válec 2 komolý rotační kužel válec 1 Objem válce V = πr Těžiště válce výšky h leží v
|
|
- Marcel Beránek
- před 9 lety
- Počet zobrazení:
Transkript
1 Příkla ĚŽIŠĚ ÁZY Zaání Učete těžiště váz tvau lave viz. Ob. vobené ze skla. Dáno: 8 cm cm cm 5 cm 5 cm cm cm 5 cm cm Řešení ázu tvau lave apoimujme třemi na sobě postavenými těles válec komolý otační válec viz. Ob.. Cba kteé se opustíme je zanebatelná po učení polo těžiště. válec komolý otační Cba apoimace válec Ob. A ěžiště utéo válce silnostěnný utý válec s postavou álec Objem válce. álec je těleso smetické pole os. Po učení polo těžiště z ] je postačující zabývat se souřanicí potože souřanice z. Ob. ěžiště válce výšk leží v. Zaveeme-li souřanicový sstém s osami pak válec o poloměu má těžiště ve výšce o poloměu ve výšce. a válec Poloa těžiště vnějšío válce po aný souřanicový sstém je ]. Poloa těžiště vnitřnío válce po aný souřanicový sstém je ]. Polou těžiště válce za přepoklau omogennío ozložení mateiálu učíme ze vztau
2 . ěžiště válce má souřanice ]. B ěžiště utéo komoléo otačnío e Objem e. Objem komoléo otačnío e. Komolý otační je těleso smetické pole os. Po učení polo těžiště ] z je te postačující zabývat se souřanicí. ěžiště komoléo otačnío e výšk můžeme učit z těžišť vou ů výšek. Poloa těžiště e výšk v aném souřanicovém sstému je ]. Poloa těžiště e výšk v aném souřanicovém sstému je ]. ýpočet těžiště e v integální poobě je uveen níže. Polou těžiště komoléo otačnío e za přepoklau omogennío ozložení mateiálu učíme ze vztau ěžiště komoléo otačnío e má souřanice ]. 8 komolý otacní Ob.
3 ěžiště utéo komoléo otačnío e viz. Ob. je soné s těžištěm spočteným v 8 po plný komolý otační. ato soa je ána smetií tělesa pole os a také tím že na ozíl o těžiště válce neuvažujeme u komoléo e postav tj. ] 9 C ěžiště utéo válce silnostěnný utý válec bez postav 5 Učení těžiště utéo válce je nejjenoušší z celé úlo. Opět se jená o těleso smetické pole os s omogenním ozložením mateiálu. Jak již blo napsáno těžiště válce obecně po aný souřanicový sstém je ]. Dutý válec nemá ani oní a olní postavu. Lze te bez louéo výpočtu napsat těžiště utéo válce po aný souřanicový sstém kteé má souřanice Snutí osaženéo výpočtu ukážeme v tabulce ab.. Dutý válec Komolý Dutý válec otační 5 ]. Objem tělesa Souřanice těžiště z ] ] ] 5 5 ] Učit celkové těžiště váz ve tvau láve s apoimací pole Ob. lze pole ovnice váz váz po souřanici váz váz a z váz jsou nulové ke válec válec komolý komolý válec válec váz válec komolý válec váz válec válec komolý komolý válec válec. válec komolý válec Závěem k příklau uváíme číselné řešení v kocíc výpočtu. 8 8 m válec
4 8 8 válec 8 komolý m 88 m komolý m válec 5 m m válec váz m & 7 cm áza tvau lave má těžiště ve výšce 7 cm. Poloa těžiště váz po aný souřanicový sstém je ána souřanicemi 7. ] cm. 5 cm ěžiště 7 cm Ob. : Poloa těžiště váz tvau lave.
