Řešení 1) = 72000cm = 30 80
|
|
- Libor Matoušek
- před 6 lety
- Počet zobrazení:
Transkript
1 Steeometie 1) uzavřeném skleněném kvádu s hanami délek 0 cm, 60 cm a 80 cm je obavená voda. Postavíme-li kvád na stěnu s ozměy 0 cm x 60 cm dosáhne voda do výšky 40 cm. jaké výšce bude hladina vody, ostavíme-li kvád na stěnu s ozměy 0 cm x 80 cm? Tloušťku stěn kvádu neuvažujeme. ) áleček se kutálí o odložce. Po jedné celé otočce se osune o 5 cm. Jaký je olomě odstavy válečku? ) Kolik centimetů měří olomě koule, jejíž objem je 1 lit? 4) Přiřaďte ke každé úloze (1. 4.) sávné řešení (A F): 1. Kolik stěn má kychle?. Kolik han má osmiboký jehlan?. Kolik vcholů má dvanáctiboký hanol? 4. Kolik stěn včetně odstav má hanol, kteý má 4 han? A) 6; B) 10; C) 1; D) 0; E) 4; F) jiný výsledek 5) Jaká je výška nádoby tvau avidelného šestibokého hanolu s odstavou o obsahu 0,5 dm, kteou tři čtvtlitové hnky vody nalní až o okaj? 6) Koule má olomě 0, m. Kolikát větší je objem koule s dvojnásobným oloměem? 7) Jedna z koulí hvězdány M. Koeníka v Bně má tva oloviny kulové lochy o ůměu 6 m. Náklad na 1 m nátěu je 150 Kč. Kolik stojí natření střechy koule? ýsledek zaokouhlete na stovky Kč. 8) Na olici stojí akváium tvau kychle, do něhož se vejde 7 litů vody. Tloušťka skla akváia je 5 mm. Jakou lochu na olici akváium zabíá? 9) Silniční válec má ůmě 10 cm a šířku 1,75 m. Kolik m uválí za ět otočení? ýsledek zaokouhlete na m. Poznámka: Počítejte s hodnotou π,14. 10) Součet délek všech han kychle je 4 cm. Jak velký je ovch této kychle? 11) Kvád s odstavou o ozměech 17 cm a 1 cm má ovch 1 4 cm. yočítejte výšku kvádu. 1) Do nádže tvau kvádu o ozměy 1 m a 6 m a hloubce m bylo nauštěno 88 hl vody. Kolik ocent objemu nádže voda zaujímala? 1) Nádž tvau válce ojme 60 hl vody a je hluboká,5 m. yočítejte ůmě nádže. 14) yočtěte v litech objem vzduchu ve stanu. Nezaomeňte uvést jednotku! 1,8 m m 1,8 m,5 m m 15) Dátěný model avidelného šestibokého hanolu s odstavnou hanou délky a = 8 cm má výšku v = 1 cm. Těleso se řeleí aíem, odstavy tmavým a lášť bílým. a. yočtěte v cm největší možnou římou vzdálenost dvou vcholů dátěného hanolu. (Tloušťku dátu zanedbáváme.) b. yočtěte v cm obsah bílého aíového láště hanolu. v a
2 16) Střecha věže má tva avidelného čtyřbokého jehlanu s odstavnou hanou délky,8 m a výškou 7,5 m. Kolik lechu se sotřebuje na okytí střechy, jestliže na záhyby, řekytí a odad musíme řiočítat 1% lechu navíc? 17) Plechová stříška tvau otačního kužele má ůmě odstavy 1,6 m a výšku 1, m. yočítejte sotřebu bavy na natření této stříšky, sotřebuje-li se 5kg bavy na 1 m lechu.
3 Řešení 1) = 7000cm 7000 = 0 80 v 7000 v = = 0cm 0 80 Hladina bude ve výšce 0 cm. ) Po jedné otočce se osune o obvod odstavy: o = π o 5 = = =,98cm π,14 Polomě odstavy válečku je,98 cm. ) 1lit = 1000cm = π = 4 / : 4 4 = 4π π / π 1000 = = = 6,cm 4π 4,14 Polomě koule měří 6, cm. 4) A; F (han je 16); E; B 5) Objem hanolu je = S v 0,75 v = = = 1,5 dm S 0,5 ýška nádoby je 1,5 dm. 0,5 0,75litů 0,75 = = dm. 6) 4 4 = π = π 0, = 0,1104cm 4 4 = π = π 0,6 = 0,904cm 0,904 = 8 0,1104 Objem koule je osmkát větší.
