením nějších sil mění tři staoé eličiny objem, tlak a telota. Proto je hodné staoé změny zobrazoat rostoroém diagramu (na termodynamické loše. Multimediální rojekt, který je nedílnou součástí článku, názorně zobrazuje růběh staoých a energetických eličin ideálního lynu. Klíčoá sloa: ratné změny lynu, staoá ronice, termodynamická locha, Adobe Flash, interaktiní animace. SAUS CHANGE SIMULAION IN IDEAL GAS In closed thermodynamic setu three magnitudes change with heating, cooling and external force effects - olume, ressure and temerature. herefore it is suitable to isualize state changes in satial diagram (on thermodynamic lane. Multimedia roject, which is a base of this article, grahically describes the course of state and energy magnitudes in ideal gas. Keywords: reersible changes in gas, state function, thermodynamic lane, Adobe flash, interactie animation. Úod ětšina zákonů technické termodynamiky byla definoána 9. století. Zasloužili se o to ědci jako B. homson, J. Watt, S. Carnot, J. P. Joule, W. homson (lord Kelin, R. Clausius a další. Bylo dokázáno, že telo a mechanická ráce jsou jen rozdílné formy energie. Obr. - Kruhoý cyklus [] eelný stroj může trale racoat tehdy, okud se lyn ždy o ukončení exanze rátí zět do ůodního stau. [] uto skutečnost zachycuje kruhoý děj (Obr.. Z obrázku je zřejmé, že tlak a objem lynu je na očátku kruhoého děje stejný jako na konci. Stejná je i telota, ale to už z obr. neylýá, rotože se jedná o lošný diagram -.
2 ermodynamická locha uzařené soustaě (s konstantní hmotností lynoé nálně oisuje staoá ronice ideálního lynu ztah mezi třemi staoými eličinami tlakem, objemem a termodynamickou telotou. Záislost tlaku na telotě a objemu lynu lze znázornit lochou rostoroém souřadném systému (Obr.. Ronoážné stay látky se mohou yskytoat ouze na termodynamické loše, nikoli nad touto lochou či od touto lochou. [] Obr. ermodynamická locha [] Obr. Prostoroý staoý diagram ideálního lynu Každý bod sými souřadnicemi udáá nějaký sta lynu (Obr.. Na této loše jsou zakresleny hyerboly sojující body o stejné souřadnici (izotermy a římky sojující body o stejné souřadnici (izochory, resektie body o stejné souřadnici (izobary.
3 bodě je sta lynu charakterizoán staoými eličinami,,. Přesuneme-li se ůsobením nějších sil, ohřeem či ochlazoáním do bodu získáme noé souřadnice,,. Z obr. je zřejmé, že tyto souřadnice nezáisí na cestě, kterou si zolíme. Prostoroý staoý diagram je názorný, ale obtížně se něm zobrazují staoé změny. Častěji se setkááme s roinnými diagramy (Obr.. lastní rojekt Obr. Roinný diagram - Úkolem tohoto rojektu je sestait ýukoou ooru, která názorně zobrazí zájemné souislosti staoých a energetických eličin ideálního lynu ři ohřeu, ochlazoání a ůsobení nějších sil. Program obsahuje lynulé animace staoých změn a tabulky, které studenti ylní na základě znalosti termodynamických ýočtů. Projekt byl ytořen omocí software Adobe Flash. [] znikl řeracoáním a rozšířením dříějších rací. [7], [] Student má za úkol řesunout se z očátečního stau do konečného stau několika cestami (Obr.,. ycházíme z ředokladů, že roběhnou základní ratné staoé změny ideálního lynu. Změny staoých eličin,, i energetických eličin, U, I, S, A, A t ycházejí ze základních ztahů termodynamiky []: staoá ronice: Mayerů ztah: změna nitřní energie: mr c c r Poissonů ztah: + κ du m c d změna entalie: di m c d d změna entroie: ds objemoá ráce lynu: da d technická ráce lynu: da t d I. zákon termodynamiky: d du + da, d di + dat c c
