předmětu MATEMATIKA B 1
|
|
- Bohumír Holub
- před 8 lety
- Počet zobrazení:
Transkript
1 Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Vektorový prostor Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to vektory a jak se tyto vektory mezi sebou sčítají a jak se násobí reálným číslem, a dále, co je to lineární kombinace vektorů. Porozumět lineární závislosti a nezávislosti vektorů a umět pracovat s pojmy báze a dimenze vektorového prostoru, najít lineární obal skupiny vektorů. Tématický celek je rozdělen do těchto dílčích témat: 1. Lineární závislost a nezávislost vektorů 2. Báze a dimenze vektorového prostoru 3. Lineární obal skupiny vektorů 1. dílčí téma: Lineární závislost a nezávislost vektorů K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 1. kapitola, odst. 1.1., 1.2. Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 1. kapitola Vektorový prostor a jeho definice Lineární kombinace vektorů rovná nulovému vektoru Vektorová rovnice pro určení lineární nezávislosti/závislosti Vektorový prostor, sčítání vektorů, násobení vektoru reálným číslem, nulový vektor, lineární kombinace vektorů Jak se definuje lineární kombinace vektorů? Kdy jsou vektory lineárně závislé (nezávislé)? Jaký tvar má vektorová rovnice pro určení lineární závislosti (nezávislosti) vektorů? 2. dílčí téma: Báze a dimenze vektorového prostoru K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 1. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 1. kapitola 1
2 Definice báze vektorového prostoru Vyjádření libovolného vektoru jako lineární kombinace vektorů báze Určení dimenze vektorového prostoru Báze vektorového prostoru, kanonická báze, dimenze vektorového prostoru Jak se definuje báze vektorového prostoru? Jak lze vyjádřit libovolný vektor pomocí vektorů báze? Co je to dimenze vektorového prostoru? 3. dílčí téma: Lineární obal vektorů K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 1. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 1. kapitola Lineární obal a jeho definice Lineární obal jako podprostor vektorového prostoru Dimenze lineárního obalu skupiny vektorů Lineární obal skupiny vektorů, podprostor vektorového prostoru Co je to lineární obal skupiny vektorů? Jak se vypočte dimenze lineárního obalu skupiny vektorů? Co je lineárním obalem báze vektorového prostoru? 2
3 Metodický list pro druhé soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Matice a determinanty Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to matice a jak se s nimi pracuje, dále pak základní operace s maticemi, především sčítání a násobení matic. Porozumět pojmu hodnost matice a naučit se vypočítat inverzní matici k regulární matici. Umět vypočítat determinant pomocí Sarussova pravidla i rozvojem podle řádku nebo sloupce. Tématický celek je rozdělen do těchto dílčích témat: 1. Matice a její hodnost 2. Operace s maticemi 3. Determinanty a jejich výpočet 1. dílčí téma: Matice a její hodnost K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 2. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 2. kapitola Definice hodnosti matice Úpravy, které nemění hodnost matice Čtvercové regulární a singulární matice Matice, hlavní diagonála matice, horní a dolní lichoběžníková (trojúhelníková) matice, hodnost matice, Gaussova eliminační metoda, čtvercová matice, regulární matice, singulární matice Co je to hodnost matice a jak se vypočte? Co je to Gaussova eliminační metoda? Co je to regulární (singulární) matice? 2. dílčí téma: Operace s maticemi K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 2. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 2. kapitola 3
4 Sčítání a násobení matic Existence inverzní matice Výpočet inverzní matice Součet matic, součin matic, jednotková matice, inverzní matice Jak se sčítají a násobí matice? Za jakých podmínek existuje ke čtvercové matici inverzní matice? Jak se vypočítá čtvercová matice? 3. dílčí téma: Determinanty a jejich výpočet K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 3. kapitola, odst. 3.1., 3.2., 3.3. Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 3. kapitola Výpočet determinantu rozvojem podle řádku (sloupce) Výpočet determinantu pomocí dovolených úprav Výpočet inverzní matice pomocí determinantů Permutace, determinant, subdeterminant, doplněk prvku v matici, Sarussovo pravidlo, rozvoj determinantu podle řádku (sloupce), algebraický doplněk prvku v matici, adjungovaná matice Co je to determinant? Jaké jsou metody pro výpočet determinantu? Jak se vypočte inverzní matice ke čtvercové regulární matici pomocí determinantů? 4