4 7) S = 4π = 4,14 6 = 45,16 m S = 6,08m 6, = 91 Kč 900 Kč Natření střechy stojí 900 Kč. 8) = a a = = 7 = dm = 0cm nější ozměy odstavy jsou 1 cm x 1 cm, obsah lochy je Akváium zabíá na olici lochu 961 cm. 9) Obsah láště válce je S = π v, = 60cm = 0,6 m; v = 1,75 m. Po ěti otočeních S = 5 6,6 = m. álec uválí za 5 otočení m. S a cm S = = 1 = 961.,14 0,6 1,75 6,6 = m. 10) Kychle má 1 han, jedna hana má velikost 4 = cm. Povch kychle je 1 Povch kychle je 4 cm. S a cm = 6 = 6 = 4. 11) S = ab + bc + ac ( ) S = ab + bc + ac S ab = bc + ac ( ) S ab = c b + a S ab c = = = 15 cm a + b ýška kvádu je 15 cm. 1) Objem kvádu je: S = abc = 1 6 = 144m ody bylo nauštěno m % m x 8,8... % 8,8 100 x = = 0% 144 oda zaujímala 0% objemu nádže. 88hl = 8800l = 8800dm = 8,8m
5 1) 60hl = 6000l = 6m = π v / : π v = πv = = π v 6 0,87 m,14,5 d = 1,74 m Půmě nádže je 1,74 m. 14) Stan je tojboký hanol. Tojúhelníkový vstu je odstava hanolu, délka stanu ( m) je výška hanolu. Objem máme uvést v litech, oto je nejleší si ozměy řevést na decimety a objem ak vyjde v litech. a va 5 0 Podstava hanolu: S = = = 50dm Objem hanolu: = S v = 50 0 = 7500dm = 7500l Objem vzduchu ve stanu je litů. 15) a. Nejvzdálenější vcholy jsou A, B. Jejich vzdálenost učíme omocí Pythagoovy věty z avoúhlého ACB. elikost úsečky AC je ovna a = 8 = 16cm, otože odstava avidelného šestibokého hanolu se skládá ze šesti ovnostanných tojúhleníků. x = = 0cm. Největší možná římá vzdálenost dvou vcholů je 0 cm. b. Plášť hanolu je složen ze šesti shodných obdélníků o ozměech a v, obsah láště hanolu je tedy: S = 6 a v = = 576cm Obsah láště hanolu je 576 cm. A a x B C v
6 16) Nejve sočítáme skutečnou lochu střechy. Tvoří ji 4 shodné ovnoamenné tojúhelníky, o výočet jejich obsahu otřebujeme znát stěnovou výšku v s - učíme ji omocí Pythagoovy věty z avoúhlého tojúhelníku SE:,8 vs = 7,5 + 7,7m Obsah jednoho tojúhelníku je: a v s,8 7,7 S1 = = = 14,6m Obsah celé střechy je: S = 4 S1 = 4 14,6 = 58,5 m Přiočítáme 1%: 58,5 58,5 + 1 = 65,5m 100 Na okytí střechy je otřeba 65,5 m lechu. 17) Stříška je lášť kužele, o výočet jeho obsahu otřebujeme znát stanu s. Učíme ji omocí Pythagoovy věty z avoúhlého tojúhelníku o stanách v,, s: 1,6 s = 1, + = 1,44 m Obsah láště je: S = π s =,14 0,8 1,44 =,6 m l Sotřeba bavy:,6 5 = 18kg Na natření střechy je otřeba 18 kg bavy. v s
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Základní stereometrické pojmy
ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; c) trám, komín; d) střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou
SMART Notebook verze Aug
SMART Notebook verze 10.6.219.2 Aug 5 2010 Pořadové číslo projektu CZ.1.07/1.4.00/21.3007 Šablona č.: III/2 Datum vytvoření: 3.9.2012 Pro ročník: 6. až 9. Vzdělávací obor předmět: Matematika Klíčová slova:
+ S pl. S = S p. 1. Jehlan ( síť, objem, povrch ) 9. ročník Tělesa
1. Jehlan ( síť, objem, povrch ) Jehlan je těleso, které má jednu podstavu tvaru n-úhelníku. Podle počtu vrcholů n-úhelníku má jehlan název. Stěny tvoří n rovnoramenných trojúhelníků se společným vrcholem
Povrch a objem těles
Povrch a objem těles ) Kvádr: a.b.c S =.(ab+bc+ac) ) Krychle: a S = 6.a ) Válec: π r.v S = π r.(r+v) Obecně: S podstavy. výška S =. S podstavy + S pláště Vypočtěte objem a povrch kvádru, jehož tělesová
S S obsahy podstav S obsah pláště
Předmět: Ročník: ytořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROÁ 7.. 04 Náze zpacoaného celku: PORCHY A OBJEMY KOMOLÝCH TĚLE, KOULE A JEJÍCH ČÁTÍ PORCH A OBJEM KOMOLÉHO JEHLANU Komolý jehlan: má dě podstay,
Digitální učební materiál
Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_15 ŠVP Podnikání RVP 64-41-L/51
Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),
Tělesa 1/6 Tělesa 1.Mnohostěny n-boký hranol Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ), hranol kosý hranol kolmý (boční stěny jsou kolmé k rovině podstavy) pravidelný
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yett Btákoá Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles komolá těles VY INOVACE_05 9_M Gymnázium, OŠ VOŠ Ledeč nd ázou Objemy pochy těles A) Komolý jehln - je těleso, kteé znikne půnikem
Slouží k procvičení aplikace vzorců pro povrch a objem těles ve slovních úlohách
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/21.3763 Autor Mgr. Martina Smolinková Datum 11. 1. 2014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Stereometrie 03 (povrch a objem těles)
teeometie 0 (oh ojem těles) Geometiké těleso je ostooý omezený souislý geometiký út. Jeho hnií nzýnou tké ohem je uzřená loh.. Pidelný n-oký kolmý hnol Poh je tořen děm shodnými odstmi (idelnými n-úhelníky)
Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3
y, objemy nám vlastně říká, kolik tapety potřebujeme k polepení daného tělesa. Základní jednotkou jsou metry čtverečné (m 2 ). nám pak říká, kolik vody se do daného tělesa vejde. Základní jednotkou jsou
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm.
Vypočítejte délku tělesové úhlopříčky krychle o hraně délky a cm. 8 cm u s = 11,3137085 cm pomocí Pythagorovy věty z pravoúhlého ABC u t = 13,85640646 cm opět pomocí Pythagorovy věty z pravoúhlého ACA'
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Metodické pokyny k pracovnímu listu č Povrchy a objemy těles II
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.10 Povrchy a objemy těles II Pracovní list je zaměřen především na výpočty povrchů a
4. Vypočítejte objem dané krychle, jestliže víte, že objem krychle s hranou poloviční délky má objem 512 m 3.
Didaktika matematiky DM 3 - příklady stereometrie Kvádr, krychle 1. Vypočítejte objem krychle, jejíž povrch je 96 cm 2. 2. Vypočítejte povrch krychle, jejíž objem je 512 cm 3. 3. Jedna stěna krychle má
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je
1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je a) 4:π, b) :π, c) :4π, d) :4π, e) π :,. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme o 0 %, zmenší
Zadání. stereometrie. 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK =3 AK ; M EH; HM =3 EM.
STEREOMETRIE Zadání 1) Sestrojte řez krychle ABCDEFGH rovinou KS GHM; K AB; BK = AK ; M EH; HM = EM ) Sestrojte řez pravidelného čtyřbokého jehlanu ABCDV rovinou KLM; K AB; BK = AK ; L CD; DL = CL ; M
Metodické pokyny k pracovnímu listu č Povrchy a objemy těles I
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 9.09 Povrchy a objemy těles I Pracovní list je zaměřen na procvičení vzorců povrchů a
Stereometrie pro učební obory
Variace 1 Stereometrie pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Vzájemná poloha prostorových
Délka kružnice (obvod kruhu) II
.10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede
STEREOMETRIE, TĚLESA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
STEREOMETRIE, TĚLESA Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro nižší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu
7/ Podstavou kolmého trojbokého hranolu ABCA BĆ je rovnoramenný trojúhelník ABC. Určete odchylku přímek: a) BA ; BC b) A B ; BC c) AB ; BC
Stereometrie 1/ Je dána krychle ABCDEFGH. Uveďte všechny přímky, které procházejí bodem E a dalším vrcholem krychle a jsou s přímkou BC a) rovnoběžné b) různoběžné c) mimoběžné / Je dána krychle ABCDEFGH.
Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu.
Jehlan obdélníkoou podtaou o rozměrech a dm a b dm má boční hranu délky dm. ypočítejte porch a objem tohoto jehlanu. a = b = = 5 dm 6,5 dm 1,8 dm a = 1,55348557 dm pomocí Pythagoroy ěty z praoúhlého E
M - Příprava na 1. zápočtový test - třída 2SB
M - Příprava na 1. zápočtový test - třída 2SB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. VARIACE 1 Tento
PLANIMETRIE. 1) Vypočítejte velikost úhlu DAB v kosočtverci ABCD, jestliže ABD = [ ]
PLANIMETRIE 1) Vypočítejte velikost úhlu DAB v kosočtverci ABCD, jestliže ABD = 21 40 [136 40 ] 2) Vypočítejte velikost úhlu γ = ACB obecného trojúhelníku ABC, znáte-li velikost stran a = 8cm, b = 6 cm,
VÝPOČET SPOTŘEBY MATERIÁLU
PROGRAM DALŠÍHO VZDĚLÁVÁNÍ KLEMPÍŘ STAVEBNÍ (36-053-H) OBOR KLEMPÍŘ STAVEBNÍ (36-99-H/09) STUDIJNÍ TEXT K VZDĚLÁVACÍMU MODULU VÝPOČET SPOTŘEBY MATERIÁLU (KÓD MODULU KS6) Učebnice vznikla v rámci projektu
Autor: Jana Krchová Obor: Matematika. Hranoly
Převeď na jednotky v závorce: Hranoly a) 0,5 cm 2 (mm 2 ) = 8,4 dm 2 (cm 2 ) = b) 2,3 m 2 (dm 2 ) = 0,078 m 2 (cm 2 ) = c) 0,09 ha (a) = 0,006 km 2 (a) = d) 4 a (m 2 ) = 540 cm 2 (m 2 ) = e) 23 cm 3 (mm
OBJEM A POVRCH TĚLESA
OBJEM A POVRCH TĚLESA 9. Objem tělesa (např. krychle, kvádr) je prostor, který těleso tvoří. Zjednodušeně řečeno vyjadřuje, kolik vody do uvedeného tělesa nalijete. Objem se počítá v metrech krychlových
Matematika 9. ročník
Matematika 9. ročník Náhradník NáhradníkJ evátá třída (Testovací klíč: SVFMFRIH) Počet správně zodpovězených otázek Počet nesprávně zodpovězených otázek 0 26 Počítání s čísly / Geometrie / Slovní úlohy
Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.
Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1
Příklady pro 8. ročník
Příklady pro 8. ročník Procenta: 1.A Vyjádřete v procentech: a) desetina litru je % b) polovina žáků je % c) pětina výměry je % d) padesátina délky je % e) tři čtvrtiny objemu je % f) dvacetina tuny je
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání.