5 5 Závěem k tomuto příklau uveeme výpočet těžiště e v integální poobě. Přestavme si že jsme scopni naait otačními komolými ůznýc poloměů a konstantní výšk kteé jsou naskláán na sobě. Polomě jenotlivýc komolýc ů je závislý v jaké výšce se komolý nacází. Z poobnosti pavoúlýc tojúelníků lze polomě učit. Po výšk o poloměu postav platí. ěžiště na sobě naskláanýc komolýc ů lze učit ze vztau n i i i ke n je počet na sobě naskláanýc komolýc ů. Poku bueme zmenšovat výšku bue naůstat počet komolýc ů a vzta se sumou přeje na vzta integální. 5 Objem komoléo otačnío e je závislý na poloměu olní oní - postav a na výšce komoléo e. Zanebáme-li při výpočtu objemu malýc komolýc ů člen s mocninou přepíšeme vzta ] 8 9. ěžiště otačnío e po zvolený souřanicový sstém z je ] e. z
MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž
Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Fabryův-Perotův rezonátor
Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační
Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,
Základní vlastnosti elektrostatického pole, probrané v minulých hodinách, popisují dvě diferenciální rovnice : konzervativnost el.
Aplikace Gaussova zákona ) Po sestavení základní ovnice elektostatiky Základní vlastnosti elektostatického pole, pobané v minulých hodinách, popisují dvě difeenciální ovnice : () ot E konzevativnost el.
Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení pojmů a výpočtů objemů a obvodů
METODICKÝ LIST DA46 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Obvod a obsah I. - obrazce Astaloš Dušan Matematika šestý frontální, fixační,
Základy optického zobrazení
Základy optickéo zobazeí. Zákoy geometické optiky Záko odazu větla (ob. ) ři dopadu věteléo papku a ozaí dvou ůzýc potředí dojde k jejic čátečému ebo úplému odazu. dažeý papek zůtává v oviě dopadu (oviě
1. rys - Rotační válec V Mongeově promítání sestrojte sdružené průměty rotačního válce, jsou-li dány:
Pokyny pro vypracování zápočtových prací (rysů): okraje (uvnitř rámečku) napište nadpis (Rotační válec), u dolního okraje akademický rok, rys č. 1, varianta n, jméno, příjmení a číslo studijní skupiny.
Pomůcka pro demonstraci momentu setrvačnosti
Pomůcka pro demonstraci momentu setrvačnosti Cílem pomůcky je pochopit význam geometrických charakteristik pro pohybové chování těles na něž působí vnější síly. Princip pomůcky je velmi jednoduchý, jde
Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA UŽITÍ DERIVACÍ, PRŮBĚH FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?
. LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,
1. Kruh, kružnice. Mezi poloměrem a průměrem kružnice platí vztah : d = 2. r. Zapíšeme k ( S ; r ) Čteme kružnice k je určena středem S a poloměrem r.
Kruh, kružnice, válec 1. Kruh, kružnice 1.1. Základní pojmy Kružnice je množina bodů mající od daného bodu stejnou vzdálenost. Daný bod označujeme jako střed kružnice. Stejnou vzdálenost nazýváme poloměr
Řešení 3. série. typ čtverce o kolik se zvýší počet 1 x 1 2k + 1 2 x 2 2k 1 3 x 3 2k 3. . k x k 3 (k + 1) x (k + 1) 1
Řešení 3 série Řešení S-I-3-1 Než se pustíme o řešení úlohy s n x n čtvercovými poli, zkusme ohalit princip na šachovnici s konkrétním počtem polí Na šachovnici 1 x 1 je pouze 1 čtverec Na šachovnici 2
1) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 16 D, - 4 D, - 12 D.
ČOČKY ) Určete ohniskové vzdálenosti čoček, jsou-li jejich optické mohutnosti 2 D, 6 D, - 4 D, - 2 D. φ = 2 D φ 2 = 6 D φ = 4 D φ = 2 D f 4 =? (m) Optická mohutnost je převrácená hodnota ohniskové vzdálenosti
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Mongeova projekce - řezy hranatých těles
Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
Otázky z kapitoly Stereometrie
Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14
Měření tvaru ploch. Postup :
B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A
Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 5. 9. 2012 Číslo DUM: VY_32_INOVACE_13_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.