5 Metodický list pro třetí soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Řešení soustavy lineárních rovnic Cíl: Základním cílem tohoto tematického celku je pochopit, co jsou to homogenní a nehomogenní soustavy lineárních rovnic a jak se tyto soustavy řeší. Ukázat řešení pomocí Gaussovy eliminační metody a v případě, že je matice soustavy čtvercová regulární matice, najít řešení soustavy lineárních rovnic též pomocí inverzní matice a Cramerova pravidla. Tématický celek je rozdělen do těchto dílčích témat: 1. Homogenní a nehomogenní soustavy lineárních rovnic 2. Řešení soustavy lineárních rovnic Gaussovou eliminační metodou 3. Řešení soustavy lineárních rovnic pomocí inverzní matice a Cramerovým pravidlem 1. dílčí téma: Homogenní a nehomogenní soustavy lineárních rovnic K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 2. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 2. kapitola Existence řešení homogenní soustavy lineárních rovnic Existence řešení nehomogenní soustavy lineárních rovnic Porovnání hodnosti matice soustavy a rozšířené matice soustavy Homogenní soustava lineárních rovnic, vektor pravých stran, triviální řešení, nehomogenní soustava lineárních rovnic, Frobeniova věta Existuje vždy alespoň jedno řešení homogenní soustavy lineárních rovnic? Kdy má nehomogenní soustava lineárních rovnic právě jedno řešení? Kdy má nehomogenní soustava lineárních rovnic nekonečně mnoho řešení? 2. dílčí téma: Řešení soustavy lineárních rovnic Gaussovou eliminační metodou K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 2. kapitola, odst. 2.3 Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 2. kapitola 5
6 Použití Gaussovy eliminační metody na rozšířenou matici soustavy Tvar řešení homogenní soustavy lineárních rovnic Tvar řešení nehomogenní soustavy lineárních rovnic Gaussova eliminační metoda, přidružená homogenní soustava lineárních rovnic, řešní závislé na zvolených parametrech Jak se řeší soustavy lineárních rovnic pomocí Gaussovy eliminační metody? Jaký je tvar řešení homogenní soustavy lineárních rovnic? Jak spolu souvisí řešení nehomogenní soustavy a přidružené homogenní soustavy lineárních rovnic? 3. dílčí téma: Řešení soustavy lineárních rovnic pomocí inverzní matice a Cramerovým pravidlem K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 2.,3. kapitola, odst. 2.4., 3.4. Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 2.,3. kapitola Soustavy lineárních rovnic se čtvercovou regulární maticí Výpočet řešení soustavy lineárních rovnic pomocí inverzní matice Výpočet řešení soustavy lineárních rovnic pomocí Cramerova pravidla Cramerovo pravidlo Jak vyřešíte soustavu lineárních rovnic s regulární maticí, znáte-li inverzní matici? Co je to Cramerovo pravidlo? Jak se řeší soustavy lineárních rovnic pomocí Cramerova pravidla? 6
7 Metodický list pro čtvrté soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Posloupnosti a funkce Cíl: Základním cílem tohoto tematického celku je pochopit, co je to posloupnost a jak se definuje limita posloupnosti. Dále umět pracovat s pojmem funkce a zvládnout vybrané funkce včetně jejich definičního oboru, oboru hodnot a nakreslení grafu. Umět vyšetřit, zda je funkce sudá, lichá, periodická a najít inverzní funkci k zadané funkci. Tématický celek je rozdělen do těchto dílčích témat: 1. Posloupnost a její limita 2. Funkce a její vlastnosti 3. Elementární funkce a jejich grafy 1. dílčí téma: Posloupnost a její limita K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 4. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 4. kapitola Definice posloupnosti Existence limity posloupnosti Výpočet limity posloupnosti Posloupnost, monotónní posloupnost, vybraná posloupnost, aritmetická a geometrická posloupnost, limita posloupnosti, konvergentní a divergentní posloupnost, omezená posloupnost Jakým způsobem lze zadat posloupnost? Co je to konvergentní posloupnost a jak se definuje její limita? Limitou jaké posloupnosti je Eulerovo číslo e? 2. dílčí téma: Funkce a její vlastnosti K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 4. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 4. kapitola 7
