Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
|
|
- Lenka Musilová
- před 7 lety
- Počet zobrazení:
Transkript
1 Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním direnciálem: b) c) d) e) 3x + 2)y dx + xx + 1) dy y tan x dx + x tan y dy y 2 ln x + 1) dx + 2xy ln x dy y 2 ln x + 1) dy + 2xy ln x dx x x 2 + y 2 dy y x 2 + y 2 dx Příklad 2: Dokažte že 1-forma ω 2 x 2 dy y 2 + xy) dx není exaktní diferenciál) ale dg xy 2 ) 1 ω 2 již je Příklad 3: Příklad 4: cyklická relace ro arciální derivace) Dokažte že mei libovolnými třemi ávislými roměnnými x y latí vtah:dokažte že 1-forma ω 2 y1 + x x 2 ) dx + xx + 1) dy není exaktním diferenciálem Naleněte diferenciální rovnici kterou funkce gx) musí slňovat aby dφ gx)ω 2 byl exaktním diferenciálem Presvěčte se že gx) e x je řešením této rovnice a určete tvar funkce φx y) ) y x ) x y ) x y 1 Předchoí rovnost latí vždy když není některá derivací nulová Hint: M uže se vám hodit fakt že ) x y řiadě že vtah oužijete dokažte jej ) 1 y x Příklad 5: Jedna možných stavových rovnic ro neideální lyn Dietericiho rovnice) má tvar R ex α ) R
2 kde α je konstanta a R je lynová konstanta Sočtěte výray ) ) ) a ukažte že jejich součin je oravdu 1 Příklad 6: Dokažte že ) Termodynamické otenciály a Maxwellovy vtahy S ) S a ) O srávnosti výsledku se také řesvěčte oužitím Maxwellova magického čtverce Příklad 7a: S oužitím Maxwellových vtah u dokažte že 2 ) F 2 ) G C 2 C 2 Zde F je Helmholtova volná energie a G je Gibbsova volná energie Gibbs uv otenciál) Příklad 7b: S oužitím Maxwellových vtah u dokažte že ) ) F/) G/) U 2 a H 2 Zde U je vnitřní energie F je Helmholtova volná energie H je entalie a G je Gibbsova volná energie Příklad 8: Pro jistý termodynamický systém se exerimentálně jistilo že jeho Gibbsova volná energie má následující funkční ávislost latí ro 1 mol): [ ] α G ) R ln R) 5/2 α a R jsou konstanty) Dokažte že C 5 2 R Hint: M uže se vám hodit fakt že S ) G Termodynamika nechemických systém u + an der Waals uv lyn Příklad 9: an der Waals uv lyn je osán stavovou rovnicí ro 1 mol) R b a 2
3 kde a a b jsou konstanty limitě limita ideálního lynu) má vnitřní energie U tvar U C lus neodstatná konstanta) Naleněte exlicitní tvar ro U ) Hint: M uže se vám hodit relace: ) Příklad 10: Dokažte že ro an der Waals uv lyn C neávisí na Jakou odmínku musí slňovat aby tento výsledek latil i v jiných chemických systémech? Hint: M uže se vám hodit relace a fakt že výra ) ) C U má být roven nule ) Příklad 11: Určete obecněný Mayer uv vtah ro 1 mol Wan der Waalsova lynu Hint: M uže se vám hodit vtah odvoený na cvičení [ ) ] ) U C C + a cyklická relace ro arciální derivace vi říklad 4) ) ) Příklad 12: Určete druhý a třetí viriálový koeficient ro Wan der Waals uv lyn Příklad 13: Termodynamika klasického aramagnetického systému je dána stavovými roměnnými M vektor magnetiace) H vektor intenity magnetického ole) a Stavová rovnice je dána Curieovým ákonem ři telotách K a malých H ) M C H kde C je Curieova konstanta Předokládejte že vnitřní energie U M H a infinitesimální měna ráce kterou systém vykoná na svém okolí ři infiniteimální měně dh je δw M dh následujících výraech dolňte chybějící informace δq? ) dm +? ) dh ds? ) dm +? ) dh SM H)? Příklad 14: Pro magnetické materiály magnetika) le I rinci termodynamický formulovat ve tvaru ds du H dm ro jednoduchost neuvažujeme říadnou mechanickou ráci) Zde H je vektor intenity magnetického ole a M je vektor magnetiace Dokažte že ) ) Mi S H i H H k k i