Kapitola I - Množiny bodů daných vlastností I.a Co je množinou všech bodů v rovině, které mají od daných dvou různých bodů stejnou vzdálenost? I.b Co je množinou středů všech kružnic v rovině, které prochází
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 - technické předmět Ing. Jan Jemelík 1 Každé
Semestrální práce k předmětu Konstruování s podporou PC Ing. Pavel Vrecion
Semestrální práce k předmětu Konstruování s podporou PC Ing. Pavel Vrecion Ukázka modelování 3D tělesa v programu AutoCAD 2007 CZ Vypracoval: Roman Toula TF ČZU, IV. semestr Datum: 20.7.2009 1 Předmět
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
Učební dokument FUNKCE. Vyšetřování průběhu funkce. Mgr. Petra MIHULOVÁ. 4.roč.
Učební dokument FUNKCE Vyšetřování průběhu funkce Mgr. Petra MIHULOVÁ.roč. Evropský sociální fond Praha a EU Investujeme do vaší budoucnosti Vyš etř ová ní přů be hů fůnkce á šeštřojení její ho gřáfů Určování
Řešení úloh krajského kola 58. ročníku fyzikální olympiády Kategorie B Autor úloh: J. Thomas
Řešení úlo kajskéo kola 58 očníku fyzikální olympiády Kategoie B Auto úlo: J Tomas a) Doba letu střely od okamžiku výstřelu do zásau označíme t V okamžiku výstřelu se usa nacází ve vzdálenosti s měřené
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
DESKRIPTIVNÍ GEOMETRIE PŘÍKLADY NA PROCVIČENÍ OSVĚTLENÍ OBJEKTŮ
DESKRIPTIVNÍ GEOMETRIE PŘÍKLADY NA PROCVIČENÍ 1.A4našířku VP: O[13,10],osa zsvislá, ω= (z, y)=120 OSVĚTLENÍ OBJEKTŮ Jedánkosýkruhovýkuželspodstavnoukružnicíostředu Q[0;4;0]apoloměru r=4vpůdorysně π(x,
VYTÁPĚNÍ - cvičení č.2 Výpočet potřeby tepla a paliva Denostupňová metoda
VYTÁPĚNÍ - cvičení č.2 Výpočet potřeby tepla a paliva Denostupňová metoda Ing. Roman Vavřička, Ph.D. ČVUT v Praze, Fakulta strojní Ústav techniky prostředí Roman.Vavricka@fs.cvut.cz kde VYT,teor c d t
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01
ZMĚNY SKUPENSTVÍ LÁTEK ČÁST 01 A) Výklad: Změny skupenství látky Látka se může vyskytovat ve třech různých skupenstvích PEVNÉM, KAPALNÉM nebo PLYNNÉM. Např. voda (H 2 O)- může se vyskytovat jako krystalický
š š Ť ř ň š ú ř ý ž š ř ě Š ě š ř ň š ú ř ý ž ř ý ě ř š ř ň š ú ý ř ý ž ě ě š š ě ě ě ž ž š ě ř ý ěž ů ň ů ý š ř ý ř ě ž ř ě ž ý ž ý ř š ř š ě ř ý š ý ě ž ř ě ž ě ř ěž ř ž ř ň ř ý ý š ě ě ž ň ř ý ř ě ý
( a ) s. Exponenciální rovnice teorie. Exponenciální rovnice ukázkové úlohy. Příklad 1.
eg. č. pojektu CZ..07/..0/0.0007 Eponenciální ovnice teoie - ovnice, ve kteých e neznámá vykytuje v eponentu Řešíme je v záviloti n typu ovnice několik zákldními metodmi. A. metod převedení n tejný zákld
11. cvičení z Matematiky 2
11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv
Deskový kondenzátor a jak v něm měřit pole Návody na pokusy
Deskový konenzátor a jak v něm měřit pole Návoy na pokusy Tato saa pokusů je rozělena o tří samostatných experimentálních částí: 1. Experimenty s jenouchým eskovým konenzátorem 2. Intenzita elektrického
Úlohy krajského kola kategorie B
61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé
Úpravy skříní a čelních ploch pro úchopovou lištou
Úpravy skříní a čelních ploch pro úchopovou lištou Úchopová lišta znamená hliníkovou lištu, která je součástí korpusu. Skříňky jsou připraveny pro osazení této lišty, lišta samotná se osazuje až na montáži.