8 Nalezení definičního oboru a oboru hodnot funkce, nakreslení grafu funkce Vyšetření, zda je funkce sudá, lichá, periodická Nalezení inverzní funkce k dané funkci Definiční obor funkce, obor hodnot funkce, graf funkce, lichá a sudá funkce, periodická funkce, prostá funkce, inverzní funkce, složená funkce Co je to definiční obor a obor hodnot dané funkce? Co je to funkce lichá, sudá, periodická? Co je to inverzní funkce k dané funkci a jak se vypočte? 3. dílčí téma: Elementární funkce a jejich grafy K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 4. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 4. kapitola Grafy mocninných funkcí, exponenciela a přirozený logaritmus Vlastnosti a grafy goniometrických funkcí Vlastnosti a grafy cyklometrických funkcí Elementární funkce, konstantní funkce, přímka a její graf, směrnice přímky, mocninná funkce, goniometrické funkce - sinus, kosinus, tangens, kotangens, cyklometrické funkce - arkussinus, arkuskosinus, arkustangens, arkuskotangens, exponenciela, přirozený logaritmus a nakreslit grafy všech níže uvedených funkcí Můžete uvést vlastnosti mocninných funkcí y = x n v závislosti na n? Můžete uvést vlastnosti goniometrických a k nim inverzních funkcí? Můžete uvést vlastnosti funkcí exponenciela a přirozený logaritmus? 8
9 Metodický list pro páté soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Spojitost, limita a derivace funkce Cíl: Základním cílem tohoto tematického celku je pochopit vztah mezi spojitostí a limitou funkce a následně se naučit vypočítat limitu funkce v bodě nespojitosti funkce. Dále porozumět pojmu derivace a seznámit se s pojmy derivace v bodě a derivace funkce. Umět vypočítat derivaci funkce podle definice a znát derivace vybraných elementárních funkcí. Tématický celek je rozdělen do těchto dílčích témat: 1. Spojitost a limita funkce 2. Výpočet limity funkce 3. Derivace funkce a její výpočet 1. dílčí téma: Spojitost a limita funkce K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 4. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 4. kapitola Definice spojitosti funkce Definice limity funkce ve vlastním i v nevlastním bodě Vztah mezi spojitostí a limitou funkce Okolí bodu, spojitost funkce, spojitost funkce zleva (zprava), limita funkce, jednostranná limita funkce Jak se definuje spojitost funkce v bodě? Jak se definuje limita funkce v bodě? Vyplývá z existence limity v bodě též spojitost funkce v bodě či nikoliv? 2. dílčí téma: Výpočet limity funkce K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 4. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 4. kapitola 9
10 Limita funkce v bodě, v němž je funkce spojitá Výpočet limit ve vlastním i v nevlastním bodě Výpočet limit typu 0/0 Limita funkce ve vlastním a v nevlastním bodě, limita typu 0/0 Jak se vypočte limita funkce v bodě, v němž je funkce spojitá? Jak se vypočtou limity ve vlastním i v nevlastním bodě? Jak se vypočtou limity typu 0/0? 3. dílčí téma: Derivace funkce a její výpočet K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 5. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 5. kapitola Definice a interpretace derivace v bodě Výpočet derivace funkce podle definice Derivace elementárních funkcí Derivace funkce v bodě, diferencovatelná funkce, derivace jako směrnice tečny grafu, derivace jako rychlost změny funkce, derivace funkce, derivace vyššího řádu Jak se definuje derivace pomocí limity? Jak se vypočte derivace podle definice v případě lineární či kvadratické funkce? Můžete uvést derivace elementárních funkcí? 10