9. Hranol 6. ročník 9. Hranol 9.1. Volné rovnoběžné promítání Tělesa můžeme v rovině zobrazit pomocí volného rovnoběžného promítání. Zásady : 1) Plochy, které jsou rovnoběžné s naší rýsovací plochou zobrazujeme
Očekávaný výstup Žák zvládne náčrtek a rys jednoduchých hranolů, dosadí do vzorce, účelně použije kalkulátor Speciální vzdělávací žádné
Název projektu Život jako leporelo Registrační číslo CZ.1.07/1.4.00/1.3763 utor Mgr. Martina Smolinková Datum 11. 1. 014 Ročník 9. Vzdělávací oblast Matematika a její aplikace Vzdělávací obor Matematika
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Stereometrie pro studijní obory
Variace 1 Stereometrie pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Vzájemné polohy prostorových
OBJEMY A POVRCHY TĚLES
OBJEMY A POVRCHY TĚLES Metodický mteiál do semináře MA SDM Růžen Blžkoá, Ien Budínoá KOMOLÝ JEHLAN Ojem komolého jehlnu Po zjednodušení ododíme zthy po komolý jehln, jehož podstmi jsou čtece. Oznčení:
Svobodná chebská škola, základní škola a gymnázium s.r.o. procvičování obsahu a objemu prostorových těles
METODICKÝ LIST DA55 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa VII. slovní úlohy Astaloš Dušan Matematika šestý/sedmý
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou čtyři červené
CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 13 Mgr. Zdeňka Strnadová OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V trojúhelníku ABC na obrázku dělí úsečka
5.4.6 Objemy a povrchy rotačních těles I
5.4.6 Objey a povchy otačních těle I Předpoklady: 050405 Pedagogická poznáka: Stejně jako u nohotěnů i u otačních těle e vzoce po objey a obahy e neodvozují, žáci ohou využívat tabulky a cíle hodin je,
Pravidelný čtyřboký jehlan (se čtvercovou podstavou)
Prvidelný čtyřboký jehln (se čtvercovou odstvou) Jehln se čtvercovou odstvou je trojrozměrné těleso, jehož ovrch tvoří čtyři stejné trojúhelníky čtverec jko odstv. S = obsh odstvy vj v v = výšk trojúhelníku
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
M - Příprava na 2. čtvrtletku - třída 3ODK
M - Příprava na 2. čtvrtletku - třída 3ODK Učebnice určená k přípravě na 2. čtvrtletní písemnou práci. Obsahuje učivo ledna až března. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn
M - Příprava na 3. čtvrtletku - třída 3ODK
M - Příprava na 3. čtvrtletku - třída 3ODK Učebnice je určena pro přípravu na 3. čtvrtletní písemnou práci. Obsahuje učivo března až června. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Výpočet povrchu, objemu a hmotnosti kovových rour
Tento výukový materiál byl vytvořen v rámci projektu MatemaTech Matematickou cestou k technice. Předmět: Matematika Téma: Výpočet povrchu, objemu a hmotnosti kovových rour Věk žáků: 13 15 let Časová dotace:
29. OBJEMY A POVRCHY TĚLES
9. OBJEMY A POVRCHY TĚLES 9.. Vypočítejte poch kádu ABCDEFGH, jestliže ) AB =, BC = b, BH = u b) AB =, BH = u, odchylk AG EH je ϕ H G Poch kádu učíme podle zoce: S = b + c + bc ( ) c E F D b C ) A B u
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ
Pojekt ŠABLONY NA GVM Gymnázium Velké Meziříčí egistační číslo pojektu: CZ..07/.5.00/4.0948 IV- Inoace a zkalitnění ýuky směřující k ozoji matematické gamotnosti žáků středníc škol POVRCH A OBJEM KOULE
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Tatínek zaplatil za rozříznutí
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Na obrázku jsou zakresleny dva
Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na
Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. - Mnohostěny mají stěny, hrany
MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
Pracovní list slouží k procvičení látky o válci. Žáci si upevní učivo týkající se sítě, povrchu a objemu válce.
Název projektu: Spokojená škola Číslo projektu: OPVK.CZ.1.07/1.2.33/02.0039 Metodické pokyny k pracovnímu listu č. 8.08 Válec Pracovní list slouží k procvičení látky o válci. Žáci si upevní učivo týkající
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
Příklady z hydrostatiky
Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační
Čtyřúhelníky. Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno:
Čtyřúhelníky Příklad 1: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 2: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 3: Sestroj rovnoběžník ABCD, je-li dáno: Příklad 4: Sestroj rovnoběžník ABCD, je-li
1.3.6 Dynamika pohybu po kružnici II
.3.6 Dynamika ohybu o kužnici II Pedaoická oznámka: Sočítat šechny uedené říklady jedné hodině není eálné. Př. : Vysětli, oč se čloěk ři jízdě na kole (motocyklu) musí ři ůjezdu zatáčkou naklonit. Podobná
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
8. Stereometrie 1 bod
8. Stereometrie 1 bod 8.1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného válce je 4 : π b) : π c) : π d) : π e) 4 : π. 8.. Zmenšíme-li poloměr podstavy kužele o polovinu a jeho výšku zvětšíme
Geometrické těleso je prostorově omezený geometrický útvar. Jeho hranicí, povrchem, je uzavřená plocha.