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ
Pojekt ŠABLONY NA GVM Gymnázium Velké Meziříčí egistační číslo pojektu: CZ..07/.5.00/4.0948 IV- Inoace a zkalitnění ýuky směřující k ozoji matematické gamotnosti žáků středníc škol POVRCH A OBJEM KOULE
PŘÍČNÁ STABILITA PLOVOUCÍHO TĚLESA VÁLCOVÉHO TVARU PLOVÁKŮ SIDE TILT STABILITY OF THE FLOATING BODY BY CYLINDRICAL FORM OF FLOATS
Ročník 5., Číslo I., duben 00 PŘÍČNÁ STABILITA PLOOUCÍHO TĚLESA ÁLCOÉHO TARU PLOÁKŮ SIDE TILT STABILITY OF THE FLOATING BODY BY CYLINDRICAL FOR OF FLOATS Leopold Hrabovský Anotace: Příspěvek pojednává
KIV/ZI Základy informatiky. MS Excel maticové funkce a souhrny
KIV/ZI Základy informatiky MS Excel maticové funkce a souhrny cvičící: Michal Nykl zimní semestr 2012 MS Excel matice (úvod) Vektor: (1D) v = [1, 2, 3, 5, 8, 13] Např.: matice sousednosti Matice: (2D)
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
3.cvičení. k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR. 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ),
3.cvičení 1. Bodem A kolmici: Zvolím bod X p k(a, r 1 = XA ), k p = {X, Y } u(x, r 1 = XA ), v(y, r 1 = XA ) u v = {A, R} q = AR Bodem A rovnoběžku: Ještě jednu kolmici. Tři úhly, které je možno rozdělit
Cvičení z termomechaniky Cvičení 6.
Příklad 1: Pacovní látkou v poovnávacím smíšeném oběhu spalovacího motou je vzduch o hmotnosti 1 [kg]. Počáteční tlak je 0,981.10 5 [Pa] při teplotě 30 [ C]. Kompesní pomě je 7, stupeň zvýšení tlaku 2
8. Stereometrie 1 bod
8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme
{ } Poznámky 1. Jestliže integrand lze zapsat ve tvaru součinu tří funkcí jedné nezávisle proměnné. b d h
3. TROJROZMĚRNÝ (TROJNÝ) INTEGRÁL Analogick jako dvojroměrný integrál avádíme integrál trojroměrný nebo také trojný. Dvojroměrný integrál bl obecně definován pro funkci dvou neávisle proměnných f(, ) na
3.2.8 Oblouková míra. Předpoklady:
3..8 Oblouková mía Předpoklady: Pedagogická poznámka: Tato hodina zabee přibližně jednu a půl vyučovací hodiny. Na 45 minut je možné hodinu zkátit buď vynecháním někteých převodů na konci (vzhledem k tomu,
Řešení úloh celostátního kola 55. ročníku fyzikální olympiády.
Řešení úlo celostátnío kola 55 ročníku fyzikální olympiády AutořiJTomas(134)aMJarešová() 1a) Pro určení poloy těžiště umístíme jelan do poloy podle obr R1 Obsa příčnéo řezu jelanem ve vzdálenosti od vrcolu
Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičování obsahu a objemu prostorových těles
METODICKÝ LIST DA55 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa VII. slovní úlohy Astaloš Dušan Matematika šestý/sedmý
Hřídele a hřídelové spojky
Hřídele a hřídelové spojky 5 5 25015 Dutá hřídel : 1,1 kg / m : Dutá hřídel bez drážky : Rezidenční Alternativa : 25019 Délka 25015-2750 2750 mm 25015-3500 3500 mm 25015-6000 6000 mm 5.1 25016 Plná hřídel
Gravitační a elektrické pole
Gavitační a elektické pole Newtonův gavitační zákon Aistotelés (384-3 př. n. l.) předpokládal, že na tělesa působí síla směřující svisle dolů. Poto jsou těžké předměty (skály tvořící placatou Zemi) dole
Abstrakt. Následující text obsahuje detailní popis algoritmu Minimax, který se používá při realizaci rozhodování
Abstrakt Následující text obsahuje detailní popis algoritmu Minimax, který se používá při realizaci rozhodování počítačového hráče v jednoduchých deskových hrách, a jeho vylepšení Alfa-Beta ořezávání,
Radiátory budoucnosti!