11 Metodický list pro šesté soustředění kombinovaného studia předmětu MATEMATIKA B 1 Název tématického celku: Výpočet a použití derivací Cíl: Základním cílem tohoto tematického celku je pochopit a aplikovat pravidla pro výpočet derivací, hlavně pro výpočet derivace součtu, rozdílu, součinu a podílu funkcí, a dále derivace složené a inverzní funkce. Umět vypočítat některé limity pomocí l Hospitalova pravidla. Tématický celek je rozdělen do těchto dílčích témat: 1. Základní vlastnosti derivace funkce 2. Výpočet derivace funkce 3. L Hospitalovo pravidlo 1. dílčí téma: Základní vlastnosti derivace K prvnímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 5. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 5. kapitola Derivace součtu, rozdílu, součinu a podílu funkcí Derivace složené funkce Derivace inverzní funkce Derivace složené funkce, derivace inverzní funkce Jak se derivuje součet, rozdíl, součin a podíl funkcí? Jak se derivuje složená funkce? Jak se derivuje inverzní funkce? 2. dílčí téma: Výpočet derivace funkce K druhému dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 5. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 5. kapitola Výpočet derivace součtu, rozdílu, součinu a podílu funkcí Výpočet derivace složené funkce 11
12 Výpočet derivace inverzní funkce Derivace složené funkce, derivace inverzní funkce Jak se derivuje součet, rozdíl, součin a podíl funkcí? Jak se derivuje složená funkce? Jak se derivuje inverzní funkce? 3. dílčí téma: L Hospitalovo pravidlo K třetímu dílčímu tématu si pečlivě prostudujte: Budinský P., Havlíček I.: Matematika, VŠFS, 2005, 5. kapitola, odst Budinský P., Havlíček I.: Příklady k matematice, VŠFS, 2005, 5. kapitola Princip l Hospitalova pravidla Aplikovatelnost l Hospitalova pravidla Výpočet limit pomocí l Hospitalova pravidla l Hospitalovo pravidlo, Kdy lze aplikovat l Hospitalovo pravidlo? Jak se používá l Hospitalovo pravidlo? Můžete ukázat použití l Hospitalova pravidla na příkladě? 12
Metodický list pro první soustředění kombinovaného studia. předmětu MATEMATIKA A
Metodický list pro první soustředění kombinovaného studia předmětu MATEMATIKA A Název tématického celku: Zobrazení,reálné funkce jedné reálné proměnné,elementární funkce a jejich základní vlastnosti,lineární
VíceMATEMATIKA A Metodický list č. 1
Metodický list č. 1 Název tématického celku: Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači
VíceMATEMATIKA B. Lineární algebra I. Cíl: Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a
MATEMATIKA B metodický list č. 1 Lineární algebra I Základním cílem tohoto tématického celku je objasnit některé pojmy lineární algebry a poukázat na jejich vzájemnou souvislost. Posluchači se seznámí
VíceJedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n,
Soutavy lineárních algebraických rovnic Jedná se o soustavy ve tvaru A X = B, kde A je daná matice typu m n, X R n je sloupcový vektor n neznámých x 1,..., x n, B R m je daný sloupcový vektor pravých stran
VíceJazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
VíceMatematika I pracovní listy
Matematika I pracovní listy Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny
VíceMatematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
VíceMatematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
VícePožadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory
Požadavky k písemné přijímací zkoušce z matematiky do navazujícího magisterského studia pro neučitelské obory Zkouška ověřuje znalost základních pojmů, porozumění teorii a schopnost aplikovat teorii při
VícePožadavky ke zkoušce. Ukázková písemka
Požadavky ke zkoušce Zkouška z předmětu MATEMATIKA 1 má dvě části Písemná část: Písemná část se ještě dále rozděluje na praktickou část písemku a teoretickou část test. Písemka trvá 90 minut a je v ní
VíceSkalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
VíceDodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)
Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje
VíceMINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)
MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY Učební osnova předmětu MATEMATIKA pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem) Schválilo Ministerstvo školství, mládeže a tělovýchovy dne 14.června
VíceMatematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
VíceMatematika II. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: O7A, C3A, S5A, O8A, C4A, S6A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem umožnit studentům dosáhnout lepší výsledky ve společné