4 Hint: K odvoení se vám m uže hodit magnetický termodynamický otenciál: Ψ U S H M Příklad 15: Uvažujte ředchoí říklad a ředokládejte že jak M tak i H mají oue -tovou složku nenulovou takovém říadě H dm HdM kde M M a H H Pro secifický ty magnetické soli se exerimentálně jistila následující ávislost MH ) M 0 [1 ex α H )] α je materiálová konstanta) Dokažte že výší-li se iotermicky H H 0 0 do H 1 H 1 je takové ole ři němž M dosáhne hodnoty 3 4 M 0) otom se entroie soli sníží o hodnotu M 0 3 ln 4) 4α Příklad 16: Uvažujte oět aramagnetikum kde M a H mají oue nenulové -tové složky Dokažte že ro teelnou kaacitu C H ři konstantním H a ro teelnou kaacitu C M ři konstantním M latí: C M M C H M + [ H M ] ) M H Použijte dále I ákon termodynamický; dsm ) dum ) HM )dm a odmínku integrability ro entroii solu s Curieovým ákonem a ukažte že M 0 Tato relace je římočarou analogií obdobného tvrení ro ideální lyn tj U neávisí na ) Použijte tyto výsledky k tomu aby jste dokáali obecněný Mayer uv vtah C H C M CH2 2 M 2 C C je Curieova constanta) šimněte si že řadu výsledk u které jsme obdrželi ro chemické systemy le v magnetikách často ískat formální áměnou H a M Příklad 17: Diskutujte ředchoí výsledky ro dielektrika tj určete C E C P Pro dielektrika I rinci termodynamický má tvar: ds du EdP E je intenita el ole a P je olariace) Stavová rovnice Curie uv ákon) má tvar: P CE/ C je Curieova konstanta) Příklad 18: Z exerimentu je námo že jestliže je ryžový roužek adiabaticky natažen jeho telota se výší Jestliže se ryžový roužek natáhne iotermicky výší se jeho entroie sníži a nebo ustane neměněná? b) Jestliže se ryžový roužek natáhne adiabaticky výší se jeho vnitřní energie sníži a nebo ustane neměněná? Pokuste se interretovat ískaná chování Hint: M uže se vám hodit že ro ryž latí δw kxdx okud natahováni je ve směru osy x konstanta k se naýva koeficient elasticity) Příadné Maxwellovy relace se dají odvodit analogickým usobem jako v chemických systémech
5 III rinci termodamický a jeho alikace Příklad 19: Dokažte že koeficient iobarické rotažnosti β a koeficient iochorické roínavosti γ jsou rovny nule ři 0 Diskutujte tyto výsledky Hint: Pro β se se vám mohou hodit vtahy latné ro 1 mol) C a Maxwell uv vtah ) Podobně ro γ C se vám mohou hodit vtahy latné ro 1 mol) a Maxwell uv vtah ) Příklad 20: Dokažte že Curieho ákon ro magnetika nelatí ři 0 Hint: C tvrdí že ro homogenní iotroní magnetika je suscetibilita χ C/ C je Curieho constanta) Dokážte nař že χ/) B 0 0
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
VíceCvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1 Bud dω A(x, ydx+b(x, ydy libovolná diferenciální forma (Pfaffián Ukažte, že v říadě, že dω je úlný diferenciál (existuje funkce F (x, y tak, že dω df, musí latit
VíceCvičení z termodynamiky a statistické fyziky
Cvičení termodynamiky a statistické fyiky 1Nechť F(x, y=xe y Spočtěte F/ x, F/, 2 F/ x 2, 2 F/ x, 2 F/ x, 2 F/ x 2 2 Bud dω = A(x, ydx+b(x, ydy libovolná diferenciální forma(pfaffián Ukažte, ževpřípadě,žedωjeúplnýdiferenciál(existujefunkce
VíceTERMIKA VIII. Joule uv a Thompson uv pokus pro reálné plyny
TERMIKA VIII Maxwellova rovnovážná rozdělovací funkce rychlostí Joule uv a Thomson uv okus ro reálné lyny 1 Maxwellova rovnovážná rozdělovací funkce rychlostí Maxwellova rychlostní rozdělovací funkce se
VíceTermodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
VíceCvičení z termodynamiky a statistické fyziky