Radiátory budoucnosti! Hlavní výhody radiátorů Heatroll Výrazné snížení nákladů na topení. Nadčasový design spojení lakovaného bezpečnostního skla a kovu. Barevné provedení podle vzorníku RAL. Perfektní
Délka kružnice (obvod kruhu) II
.10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede
2.1.9 Lineární funkce II
.1.9 Lineární funkce II Předpoklad: 108 Pedagogická poznámka: Je třeba postupovat tak, ab na příklad 6, kde se poprvé kreslí graf lineárních funkcí, zblo minimálně 10 minut. Př. 1: Přiřaď k jednotlivým
Vztlaková síla působící na těleso v atmosféře Země
Vztlaková síla působící na těleso v atmosféře Země (Učebnice strana 140 141) Na pouti koupíme balonek. Pustíme-li ho v místnosti, stoupá ke stropu.po určité době (balonek mírně uchází) se balonek od stropu
Analytická geometrie (3. - 4. lekce)
Analytická geometrie (3. - 4. lekce) Sylva Potůčková, Dana Stesková, Lubomír Sedláček Gymnázium a Jazyková škola s právem státní jazykové zkoušky Zlín Zlín, 16. června 2011 Příklad 1 Příklad 1. Algebraicky
Kategorie mladší. Řešení 3. kola VI. ročník. Úloha 3A
Kategoie mladší Úloha A Sůví table Když Anička přeloží papí na polovinu, jeho tloušťku t tím zdvojnásobí. Nová tloušťka t je pak ovna t. Po duhém přeložení bude nová tloušťka t ovna t = t, po třetím přeložení
IV. Magnetické pole ve vakuu a v magnetiku. 1. Magnetické pole el. proudu 2. Vlastnosti mg. pole 3. Magnetikum
IV. Magnetické pole ve vakuu a v magnetiku Osnova: 1. Magnetické pole el. poudu 2. Vlastnosti mg. pole 3. Magnetikum 1. Magnetické pole el. poudu histoický úvod podivné expeimenty ukazující neznámé silové
Nosníky s kruhovými otvory
tručný návod pro diplomanty osníky s kruovými otvory Instalace lze výodně uložit uvnitř obrysu. osníky jsou estetické. Jsou vodné zejména pro rovnoměrné zatížení (stropnice, vaznice), neboť mají menší
š á á ň ě ě ě á á č ě á Ž á Ž Žá é á č ň Í á Í é á ĎÍ ě ě š čá á ň š é á Ž á č Ď ě š á Í š š é š é á ň Ž š š ě á ěšé Ů č á Ů á á é á á á ť š Ů Č á á ě
á áš á á Š É Á Ý š Í ť á á ť ž é é č ě á ň č é á č ě š é é č ě ě á Í á Ž ě é á á č é ě ň é é á á á ě Ž á ě á č é ěď č š Í á é á ň é á é ň ě Ž é ěť á á ě š ě š ě Ž á á šé ň Ů č é š Ď á Ž č é ň ě ě Ž é á
Modely synchronních generátorů a transformátorů pro Simulátor ochran a protihavarijních automatik RTDS
Moely synchronních generátorů a transformátorů pro Simulátor ochran a protihavarijních automatik RDS EÓRIA A PRAX Příspěvek popisuje tvorbu ynamických moelů elektrických strojů a transformátorů vhoných
4. Výčtem prvků f: {[2,0],[3,1],[4,2],[5,3]}
1/27 FUNKCE Základní pojmy: Funkce, definiční obor, obor hodnot funkce Kartézská soustava souřadnic, graf funkce Opakování: Číselné množiny, úpravy výrazů, zobrazení čísel na reálné ose Funkce: Zápis:
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost.