VíceSeminář z matematiky. jednoletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Seminář z matematiky O8A, C4A, jednoletý volitelný předmět Cíle předmětu Obsah předmětu je koncipován pro přípravu studentů k úspěšnému zvládnutí profilové (školní)
VíceÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceGymnázium, Brno. Matice. Závěrečná maturitní práce. Jakub Juránek 4.A Školní rok 2010/11
Gymnázium, Brno Matice Závěrečná maturitní práce Jakub Juránek 4.A Školní rok 2010/11 Konzultant: Mgr. Aleš Kobza Ph.D. Brno, 2011 Prohlášení Prohlašuji, že jsem předloženou práci zpracoval samostatně
VíceVĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
VíceMatematika pro studenty ekonomie
w w w g r a d a c z vydání upravené a doplněné vydání Armstrong Grada Publishing as U Průhonu 7 Praha 7 tel: + fax: + e-mail: obchod@gradacz wwwgradacz Matematika pro studenty ekonomie MATEMATIKA PRO STUDENTY
VíceUčební texty k státní bakalářské zkoušce Matematika Matice. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Matice študenti MFF 15. augusta 2008 1 12 Matice Požadavky Matice a jejich hodnost Operace s maticemi a jejich vlastnosti Inversní matice Regulární matice,
VíceSoustavy lineárních rovnic
7 Matice. Determinant Soustavy lineárních rovnic 7.1 Matice Definice 1. Matice typu (m, n) jesoustavam n reálných čísel uspořádaných do m řádků a n sloupců a 11, a 12, a 13,..., a 1n a 21, a 22, a 23,...,
VíceNALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Doba řešení: 3 hodiny
NALG 001 Lineární algebra a geometrie 1, zimní semestr MFF UK Závěrečná zkouška verze cvičná 9.1.2013 Doba řešení: 3 hodiny Přednášející: L. Barto, J. Tůma Křestní jméno: Příjmení: Instrukce Neotvírejte
VíceA0M15EZS Elektrické zdroje a soustavy ZS 2011/2012 cvičení 1. Jednotková matice na hlavní diagonále jsou jedničky, všude jinde nuly
Matice Matice typu (m, n) je uspořádaná m-tice prvků z řádky matice.. Jednotlivé složky této m-tice nazýváme Matice se zapisují Speciální typy matic Nulová matice všechny prvky matice jsou nulové Jednotková
VíceMatematika I: Pracovní listy do cvičení
Matematika I: Pracovní listy do cvičení Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita
VíceMatematika 2 (Fakulta ekonomická) Cvičení z lineární algebry. TU v Liberci
Matematika 2 (Fakulta ekonomická) Cvičení z lineární algebry TU v Liberci Jiří Hozman 1. dubna 2010 Cvičení 2 Příklad 1. Rozhodněte, zda lze vektor x vyjádřit jako lineární kombinaci vektorů u, v, w, v
Více5. Maticová algebra, typy matic, inverzní matice, determinant.
5. Maticová algebra, typy matic, inverzní matice, determinant. Matice Matice typu m,n je matice složená z n*m (m >= 1, n >= 1) reálných (komplexních) čísel uspořádaných do m řádků a n sloupců: R m,n (resp.
VícePoznámky z matematiky
Poznámky z matematiky Verze: 14. dubna 2015 Petr Hasil hasil@mendelu.cz http://user.mendelu.cz/hasil/ Ústav matematiky Lesnická a dřevařská fakulta Mendelova univerzita v Brně Vytvořeno s podporou projektu
VíceMATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
VíceMaturitní témata z matematiky
Maturitní témata z matematiky G y m n á z i u m J i h l a v a Výroky, množiny jednoduché výroky, pravdivostní hodnoty výroků, negace operace s výroky, složené výroky, tabulky pravdivostních hodnot důkazy
Více3. Matice a determinanty
. Matice a determinanty Teorie matic a determinantů představuje úvod do lineární algebry. Nejrozsáhlejší aplikace mají matice a determinanty při řešení systémů lineárních rovnic. Pojem determinantu zavedl
VíceStátní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách
Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách Ústní zkouška z oboru Náročnost zkoušky je podtržena její ústní formou a komisionálním charakterem. Předmětem bakalářské zkoušky
VíceCZ 1.07/1.1.32/02.0006
PO ŠKOLE DO ŠKOLY CZ 1.07/1.1.32/02.0006 Číslo projektu: CZ.1.07/1.1.32/02.0006 Název projektu: Po škole do školy Příjemce grantu: Gymnázium, Kladno Název výstupu: Prohlubující semináře Matematika (MI
VíceMatice. Přednáška MATEMATIKA č. 2. Jiří Neubauer. Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.