4 Pro ilustraci zolíme růběh (Obr.,, který zahrnuje izotermickou komresi a izochorický ohře. růběhu izotermické komrese (Obr. se staoé a energetické eličiny mění následoně: roste tlak lynu nemění se - telota, nitřní energie U, entalie I snižuje se objem lynu, entroie S, odádí se telo řes teelně odié dno álce, soustaa sotřeboáá ráci A i technickou ráci A t Obr. Izotermická komrese lynu Pokud bychom místo zyšoání nější síly naoak odebírali oceloé kuličky, roběhne ratná změna izotermická exanze (Obr.. raťme se šak k růběhu (Obr.. Úroeň, A, A t, S na konci izotermické komrese je e sloucoém grafu yjádřena zelenými čarami (Obr. 7. Při následujícím izochorickém ohřeu se eličiny mění takto: roste - telota, tlak, nitřní energie U, entalie I, entroie S, soustaa řijímá telo nemění se - objem, soustaa nekoná ráci A snižuje se - technická ráce A t je i nadále sotřeboáána soustaou Po skončení termodynamických rocesů začne student ylňoat bílá olíčka tabulce (Obr. 8. Nejre leé části tabulky yočítá staoé eličiny,,. K tomu může yužít zorce uedené tab.. Potom raé části dolní množstí tela yměněného s okolím, změny staoých funkcí U, I, S, objemoou ráci A a technickou ráci A t (ab.
5 Obr. Izotermická exanze lynu Obr. 7 Izochorický ohře lynu
6 ab. zorce ro ýočet staoých eličin Bod (Pa (m (K r m - zadáno - zadáno κ - zadáno n Obr. 8 Dolnění tabulky yočtenými hodnotami 7
7 ab. zorce ro ýočet staoých a energetických funkcí Změna - adiabatická U 0 U mc ( Ι I ( mc 0 S A κ κ κ S ( κ A t A A t A + - izochorická - izochorická - izobarická - izobarická - izochorická - izotermická - izochorická mc ( U mc ( I mc ( mc ( U mc ( I mc ( mc ( U mc ( I mc ( mc ( U mc ( I mc ( U mc ( mc ( ln 0 I mc ( U I 0 mc ( U mc ( - olytroická U + A U mc ( I ( mc ( I mc S ln mc A 0 A t S ln mc A 0 A t mc A ( A t 0 S ln mc A ( A t 0 S ln mc A 0 A t S ln S A ln t mc A 0 A t S ln + m c ln r ln κ S n n A ( n A t A + 8
8 Pro kontrolu lastních ýočtů slouží růžoá olíčka. (Obr. 9. Sráné hodnoty,, se zjistí klikáním na růžoá olíčka zlea do raa a zhora dolů. Potom následuje oěření, U, I, S, A, A t. Přednastaené hodnoty c, c, m,,, je možné změnit. Místo desetinné čárky se oužije desetinná tečka. Po stisknutí tlačítka otrďte c, c, m se řeočítá hodnota měrné lynoé konstanty r a Poissonoy konstanty κ. Ke kontrole noých ýsledků se oět yužijí růžoá olíčka. Obr. 9 Kontrola yočtených hodnot Záěr zájemná řeměna teelné a mechanické energie je zajímaou oblastí fyziky. ětšina rací zaměřených k této roblematice má šak statickou oahu. Interaktiní ýukoý rogram, který je nedílnou součástí tohoto článku, názorně objasní důležité souislosti ři termodynamických změnách lynoých sousta. yto oznatky jsou důležité ro ochoení činnosti saloacích motorů, komresorů, teelných čeradel, chladících zařízení aod. 9
9 Literatura:. ADOBE CREAIE EAM. Adobe Flash CS. Comuter Press Brno 008, s., ISBN KADLEC, Z. Úodní řednáška termodynamika htt://slidelayer.cz/slide/ [cit. -0-0]. PAELKA, M. a kol.: ermomechanika. CERM Brno 00, s. 8, ISBN PINDOR, D., FILÍPEK, J.: he Animation of thermodynamic actions in gases. In MendelNet. 0 Agro, MZLU Brno 00. ISBN X.. RAJCHL J. Kruhoý děj htt://fyzika.jreichl.com/main.article/iew/09-kruhoy-dej [cit. -0-0] 7. ROUSEK, M., FILÍPEK, J., KLEPÁRNÍK, J. ermodynamika a energetické stroje - cičení. MZLU Brno 00, s. 9, ISBN Kontaktní adresa: Josef Filíek, doc. Ing., CSc. Ústa techniky a automobiloé doray, Agronomická fakulta Mendelu, Zemědělská, 00 Brno, ČR, tel.: +0, filiek@mendelu.c 70
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná
TERMOMECHANIKA 4. První zákon termodynamiky
FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá
Termodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
VY_32_INOVACE_G 21 11