Cvičení z termodynamiky a statistické fyziky 1 Matematické základy 1 Parciální derivace Necht F(x,y = xe x2 +y 2 Sočtěte F x, F y, 2 Úlný diferenciál I Bud 2 F x 2, 2 F x y, dω = A(x,ydx + B(x,ydy 2 F
VíceCvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
VíceFyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
VíceTERMIKA VI. Pfaffovy formy; Absolutní termodynamická teplota; Entropie trochu jinak; Tepelná kapacita K V a K p ;
TERMIKA I Pfaffovy formy; Absolutní termodynamická telota; Entroie trochu jinak; Termodynamické roměnné nechemických systém u; Teelná kaacita K a K ; 1 Pro Carnot uv cyklus víme, že Pfaffovy formy Q 1
VíceII. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV
II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých
VíceMatematika termodynamiky
Přednáška 2 Matematika termodynamiky Vhledem k tomu, že stavové funkce vyskytující se v termodynamice jsou často funkcemi dvou nebo dokonce více proměnných (vi II. postulát termodynamiky), je přiroeně
VíceTermodynamické základy ocelářských pochodů
29 3. Termodynamické základy ocelářských ochodů Termodynamika ůvodně vznikla jako vědní discilína zabývající se účinností teelných (arních) strojů. Později byly termodynamické zákony oužity ři studiu chemických
VíceF6040 Termodynamika a statistická fyzika
F6040 ermodynamika a statistická fyzika Záisky z řednášek Poslední úrava: 21. července 2015 Obsah 1 Úvod do ermodynamiky a statistické fyziky 4 1.1 Pois systémů mnoha částic................... 4 1.2 Zkoumané
VíceV p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :
Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceIII. Základy termodynamiky
III. Základy termodynamiky 3. ermodynamika FS ČU v Praze 3. Základy termodynamiky 3. Úvod 3. Základní ojmy 3.3 Základní ostuláty 3.4 Další termodynamické funkce volná energie a volná entalie 3.5 Kritérium
VíceSTRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
VíceStavová rovnice. Ve stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní parametry Y i
ermodynamický ostulát: Stavová rovnice e stavu termodynamické rovnováhy termodynamicky homogenní soustavy jsou všechny vnitřní arametry Y i určeny jako funkce všech vnějších arametrů X j a teloty Y i f
VíceTeorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
VíceOddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
VíceKvantová a statistická fyzika 2 (Termodynamika a statistická fyzika)
Kvantová a statistická fyzika 2 (ermodynamika a statistická fyzika) ermodynamika ermodynamika se zabývá zkoumáním obecných vlastností makroskoických systémů v rovnováze, zákonitostmi makroskoických rocesů,
VíceE = 1,1872 V ( = E Cu. (γ ± = 0, ,001 < I < 0,1 rozšířený D-H vztah)
GALVANICKÉ ČLÁNKY E = E red,rvý E red,levý E D = E red,rvý E ox,levý E D G = z E E E S = z = z T E T T Q= T S [] G = z E rg E E rs = = z, r rg T rs z = = T E T T T E E T T ν i E = E ln i z i mimo rovnováhu
VíceW pot. F x. F y. Termodynamické potenciály. V minulé kapitole jsme poznali novou stavovou veliinu entropii S a vidli jsme, že ji lze používat
ermodynamické otenciály minulé kaitole jsme oznali novou stavovou veliinu entroii a vidli jsme, že ji lze oužívat stejn jako jiné stavové veliiny - na. tlak, telotu, objem, oet ástic soustavy N, jejich
VíceTERMOMECHANIKA 4. První zákon termodynamiky
FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá
VíceDiferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)
2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h
Více8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
VíceMatematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceCvičení z NOFY / Termodynamika. 1 Cvičení Totální diferenciál. 1.1 Totální diferenciál Teplota a tlak pro ideální plyn
Cvičení z NOFY031 2009/2010 1 Termodynamika 1 Cvičení 1.10.2008 Totální diferenciál 1.1 Totální diferenciál 1. Jsou zadány dva výrazy: df 1 (x, y) = 6xy 3 dx + 9x 2 y 2 dy, df 2 (x, y) = 6xy 2 dx + 9x
VíceF4 SÍLA, PRÁCE, ENERGIE A HYBNOST
F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti F4 SÍLA, PRÁCE, ENERGIE A HYBNOST Prvními velmi důležitými ojmy jsou mechanická ráce a otenciální energie
VíceUčební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné
Více13. cvičení z Matematické analýzy 2
. cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2
VíceÚvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce
Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx
VícePŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Více21. Úvod do teorie parciálních diferenciálních rovnic
21. Úvod do teorie parciálních diferenciálních rovnic Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2014/15 21.1 Základní termíny Definice Vektor tvaru α = (α 1,...,α m ), kde α j N {0}, j
VíceGibbsova a Helmholtzova energie. Def. Gibbsovy energie G. Def. Helmholtzovy energie A
ibbsova a Helmholtzova energie Def. ibbsovy energie H Def. Helmholtzovy energie U, jsou efinovány omocí stavových funkcí jená se o stavové funkce. ibbsova energie charakterizuje rovnovážný stav (erzibilní
VíceVLHKÝ VZDUCH STAVOVÉ VELIČINY
VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve
VíceKatedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze. Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A
Zápočtová písemná práce č. 1 z předmětu 01MAB3 varianta A středa 19. listopadu 2014, 11:20 13:20 ➊ (8 bodů) Rozhodněte o stejnoměrné konvergenci řady n 3 n ( ) 1 e xn2 x 2 +n 2 na množině A = 0, + ). ➋
VíceTERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
VíceTERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
VíceMatematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
VíceProjekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizoaný na SPŠ Noé Město nad Metují s finanční odorou Oeračním rogramu Vzděláání ro konkurenceschonost Králoéhradeckého kraje ermodynamika Ing. Jan Jemelík Ideální lyn: - ideálně stlačitelná
VícePLOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule).
LOŠNÉ INTEGRÁLY V praxi se vyskytuje potřeba integrovat funkce nejen podle křivých čar, ale i podle křivých ploch (např. přes povrch koule). uzavřená hladká kraj LOCHY lochy v prostoru, které byly zatím
VíceDefinice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka
1 Diferenciální počet funkcí dvou proměnných 1 Výnačné bod a množin bodů v prostoru Souřadnicová soustava v prostoru Každému bodu v prostoru přiřaujeme v kartéské souřadnicové soustavě uspořádanou trojici
Více1. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny 1., 2. a 3. parciální derivace funkce f a funkce g.
. Je dána funkce f(x, y) a g(x, y, z). Vypište symbolicky všechny.,. a 3. parciální derivace funkce f a funkce g.. Spočtěte všechny první parciální derivace funkcí: a) f(x, y) = x 4 + y 4 4x y, b) f(x,
VícePoznámky k cvičením z termomechaniky Cvičení 3.
Vnitřní energie U Vnitřní energie U je stavová veličina U = U (p, V, T), ale závisí pouze na teplotě (experiment Gay-Lussac / Joule) U = f(t) Pro měrnou vnitřní energii (tedy pro vnitřní energii jednoho
Více7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.