Přednáška MATEMATIKA č. 2 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 13. 10. 2010 Uspořádané schéma vytvořené z m n reálných čísel, kde m, n N a 11 a 12 a
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceSoustavy lineárních rovnic
Přednáška MATEMATIKA č 4 Katedra ekonometrie FEM UO Brno kancelář 69a, tel 973 442029 email:jirineubauer@unobcz 27 10 2010 Soustava lineárních rovnic Definice Soustava rovnic a 11 x 1 + a 12 x 2 + + a
Více1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
VíceGymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021
Maturitní témata MATEMATIKA 1. Funkce a jejich základní vlastnosti. Definice funkce, def. obor a obor hodnot funkce, funkce sudá, lichá, monotónnost funkce, funkce omezená, lokální a globální extrémy funkce,
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceMATURITNÍ TÉMATA Z MATEMATIKY
MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické
VíceObsah. Lineární rovnice. Definice 7.9. a i x i = a 1 x a n x n = b,
Obsah Lineární rovnice Definice 77 Uvažujme číselné těleso T a prvky a 1,, a n, b T Úloha určit všechny n-tice (x 1,, x n ) T n, pro něž platí n a i x i = a 1 x 1 + + a n x n = b, i=1 se nazývá lineární
VíceWolfram Alpha. v podobě html stránky, samotný výsledek je často doplněn o další informace (např. graf, jiné možné zobrazení výsledku a
Wolfram Alpha jde o výpočetní prostředí z nejrůznějších oborů (matematika, fyzika, chemie, inženýrství... ) přístupné online: http://www.wolframalpha.com/ Jaké matematické výpočty Wolfram Alpha zvládá?
VíceSoustava m lineárních rovnic o n neznámých je systém
1 1.2. Soustavy lineárních rovnic Soustava lineárních rovnic Soustava m lineárních rovnic o n neznámých je systém a 11 x 1 + a 12 x 2 +... + a 1n x n = b 1 a 21 x 1 + a 22 x 2 +... + a 2n x n = b 2...
VíceMaturitní témata profilová část
Seznam témat Výroková logika, úsudky a operace s množinami Základní pojmy výrokové logiky, logické spojky a kvantifikátory, složené výroky (konjunkce, disjunkce, implikace, ekvivalence), pravdivostní tabulky,
Více1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
VíceMaturitní otázky z předmětu MATEMATIKA
Wichterlovo gymnázium, Ostrava-Poruba, příspěvková organizace Maturitní otázky z předmětu MATEMATIKA 1. Výrazy a jejich úpravy vzorce (a+b)2,(a+b)3,a2-b2,a3+b3, dělení mnohočlenů, mocniny, odmocniny, vlastnosti
VíceB) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.
4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti
VíceSkalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech.
Kapitola 9 Skalární součin Skalární součin je nástroj, jak měřit velikost vektorů a úhly mezi vektory v reálných a komplexních vektorových prostorech. Definice 9.1 Je-li x = (x 1,..., x n ) T R n 1 reálný
VíceMatematika I: Listy k přednáškám
Matematika I: Listy k přednáškám Dagmar Dlouhá, Radka Hamříková, Zuzana Morávková, Michaela Tužilová Pro FAST upravil Petr Volný Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava
VíceSoustavy linea rnı ch rovnic
[1] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení a) soustavy, 10, b) P. Olšák, FEL ČVUT, c) P. Olšák 2010, d) BI-LIN, e) L, f) 2009/2010, g)l.