Náze a adresa školy: Střední škola růmysloá a uměleká, Oaa, řísěkoá organizae, Praskoa 99/8, Oaa, 7460 Náze oeračního rogramu: OP Vzděláání ro konkureneshonost, oblast odory.5 Registrační číslo rojektu:
Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály
Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém
VUT, FAST, Brno ústav Technických zařízení budov
Termo realizaci inooaných technicko-ekonomických VUT, FAST, Brno ústa Technických zařízen zení budo GG . Úod Cykly lze cháat jako oběhy dějůd ři i kterých sledoaný objekt měním sůj j sta cestami, jež mají
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :
Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
III. Základy termodynamiky
III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium
KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2
Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním
HYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR
HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.
Kruhový děj s plynem
.. Kruhový děj s lynem Předoklady: 0 Chceme využít skutečnost, že lyn koná ři rozínání ráci, na konstrukci motoru. Nejjednodušší možnost: Pustíme nafouknutý balónek. Balónek se vyfukuje, vytlačuje vzduch
Cvičení z termodynamiky a statistické fyziky
Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
TERMOMECHANIKA 9. Termodynamika par čisté látky
FSI VU Brně, Energetický úta Odbor termomechaniky a techniky rotředí rof. Ing. Milan Paelek, CSc. ERMOMECHANIKA 9. ermodynamika ar čité látky OSNOVA 9. KAPIOLY Staoé ronice reálných lynů Ohře látky ři
vše, co je vně systému systém při něm mění svůj stav základní termodynamická veličina
. ZÁKLADNÍ POJMY ERMOMECHANIKY SYSÉM OKOLÍ SYSÉMU ERMODYNAMICKÝ DĚJ EPLOA (soustaa, těleso)- určité množstí látky, jejíž termofyzikální lastnosti yšetřujeme še, co je ně systému systém ři něm mění sůj
Stavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i
ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f
Termodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Výsledky úloh. Obsah KRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku
ýsledky úloh C R, C R, κ 0, 0,088 0, 0,8 KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku 6 η 0,8 ( ){ { Obsah Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových
Teplovzdušné motory motory budoucnosti
Vysoká škola báňská Technická univerzita Ostrava Fakulta strojní Katedra energetiky Telovzdušné motory motory budoucnosti Text byl vyracován s odorou rojektu CZ.1.07/1.1.00/08.0010 Inovace odborného vzdělávání
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
Vnitřní energie Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Náze a adesa školy: Střední škola ůysloá a uěleká, Oaa, řísěkoá oganizae, Paskoa 399/8, Oaa, 7460 Náze oeačního ogau: OP zděláání o konkueneshonost, oblast odoy.5 Registační číslo ojektu: CZ..07/.5.00/34.09
IDEÁLNÍ PLYN. Stavová rovnice
IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA
YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,
Teplota a její měření
Teplota a její měření Teplota a její měření Číslo DUM v digitálním archivu školy VY_32_INOVACE_07_03_01 Teplota, Celsiova a Kelvinova teplotní stupnice, převodní vztahy, příklady. Tepelná výměna, měrná
7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.
7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta
II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV
II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých
Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory
Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední
VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.
TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI
TECHNOLOGICAL PROCESS IN ISOTHERMAL HEAT TREATMENT OF STEEL TECHNOLOGICKÝ POSTUP PŘI IZOTERMICKÉM TEPELNÉM ZPRACOVÁNÍ OCELI Učeň M., Filípek J. Ústav techniky a automobilové dopravy, Agronomická fakulta,
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj
3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc
IDEÁLNÍ PLYN II. Prof. RNDr. Emanuel Svoboda, CSc.
IDEÁLNÍ PLYN II Prof. RNDr. Eanuel Svoboa, Sc. ZÁKLADNÍ RONIE PRO LAK IP F ýchoisko efinice tlaku vztahe S Náoba tvaru krychle, stejná rychlost olekul všei sěry (olekulární chaos, všechny sěry stejně ravěoobné)
Objemové procesy v plynu
Objemoé rocesy lynu Z termoynamiky íme, že neronoážné termoynamické soustaě, ke jsou naříkla různé teloty nebo tlaky, robíhají makroskoické rocesy, které mohou soustau řiést o stau termoynamické ronoáhy
MMEE cv Určení energetického obsahu zboží plynná paliva
MMEE c.2-2011 Určení energetického obsahu zboží lynná alia Cíl: Procičit ýočtu energetického obsahu lynných ali 1. Proč je nutné řeočítáat energetický obsah (ýhřenost, salné telo) lynných ali? 2. Jak řejít
Termodynamika 2. UJOP Hostivař 2014
Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně
2.6.7 Fázový diagram. Předpoklady: Popiš děje zakreslené v diagramu křivky syté páry. Za jakých podmínek mohou proběhnout?
2.6.7 Fázový diagram Předoklady: 2606 Př. 1: Poiš děje zakreslené v diagramu křivky syté áry. Za jakých odmínek mohou roběhnout? 4 2 1 3 1) Sytá ára je za stálého tlaku zahřívána. Zvětšuje svůj objem a
Termomechanika 4. přednáška
ermomechanika 4. přednáška Miroslav Holeček Upozornění: ato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím citovaných zdrojů
9. Struktura a vlastnosti plynů
9. Struktura a vlastnosti plynů Osnova: 1. Základní pojmy 2. Střední kvadratická rychlost 3. Střední kinetická energie molekuly plynu 4. Stavová rovnice ideálního plynu 5. Jednoduché děje v plynech a)
STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A
Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování
5.4 Adiabatický děj Polytropický děj Porovnání dějů Základy tepelných cyklů První zákon termodynamiky pro cykly 42 6.
OBSAH Předmluva 9 I. ZÁKLADY TERMODYNAMIKY 10 1. Základní pojmy 10 1.1 Termodynamická soustava 10 1.2 Energie, teplo, práce 10 1.3 Stavy látek 11 1.4 Veličiny popisující stavy látek 12 1.5 Úlohy technické
LOGO. Struktura a vlastnosti plynů Ideální plyn
Struktura a vlastnosti plynů Ideální plyn Ideální plyn Protože popsat chování plynů je nad naše možnosti, zavádíme zjednodušený model tzv. ideálního plynu, který má tyto vlastnosti: Částice ideálního plynu
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ
VÝHODY A NEVÝHODY PNEUMATICKÝCH MECHANISMŮ Výhody: medium (vzduch) se nachází všude kolem nás možnost využití centrální výroby stlačeného vzduchu v závodě kompresor nemusí pracovat nepřetržitě (stlačený
3. cvičení. Chemismus výbušnin. Trhací práce na lomech
3. cičení Chemismus ýbušnin Trhací práce na lomech Požadaky na průmysloé trhainy: 1, dostatečně ysoký obsah energie objemoé jednotce ýbušniny 2, přiměřená citliost k nějším podmětům 3, dlouhodobá chemická
Stavové veličiny vodní páry Zhotoveno ve školním roce: 2011/2012 Jméno zhotovitele: Ing. Iva Procházková
Náze a adrea školy: Sřední škola růmyloá a umělecká, Oaa, říěkoá organizace, Prakoa 399/8, Oaa, 74601 Náze oeračního rogramu: OP Vzděláání ro konkurencechono, obla odory 1.5 Regirační čílo rojeku: CZ.1.07/1.5.00/34.019
Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické
Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=
F6040 Termodynamika a statistická fyzika
F6040 ermodynamika a statistická fyzika Záisky z řednášek Poslední úrava: 21. července 2015 Obsah 1 Úvod do ermodynamiky a statistické fyziky 4 1.1 Pois systémů mnoha částic................... 4 1.2 Zkoumané
Obr. č. IV-1 Práce tepelného stroje
IV. ERMOMECHANIKA EPELNÝCH SROJŮ V teelných strojích dochází k řeměně tela mechanickou ráci rostřednictím raconí látky (lynu, áry), která je nositelem teelné energie. Praconí látce je telo řiáděno buď
Termomechanika 2. přednáška Ing. Michal HOZNEDL, Ph.D.