Tento materiál byl vytvořen v rámci projektu Operačního programu Vzdělávání pro konkurenceschopnost. Projekt MŠMT ČR Číslo projektu Název projektu školy Klíčová aktivita III/2 EU PENÍZE ŠKOLÁM CZ.1.07/1.4.00/21.2146
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
Obec Nezvěstice. č. 4/2012, o poplatku za komunální odpad. Čl. 1
Obec Nezvěstice Obecně závazná vyhláška obce Nezvěstice č. 4/2012, o poplatku za komunální odpad Zastupitelstvo obce Nezvěstice se na svém zasedání dne 17.12.2012 usnesením č. 10 usneslo vydat na základě
(snažíme se výroky zapsat tak, aby představoval stav, kdy je potřeba sepnou čerpadlo)
Řešení příklů z. ílu: Řešení rozor slovníh úloh Příkl : N utomtikém plníím zřízení se plní vráěný nápoj o láhví součsně ž třemi plníími hlvmi npojenými n menší společný zásoník oplňovný čerplem. Vzhleem
15 s. Analytická geometrie lineárních útvarů
5 s Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý
Duktilní deformace, část 1
uktilní defomace, část uktilní (plastická) defomace je taková defomace, při níž se mateiál defomuje bez přeušení koheze (soudžnosti). Plasticita mateiálu záleží na tzv. mezi plasticity (yield stess) -
ž é Í éř á Š ř ý é ž Í ž ř ž ř ř ý é Š ť ý Š ý ý ý ý ř ú é ž Í é é Š á é ý ž á é ň Ř ář ž ď ž ď Ř Ř ř é ž ú Č ď ž ž á ž ý é š Š ž ř é Š ž š ž ž š ž ž
áž úř Č Č Ú á á ř š áž ř áž á ř á á š ň ů á ř é á á á á ú řá á é é é ý é ř á á á á á á é Í Í ř éú Ú š Í Í ž é Í Š ť é Í ť é ř ť é ř Í ž ž Ú ž é Í éř á Š ř ý é ž Í ž ř ž ř ř ý é Š ť ý Š ý ý ý ý ř ú é ž
Tepelná výměna - proudění
Tepelná výměna - proudění Proč se při míchání horkého nápoje ve sklenici lžičkou nápoj rychleji ochladí - Při větrání místnosti (zejména v zimě) pozorujeme, že chladný vzduch se hromadí při zemi. Vysvětlete
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem
Ceník modelů RTV 2016 - V1
Ceník modelů RTV 2016 - V1 RTV 400 Obj.číslo Popis 1/2 platí od 1.1.2016 bez DPH W26TC50719 W26TC50741 RTV 400 G Základní stroj, ruční sklopení korby, bezp.rám Barva: Oranžová RTV 400 R Základní stroj
{ } 9.1.9 Kombinace II. Předpoklady: 9108. =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce.
9.1.9 Kombinace II Předpoklady: 9108 Př. 1: Je dána pěti prvková množina: M { a; b; c; d; e} =. Vypiš všechny dvoučlenné kombinace sestavené z těchto pěti prvků. Urči počet kombinací pomocí vzorce. Vypisujeme
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ GB02 FYZIKA II MODUL M01 ELEKTŘINA A MAGNETISMUS
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ PROF. ING. BOHUMIL KOKTAVÝ, CSC., DOC. ING. PAVEL KOKTAVÝ, CSC., PH.D. GB FYZIKA II MODUL M1 ELEKTŘINA A MAGNETISMUS STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
Řešení úloh 1. kola 52. ročníku fyzikální olympiády. Kategorie B Autořiúloh:M.Jarešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.RauneraP.Šedivý(6).