Více1 Determinanty a inverzní matice
Determinanty a inverzní matice Definice Necht A = (a ij ) je matice typu (n, n), n 2 Subdeterminantem A ij matice A příslušným pozici (i, j) nazýváme determinant matice, která vznikne z A vypuštěním i-tého
Více1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností,
KMA/SZZS1 Matematika 1. Číselné posloupnosti - Definice posloupnosti, základní vlastnosti, operace s posloupnostmi, limita posloupnosti, vlastnosti limit posloupností, operace s limitami. 2. Limita funkce
VíceSoustavy lineárních rovnic
Soustavy lineárních rovnic Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
VíceÚlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,
Úlohy k přednášce NMAG a : Lineární algebra a geometrie a Verze ze dne. května Toto je seznam přímočarých příkladů k přednášce. Úlohy z tohoto seznamu je nezbytně nutné umět řešit. Podobné typy úloh se
VíceMATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011
MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011 1. Výroková logika a teorie množin Výrok, pravdivostní hodnota výroku, negace výroku; složené výroky(konjunkce, disjunkce, implikace, ekvivalence);
VíceMatematika 1. Matematika 1
5. přednáška Elementární funkce 24. října 2012 Logaritmus a exponenciální funkce Věta 5.1 Existuje právě jedna funkce (značíme ji ln a nazýváme ji přirozeným logaritmem), s následujícími vlastnostmi: D(ln)
VíceMATEMATIKA I. Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15. I. Základy, lineární algebra a analytická geometrie
MATEMATIKA I Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
VíceMaturitní okruhy z matematiky - školní rok 2007/2008
Maturitní okruhy z matematiky - školní rok 2007/2008 1. Některé základní poznatky z elementární matematiky: Číselné obory, dělitelnost přirozených čísel, prvočísla a čísla složená, největší společný dělitel,
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VíceMgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel
Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -
VíceRegulární matice. Věnujeme dále pozornost zejména čtvercovým maticím.
Regulární matice Věnujeme dále pozornost zejména čtvercovým maticím. Věta. Pro každou čtvercovou matici A = (a ij ) řádu n nad tělesem (T, +, ) jsou následující podmínky ekvivalentní: (i) Řádky matice
VíceSoustavy. Terminologie. Dva pohledy na soustavu lin. rovnic. Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová.
[1] Terminologie [2] Soustavy lineárních rovnic vlastnosti množin řešení metody hledání řešení nejednoznačnost zápisu řešení Definice: Necht A = (a i,j ) R m,n je matice, b R m,1 je jednosloupcová matice.
VíceTematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová
Tematický plán Vyučující: Ing. Joanna Paździorová 1. r o č n í k 5 h o d i n t ý d n ě, c e l k e m 1 7 0 h o d i n Téma- Tematický celek Z á ř í 1. Opakování a prohloubení učiva základní školy 18 1.1.
VíceMATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18
MATEMATIKA I Požadavky ke zkoušce pro 1. ročník, skupina A 2017/18 I. Základy, lineární algebra a analytická geometrie 1. Základní pojmy (a) Základy teorie množin: množina a její prvky, podmnožina, průnik,
Vícea m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
VíceMatematický seminář. OVO ŠVP Tématický celek Učivo ŠVP Integrace Mezipředmětové vztahy. jejich soustavy. Spojitost funkce v bodě. Limita funkce v bodě
Řeší s porozumněním rovnice s parametrem Rovnice, nerovnice a jejich soustavy Řovnice, nerovnice a jejich soustavy Třetí, 24 hodin Zvolí vhodnou metodu řešení rovnice nebo nerovnice Vysvětlí zvolený způsob
VíceSoučin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.