ermomechanika. řenáška Ing. Michal HOZNEDL, Ph.D. Uozornění: ao rezenace slouží ýhraně ro ýukoé účely Fakuly srojní Záaočeské unierziy Plzni. Byla sesaena auorem s yužiím cioaných zrojů a eřejně osuných
- pro oblast podtlaku
I. ERMOMECHANIKA PLYNŮ Při teelnýh dějíh nastáají změny stau raoníh látek (lynů, ar, eent. kaalin). eelný sta každé stejnorodé látky je yjádřen třemi základními určujíími eličinami tz. staoými eličinami.
11. Tepelné děje v plynech
11. eelné děje v lynech 11.1 elotní roztažnost a rozínavost lynů elotní roztažnost obje lynů závisí na telotě ři stálé tlaku. S rostoucí telotou se roztažnost lynů ři stálé tlaku zvětšuje. Součinitel objeové
PLYNNÉ LÁTKY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník
PLYNNÉ LÁTKY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Ideální plyn Po molekulách ideálního plynu požadujeme: 1.Rozměry molekul ideálního plynu jsou ve srovnání se střední vzdáleností molekul
Poznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
nebo její linearizovaný tvar a T
lk syté áry záislost n telotě Úod: Měření záislosti tlku syté áry n telotě má ýznm ro zjišťoání telot ru klin jejich směsí ři různých tlcích nok k ýočtu složení r jejich směsí ři různých telotách ru, okud
Zákony ideálního plynu
5.2Zákony ideálního plynu 5.1.1 Ideální plyn 5.1.2 Avogadrův zákon 5.1.3 Normální podmínky 5.1.4 Boyleův-Mariottův zákon Izoterma 5.1.5 Gay-Lussacův zákon 5.1.6 Charlesův zákon 5.1.7 Poissonův zákon 5.1.8
RESOLUTION OF THE TRANSPORT SITUATIONS ON THE CROSSINGS-POLYTOMIC TESTS ŘEŠENÍ DOPRAVNÍCH SITUACÍ NA KŘIŽOVATKÁCH - POLYTOMICKÉ TESTY
RESOLUTION OF THE TRANSPORT SITUATIONS ON THE CROSSINGS-POLYTOMIC TESTS Rýdlo L., Filípek J. ŘEŠENÍ DOPRAVNÍCH SITUACÍ NA KŘIŽOVATKÁCH - POLYTOMICKÉ TESTY Ústav základů techniky a automobilové dopravy,
Termodynamické zákony
Termodynamické zákony Makroskopická práce termodynamické soustavy Již jsme uvedli, že změna vnitřní energie soustavy je obecně vyvolána dvěma ději: tepelnou výměnou mezi soustavou a okolím a konáním práce
VUT, FAST, Brno ústav Technických zařízení budov
Termo realizaci inovovaných technicko-ekonomických VUT, FAST, Brno ústav Technických zařízen zení budov Vodní ára - VP Vaříme a dodáváme vodní áru VP: mokrou, suchou, sytou, řehřátou nízkotlakou, středotlakou
VLHKÝ VZDUCH STAVOVÉ VELIČINY
VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve
Vzorové příklady - 4.cvičení
Vzoroé říklady -.cičení Vzoroý říklad.. V kruhoém řiaděči e mění růřez z hodnoty = m na = m (obrázek ). Ve tuním růřezu byla ři utáleném roudění změřena růřezoá rychlot = m. -. Vyočítejte růtok a růřezoou
NÁHRADNÍ HORKOVOVDNÍ PLYNOVÁ KOTELNA. Jiří Kropš
OUTĚŽNÍ PŘEHLÍDKA TUDENTKÝCH A DOKTORANTKÝCH PRACÍ FT 007 NÁHRADNÍ HORKOODNÍ PLYNOÁ KOTELNA Jiří Kroš ABTRAKT Nárh kotelny jako náhradní zdroj o dobu rekonstrukce elektrárny. Předokládaná doba yužíání
VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 12
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŢENÝRSTVÍ cvičení 2 Termodynamika reálných plynů část 2 Hana Charvátová, Dagmar Janáčová Zlín 203 Tento studijní
KATEDRA VOZIDEL A MOTORŮ. Skutečné oběhy PSM #6/14. Karel Páv
KATEDRA VOZIDEL A MOTORŮ Skutečné oběhy PSM #6/ Karel Pá Stlaitelná kaalina / krit [-] Ideální lyn: = rt (s hybou < %) Důody rozdílů mezi idealizoaným a reálným oběhem Odhylky od idealizae oliňují jak
Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1
Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci
5.4.2 Objemy a povrchy mnohostěnů I
5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že
Druhá věta termodynamiky
Druhá věta termoynamiky cience owes more to the steam engine than the steam engine owes to cience. Lawrence J. Henerson (97) Nicolas R. ai arnot 796 83 William homson, lor Kelvin 84 907 Ruolf J.E. lausius
Poznámky k semináři z termomechaniky Grafy vody a vodní páry
Příklad 1 Sytá pára o tlaku 1 [MPa] expanduje izotermicky na tlak 0,1 [MPa]. Znázorněte v diagramech vody a vodní páry. Jelikož se jedná o izotermický děj, je výhodné použít diagram T-s. Dále máme v zadání,
Zpracování teorie 2010/11 2011/12
Zpracování teorie 2010/11 2011/12 Cykly Děje Proudění (turbíny) počet v: roce 2010/11 a roce 2011/12 Chladící zařízení (nakreslete cyklus a nakreslete schéma)... zde 13 + 2 (15) Izochorický děj páry (nakreslit
Sbírka A - Př. 1.1.5.3
..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít
1 Neoklasický model chování spotřebitele
Neoklasický model choání sotřebitele PŘÍKLAD : PRMÁRNÍ A DUÁLNÍ ÚLOHA Užitek sotřebitele je osán užitkoou funkcí e taru U. Vyjádřete: a. Marshalloy otáky b. Neřímou funkci užitku c. Hicksoy otáky d. Přímou
TERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny
TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
. 7 ÍPRAVA TEPLÉ UŽITKOVÉ VODY (TV) 1 TV
ŘÍRAA RAA TELÉ ODY (T) ŘEDNÁŠKA Č.. 7 ŘÍRAA RAA TELÉ UŽITKOÉ ODY (T) 1 T určená k mytí, koupání, praní, umývání, k úklidu OHŘÍÁNÍ: - ze studené nejčastěji pitné vody s teplotou 8-12 C - v ohřívači na teplotu
Kontrolní otázky k 1. přednášce z TM
Kontrolní otázky k 1. přednášce z TM 1. Jak závisí hodnota izobarického součinitele objemové roztažnosti ideálního plynu na teplotě a jak na tlaku? Odvoďte. 2. Jak závisí hodnota izochorického součinitele
2.4 Stavové chování směsí plynů Ideální směs Ideální směs reálných plynů Stavové rovnice pro plynné směsi
1. ZÁKLADNÍ POJMY 1.1 Systém a okolí 1.2 Vlastnosti systému 1.3 Vybrané základní veličiny 1.3.1 Množství 1.3.2 Délka 1.3.2 Délka 1.4 Vybrané odvozené veličiny 1.4.1 Objem 1.4.2 Hustota 1.4.3 Tlak 1.4.4
Cvičení z termomechaniky Cvičení 3.