7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta
VíceFYZIKÁLNÍ CHEMIE I: 2. ČÁST
Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta FYZIKÁLNÍ CHEMIE I: 2. ČÁST KCH/P401 Ivo Nezbeda Ústí nad Labem 2013 1 Obor: Klíčová slova: Anotace: Toxikologie a analýza škodlivin, Chemie
VíceDiferenciál funkce. L Hospitalovo pravidlo. 22. a 23. března 2011
Diferenciál funkce Derivace vyšších řádů L Hospitalovo pravidlo Jiří Fišer 22. a 23. března 2011 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT2 Přednáška č. 6 22. a 23. března 2011 1 / 18 y ω(h) dy O x Obrázek:
VíceM - Příprava na 1. čtvrtletku - třída 3ODK
M - Příprava na 1. čtvrtletku - třída ODK Souhrnný studijní materiál k přípravě na čtvrtletní písemnou práci. Obsahuje učivo října až prosince 007. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven
VíceEKONOMETRIE 4. přednáška Modely chování spotřebitele
EKONOMETRIE 4. řednáška Modely chování sotřebitele Rozočtové omezení Sotřebitel ři svém rozhodování resektuje tzv. rozočtové omezení x + x y, kde x i množství i-té sotřební komodity, i cena i-té sotřební
VíceVEKTOROVÁ POLE VEKTOROVÁ POLE
Je-li A podmnožina roviny a f je zobrazení A do R 2, které je dáno souřadnicemi f 1, f 2, tj., f(x, y) = (f 1 (x, y), f 2 (x, y)) pro (x, y) A, lze chápat dvojici (f 1 (x, y), f 2 (x, y)) jako vektor s
VíceTermodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
VíceMAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
VíceI. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
VíceZápo tová písemná práce. 1 z p edm tu 01RMF varianta A
Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)
Více1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
VíceŘešení: Nejprve musíme napsat parametrické rovnice křivky C. Asi nejjednodušší parametrizace je. t t dt = t 1. x = A + ( B A ) t, 0 t 1,
Určete Křivkový integrál příklad 4 x ds, kde {x, y ; y ln x, x 3}. Řešení: Nejprve musíme napsat parametrické rovnice křivky. Asi nejjednodušší parametrizace je Tedy daný integrál je x ds x t, y ln t,
VíceVýpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
VíceRadiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice
Radiologická fyzika základy diferenciálního počtu derivace a tečny, integrály a plochy diferenciální rovnice podzim 2008, pátá přednáška Derivace a tečny aneb matematika libovolně malých změn Nejen velké,
VíceKapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
VíceDo známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
VíceÚloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je
Více1 Funkce dvou a tří proměnných
1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2
VíceT leso. T leso. nap ě tí na prostorovém elementu normálové - působí kolmo k ploše smykové - působí v ploše
Prostorový model ákladní veli č in a vtah nejlépe odrážejí skte č nost obtížn ě ř ešitelný sstém rovnic obtížn ě jší interpretace výsledků ákladní vtah posktjí rámec pro odvoení D a 2D modelů D a 2D model
Vícey 10 20 Obrázek 1.26: Průměrová rovina válcové plochy
36 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ 2 1 2 1 1 y 1 2 Obráek 1.26: Průměrová rovina válcové plochy Věta: Je-li definována průměrová rovina sdružená s asymptotickým směrem, potom je s tímto směrem
VíceHYDROPNEUMATICKÝ VAKOVÝ AKUMULÁTOR
HYDROPNEUMATICKÝ AKOÝ AKUMULÁTOR OSP 050 ŠEOBECNÉ INFORMACE ýočet hydroneumatického akumulátoru ZÁKLADNÍ INFORMACE Při výočtu hydroneumatického akumulátoru se vychází ze stavové změny lynu v akumulátoru.
VíceFáze a fázové přechody
Kvantová a statistická fyzika 2 (Termodynamika a statistická fyzika) Fáze a fázové přechody Pojem fáze je zobecněním pojmu skupenství, označuje homogenní část makroskopického tělesa. Jednotlivé fáze v
VíceUčební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diferenciální rovnice študenti MFF 15. augusta 2008 1 7 Diferenciální rovnice Požadavky Soustavy lineárních diferenciálních rovnic prvního řádu lineární
VíceGlobální extrémy (na kompaktní množině)
Globální extrémy (na kompaktní množině) Budeme hledat globální extrémy funkce f na uzavřené a ohraničené (tedy kompaktní) množině M. Funkce f může svého globálního extrému na M nabývat bud v nějaké bodě
VíceKLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.
MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve
VícePRŮTOK PLYNU OTVOREM
PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy
Více!!! #!! # % & ()!+ %& #( ) +,,!,!!./0./01 2 34 % 00 (1!#! #! #23 + )!!,,5,!+ 4)!005!! 6 )! %,76!,8, )! 44 %!! #! #236!!1 1 5 6 5+!!1 ( 9 9!5 6 + /+ # % 7 8 % : 4; 2,/! = %
Více1. série. Různá čísla < 1 44.
série Téma: Termínodeslání: Různá čísla ½ º Ò ½ ½º ÐÓ je řirozené q9+9 q 6+ 9 9 6 ¾º ÐÓ `5+ 6 998 není řirozené º ÐÓ Nechť c je řirozené číslo Rozhodněte, které z čísel c+ c a c c je větší a své tvrzení
VíceLaplaceova transformace.