Řešení úloh 1. kola 52. očníku fyzikální olympiády. Kategoie B Autořiúloh:M.Jaešová(5),P.Šedivý(1,4),J.Thomas(2,3,7), K.auneaP.Šedivý(6). 1.a) Potože se tyč otáčí velmi pomalu, můžeme každou její polohu
S S obsahy podstav S obsah pláště
Předmět: Ročník: ytořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROÁ 7.. 04 Náze zpacoaného celku: PORCHY A OBJEMY KOMOLÝCH TĚLE, KOULE A JEJÍCH ČÁTÍ PORCH A OBJEM KOMOLÉHO JEHLANU Komolý jehlan: má dě podstay,
V okolí každého hmotného tělesa existuje gravitační pole, které se projevuje silovým působením na jiná hmotná tělesa.
GRAVITAČNÍ POLE V okolí kažého hmotného tělesa existuje avitační pole, kteé se pojevuje silovým působením na jiná hmotná tělesa. Gavitační pole zpostřekuje silové působení těles, aniž přitom musí ojít
Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.
18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa
MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,
MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=
5.3.4 Využití interference na tenkých vrstvách v praxi
5.3.4 Využití intefeence na tenkých vstvách v paxi Předpoklady: 5303 1. kontola vyboušení bousíme čočku, potřebujeme vyzkoušet zda je spávně vyboušená (má spávný tva) máme vyobený velice přesný odlitek
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana 1 (celkem 7) Číselné soustavy
Číselné soustavy Ing. M. Kotlíková, Ing. A. Netrvalová Strana (celkem 7) Polyadické - zobrazené mnohočlenem desítková soustava 3 2 532 = 5 + 3 + 2 + Číselné soustavy Číslice tvořící zápis čísla jsou vlastně
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'
Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce
Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí
Pracovní list: Hustota 1
Pracovní list: Hustota 1 1. Doplň zápis: g kg 1 = cm 3 m 3 2. Napiš, jak se čte jednotka hustoty: g.. cm 3 kg m 3 3. Doplň značky a základní jednotky fyzikálních veličin. Napiš měřidla hmotnosti a objemu.
(k 1)x k + 1. pro k 1 a x = 0 pro k = 1.
. Funkce dvou a více proměnných. Úvod. Určete definiční obor funkce a proveďte klasifikaci bodů z R vzhledem k a rozhodněte zda je množina uzavřená či otevřená. Určete a načrtněte vrstevnice grafu funkce
Výukový materiál zpracován v rámci projektu EU peníze školám
Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková
KONSTRUKČNÍ ÚLOHY ŘEŠENÉ UŽITÍM MNOŽIN BODŮ
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol KONSTRUKČNÍ
Příklady elektrostatických jevů - náboj
lektostatika Hlavní body Příklady elektostatických jevů. lektický náboj, elementání a jednotkový náboj Silové působení náboje - Coulombův zákon lektické pole a elektická intenzita, Páce v elektostatickém
14. Základy elektrostatiky
4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých
Řešení 1) = 72000cm = 30 80
Steeometie 1) uzavřeném skleněném kvádu s hanami délek 0 cm, 60 cm a 80 cm je obavená voda. Postavíme-li kvád na stěnu s ozměy 0 cm x 60 cm dosáhne voda do výšky 40 cm. jaké výšce bude hladina vody, ostavíme-li
Dynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
Newtonův gravitační zákon
Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační
Černá díra. Pavel Provinský. 4. března 2013
Černá íra Pavel Provinský 4. března 203 Nezakřivené sférické souřanice Využijme získané poznatky na jenom velmi zajímavém příklaě, totiž výpočtu černé íry. Bueme uvažovat tzv. Schwarzschilovu černou íru,
Ý ř ů ř ř Ý ů ř ř Í š ř Ě Ě Í ů ď šš šř
š Í Ý Ů ŘÍ Í ř Ý ř ů Á ů ů ů ů š Ý Ý ř ů ř ř Ý ů ř ř Í š ř Ě Ě Í ů ď šš šř Ý ř ď šř É šř šř ň ř š š šť šť ď š š ň ú ř ř ř ň ř ň Í Í Ý ř š š š š ť Č Š ř š š š ř Ý Í Í Ý ř ď ř ř ř ů Á Í šř š š šř š ř š ů