Příklad 1 1kg plynu při izobarickém ohřevu o 710 [ C] z teploty 40[ C] vykonal práci 184,5 [kj.kg -1 ]. Vypočítejte molovou hmotnost plynu, množství přivedeného tepla a změnu vnitřní energie ΔT = 710 [K]
Gibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A
ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní
Elektroenergetika 1. Termodynamika a termodynamické oběhy
Termodynamika a termodynamické oběhy Termodynamika Popisuje procesy, které zahrnují změny teploty, přeměny energie a vzájemný vztah mezi tepelnou energií a mechanickou prací Opakování fyziky Termodynamický
Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.
Digitální učební materiál Číslo projektu CZ.1.07/1.5.00/34.0802 Název projektu Zkvalitnění výuky prostřednictvím ICT Číslo a název šablony klíčové aktivity III/2 Inovace a zkvalitnění výuky prostřednictvím
TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno 2013
Vysoké učení technické v Brně Fakulta strojního inženýrství, Energetický ústav Odbor termomechaniky a techniky prostředí TERMOMECHANIKA PRO STUDENTY STROJNÍCH FAKULT prof. Ing. Milan Pavelek, CSc. Brno
1. Úkol. 2. Teorie. Fyzikální základy techniky
Fyzikálí základy tehiky Protokol č.: Náze: Staoeí olytroikého exoetu a idikátoroého diagramu komresoru yraoáo de: 5..007 yraoali: Roma Stae, Odřej Soboda, Sabia Zoroá, Marti Smažil. Úkol Naším úkolem bylo
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Fyzika (FYZ) Molekulová fyzika, termika 2. ročník, sexta 2 hodiny týdně Fyzikální učebna vybavená audiovizuální technikou, interaktivní tabule, fyzikální pomůcky
Výpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
Směrová kalibrace pětiotvorové kuželové sondy
Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The
Tep e e p l e né n é str st o r j o e e z po p h o l h ed e u d u zákl zá ad a n d í n h í o h o kur ku su r su fyzi f ky 3. 3 Poznámky k přednášce
Tepelné stroje z pohledu základního kursu fyziky. Poznámky k přednášce osnova. Idealizované tepelné cykly strojů s vnitřním spalováním, Ottův cyklus, Dieselův cyklus, Atkinsonův cyklus,. Způsob výměny
POVRCH A OBJEM HRANOLU A JEHLANU
Projekt ŠABLONY NA GM Gymnázim elké Meziříčí registrční číslo rojekt: CZ..07/.5.00/.098 I- Inoce zklitnění ýky směřjící k rozoji mtemtické grmotnosti žáků středních škol PORCH A OBJEM HRANOLU A JEHLANU
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
1.4. II. věta termodynamiky
... věta termodynamiky Slovní formulace: homsonova formulace: Nelze sestrojit periodicky pracující stroj, který by konal práci, přičemž by ochlazoval jediné těleso, jehož teplota by byla všude stejná,
Vnitřní energie ideálního plynu podle kinetické teorie
Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau
TERMOMECHANIKA 11. Termodynamika proudění
FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA. Termodynamika roudění OSNOVA. KAPITOLY -rozměrné adiabatické roudění Ronice kontinuity
FYZIKÁLNÍ CHEMIE chemická termodynamika
FYZIKÁLNÍ CHEMIE chemická termodynamika ermodynamika jako vědní disciplína Základní zákony termodynamiky Práce, teplo a energie Vnitřní energie a entalpie Chemická termodynamika Definice termodynamiky
Základy elektrických pohonů, oteplování,ochlazování motorů
Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon
W pot. F x. F y. Termodynamické potenciály. V minulé kapitole jsme poznali novou stavovou veliinu entropii S a vidli jsme, že ji lze používat
ermodynamické otenciály minulé kaitole jsme oznali novou stavovou veliinu entroii a vidli jsme, že ji lze oužívat stejn jako jiné stavové veliiny - na. tlak, telotu, objem, oet ástic soustavy N, jejich