Kapitola 3 Počítání s maticemi Matice stejného typu můžeme sčítat a násobit reálným číslem podobně jako vektory téže dimenze. Definice 3.1 Jsou-li A (a ij ) a B (b ij ) dvě matice stejného typu m n, pak
VíceVektory a matice. Matice a operace s nimi. Hodnost matice. Determinanty. . p.1/12
Vektory a matice Lineární (ne-)závislost vektorů n zê Matice a operace s nimi Hodnost matice Determinanty. p.1/12 Lineární (ne-)závislost vektorů zê n Příklad 9.1.1 Rozhodněte, zda jsou uvedené vektory
VíceKatedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1
Lineární algebra 10. přednáška: Ortogonalita II Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la1 Text byl vytvořen
VícePřednáška 4: Soustavy lineárních rovnic
Přednáška 4: Soustavy lineárních rovnic Touto přednáškou vrcholí naše snažení o algebraický popis řešení praktických problémů. Většina inženýrských úloh má totiž lineární charakter (alespoň přibližně)
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
VíceDo vyučovacího předmětu Seminář z matematiky a fyziky jsou začleněna tato průřezová témata:
Seminář z matematiky a fyziky Obsahové vymezení Vyučovací předmět Seminář z matematiky a fyziky navazuje na vzdělávací obsah vzdělávacích oborů Fyzika a Matematika a její aplikace. Vychází také z katalogu
VícePro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
VíceDefinice 28 (Ortogonální doplněk vektorového podprostoru). V k V n ; V k V. (Pech:AGLÚ/str D.5.1)
14.3 Kolmost podprostorů 14.3.1 Ortogonální doplněk vektorového prostou Ve vektorovém prostoru dimenze 3 je ortogonálním doplňkem roviny (přesněji vektorového prostoru dimenze ) přímka na ní kolmá (vektorový
VíceKomplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika Komplexní čísla, Kombinatorika, pravděpodobnost a statistika, Posloupnosti a řady 4. ročník a oktáva 3 hodiny týdně PC a dataprojektor, učebnice
VíceUčební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky
Učební plán 4. letého studia předmětu matematiky Ročník I II III IV Dotace 3 3+1 2+1 2+2 Povinnost povinný povinný povinný povinný Učební plán 6. letého studia předmětu matematiky Ročník 1 2 3 4 5 6 Dotace
Více1. LINEÁRNÍ ALGEBRA Vektory Operace s vektory... 8 Úlohy k samostatnému řešení... 8
1 Lineární algebra 1 LINEÁRNÍ ALGEBRA 8 11 Vektory 8 111 Operace s vektory 8 8 112 Lineární závislost a nezávislost vektorů 8 8 113 Báze vektorového prostoru 9 9 12 Determinant 9 9 13 Matice 1 131 Operace
Více4.2. CYKLOMETRICKÉ FUNKCE
4.. CYKLOMETRICKÉ FUNKCE V této kapitole se dozvíte: jak jsou definovány cyklometrické funkce a jaký je jejich vztah k funkcím goniometrickým; základní vlastnosti cyklometrických funkcí; nejdůležitější
VíceZimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceEuklidovský prostor Stručnější verze
[1] Euklidovský prostor Stručnější verze definice Eulidovského prostoru kartézský souřadnicový systém vektorový součin v E 3 vlastnosti přímek a rovin v E 3 a) eprostor-v2, 16, b) P. Olšák, FEL ČVUT, c)
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceSoustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 3. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 21 Co nás dneska čeká... Co je to soustava lineárních
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
Více7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
VíceVybrané problémy lineární algebry v programu Maple
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA Katedra matematické analýzy a aplikací matematiky BAKALÁŘSKÁ PRÁCE Vybrané problémy lineární algebry v programu Maple Vedoucí bakalářské práce: RNDr.
VíceVIDEOSBÍRKA DERIVACE
VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y
VíceSOUSTAVY LINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA SOUSTAVY LINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
VíceLineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů
Lineární algebra a analytická geometrie sbírka úloh a ř ešených př íkladů Linear algebra and analytic geometry problems and solved examples Klára Javornická Bakalářská práce 2010 UTB ve Zlíně, Fakulta
VíceMatematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:
Studijní obor: Aplikovaná chemie Učební osnova předmětu Matematika Zaměření: ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání: denní Celkový počet vyučovacích hodin za
VíceKATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
Více2.2. SČÍTÁNÍ A NÁSOBENÍ MATIC
22 SČÍTÁNÍ A NÁSOBENÍ MATIC V této kapitole se dozvíte: jak je definováno sčítání matic a jaké má základní vlastnosti jak je definováno násobení matic číslem a jaké má základní vlastnosti zda a proč se
Více