18. Tělesa řezy, objemy a povrchy, (řez krychle, kvádru, jehlanu, objemy a povrchy mnohostěnů, rotačních těles a jejich částí včetně komolých těles, obvody a obsahy mnohoúhelníků, kruhu a jeho částí) Tělesa
Očekávané ročníkové výstupy z matematiky 9.r.
Pomůcky: tabulky, kalkulačky 2. pololetí Soustavy lineárních rovnic 1A x y = 1 2x + 3y = 12 1B x y = -3 2x y = 0 2A x y = -2 2x 2y = 2 2B x y = -2 3x 3y = 6 3A y = 2x + 3 x = 0,5. (y 3) 3B x = 2y + 5 y
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles
Základní stereometrické pojmy
ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; trám, komín; střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou věží,
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: % Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického testu je
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
CVIČNÝ TEST 53. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 53 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Je dána funkce f: y = x p, x R {3}, kde p je reálný
je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!
-----Pravoúhlý trojúhelník----- 156 V pravoúhlém trojúhelníku ABC má pravý úhel vrchol C. Vypočítejte velikost jeho ostrých úhlů, je-li dáno: a) a = 62 mm, b = 37 mm, b) a = 36 mm, c = 58 mm, c) b = 8,4
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Projekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - Z.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: eometrie radovaný řetězec úloh Téma: Komolý jehlan utor: Kubešová Naděžda Klíčové pojmy: Komolý
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Čtyřúhelníky. Autor: Jana Krchová Obor: Matematika. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Napiš názvy jednotlivých rovinných útvarů: 1) 2) 3) 4)
Projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. Vybarvi ( nebo vyšrafuj) čtyřúhelníky: Čtyřúhelníky 1 2 3 4 5 6 7 8 9 10 11 12 Napiš názvy jednotlivých rovinných
pravidelné konvexní mnohostěny
PLATÓNOVA TĚLESA pavidelné konvexní mnohostěny Platónova tělesa Stěny Počet stěn S vcholů V han H Čtyřstěn tetaed ovnostanný tojúhelník 4 4 6 Šestistěn(Kychle) hexaed čtveec 6 8 12 Osmistěn oktaed ovnostanný
MATEMATIKA základní úroveň obtížnosti
MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 22 úloh. Časový limit pro
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 1 bod 1 Určete průsečík P[x, y] grafů funkcí f: y = x + 2 a g: y = x 1 2, které jsou definovány na množině reálných
Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy
5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,
POVRCH A OBJEM HRANOLU A JEHLANU
Projekt ŠABLONY NA GM Gymnázim elké Meziříčí registrční číslo rojekt: CZ..07/.5.00/.098 I- Inoce zklitnění ýky směřjící k rozoji mtemtické grmotnosti žáků středních škol PORCH A OBJEM HRANOLU A JEHLANU
CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde
Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.
Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní
7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
Úlohy krajského kola kategorie B
61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé
CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 49 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST 1 bod 1 Kolik hodnot proměnné a R existuje takových, že diference aritmetické
I. kolo kategorie Z9
68. očník Matematické olympiády I. kolo kategoie Z9 Z9 I 1 Najděte všechna kladná celá čísla x a y, po kteá platí 1 x + 1 y = 1 4. Nápověda. Mohou být obě neznámé současně větší než např. 14? (A. Bohiniková)
A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Test č.2. Příjímací zkoušky z matematiky. Matematika s Jitkou - přijímačky na SŠ 1
Příjímací zkoušky z matematiky Matematika s Jitkou - přijímačky na SŠ 1 MATEMATIKA ILUSTRAČNÍ TEST 1 Základní informace k zadání zkoušky Didaktický test obsahuje 17 úloh. Časový limit pro řešení didaktického
Pravoúhlá axonometrie - osvětlení těles
Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles
CVIČNÝ TEST 27. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 27 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Karel povídá: Myslím si celé číslo. Je záporné. Nyní
6. Jehlan, kužel, koule
6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří
C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU
36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka
STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117
STEREOMETRIE Odchylky přímky a roviny Mgr. Jakub Němec VY_3_INOVACE_M3r0117 ODCHYLKA PŘÍMKY A ROVINY Poslední kapitolou, která se týká problematiky odchylek v prostoru, je odchylka přímky a roviny. V této