Lalaceova transformace - studijní text ro cvičení v ředmětu Matematika -. Studijní materiál byl řiraven racovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za odory grantu IG ČVUT č. 300043 a v rámci
Více14. cvičení z Matematické analýzy 2
4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti
VíceNalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
VíceUzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
VíceDiferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
VíceNMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019
Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.
VíceMFT - Matamatika a fyzika pro techniky
MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů
Více4. Diferenciál a Taylorova věta
4. Diferenciál a Taylorova věta Definice 4.1. Buď f : R n R, a Df. Řekneme, že f je diferencovatelná v bodě a, když h V n takový, že a + h Df platí f(a + h) f(a) gradf(a) h + h τ(h), kde lim τ(h) 0. Funkce
Více22 Základní vlastnosti distribucí
M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající
VíceTransformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.
Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních
VíceVYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ APLIKOVANÁ FYZIKA MODUL 2 TERMODYNAMIKA
YSOKÉ UČENÍ ECHNICKÉ BRNĚ FAKULA SAEBNÍ PAEL SCHAUER APLIKOANÁ FYZIKA MODUL ERMODYNAMIKA SUDIJNÍ OPORY PRO SUDIJNÍ PROGRAMY S KOMBINOANOU FORMOU SUDIA Recenzoval: Prof. RNDr. omáš Ficker, CSc. Pavel Schauer,
Vícepouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
VíceTermomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček
Termomechanika 6. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím
Více12.1 Úvod. Poznámka : Příklad 12.1: Funkce f(t) = e t2 nemá Laplaceův obraz. Příklad 12.2: a) L{1} = 1 p, p > 0 ; b) L{ eat } = 1, [ZMA15-P73]
KAPITOLA 2: Lalaceova transformace [ZMA5-P73] 2. Úvod Lalaceovým obrazem funkce f(t) definované na, ) nazýváme funkci F () definovanou ředisem Definičním oborem funkce F F () = f(t) e t dt. je množina
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceObrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1
Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci
VíceKRUHOVÝ DĚJ S IDEÁLNÍM PLYNEM. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Přemysl Šedivý. 1 Základní pojmy 2
Obsah KRUHOÝ DĚJ S IDEÁLNÍM PLYNEM Studijní text ro řešitele FO a ostatní zájemce o fyziku Přemysl Šedivý Základní ojmy ztahy užívané ři oisu kruhových dějů s ideálním lynem Přehled základních dějů v ideálním
VíceFunkce zadané implicitně
Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf
VíceJméno... Cvičení den... hodina... Datum...rok... Počet listů... Varianta A
æ æ Jméno... Cvičení den... hodina... Datum...rok... Počet listů.......... Varianta A 4 3 2 1 2 8 0 1 0 3 1. Vzhledem k reálnému parametru a diskutujte hodnost matice 2 1 0 1 2. 0 1 2 1 2 4 3 1 1 a 2.
VíceObyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Více1. Cvičení: Opakování derivace a integrály
. Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )
Více+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F
Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální
VíceLaplaceova transformace
Lalaceova transformace EO2 Přednáška 3 Pavel Máša ÚVODEM Víme, že Fourierova transformace díky řísným odmínkám existence neexistuje ro řadu běžných signálů dokonce i funkce sin musela být zatlumena Jak
VíceZáklady elektrických pohonů, oteplování,ochlazování motorů
Základy elektrických ohonů, otelování,ochlazování motorů Určeno ro studenty kombinované formy FS, ředmětu Elektrotechnika II an Dudek únor 2007 Elektrický ohon Definice (dle ČSN 34 5170): Elektrický ohon
VíceTermodynamické potenciály
Kapitola 1 Termodynamické potenciály 11 Vnitřní energie a U-formulace Fyzikání význam vnitřní energie: v průběhu adiabatického děje je vykonaná práce rovna úbytku vnitřní energie Platí pro vratné i pro
Více