Měření tvaru ploch. Postup :
|
|
- Ladislav Janda
- před 8 lety
- Počet zobrazení:
Transkript
1 B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení Souřadnové měříí aříení se sládá řížovéo mometéo stolu a číslovéo úloměu posuvnéo ve svslém směu tím e aštěno měření polo ve tře naváem olmý osá,,..0
2 Umístěte měřenou plou na řížový stole a afute eí polou pomoí upevňovaí magnetů. Poveďte měření souřadn bodů plo. ěření pováděte na ovnoměně odělené sít bodů v ovně řížovéo stolu. Dělení ve směu os volte po 5 osa pobu řížovéo stolu e 5, tn. ísáte souřadne 6 bodů plo. Naměřené odnot apsute na tabul. Hodnot odečtené na dgtálním číslovém úloměu apsute do soubou S Eel - budete s nm dále paovat na počítač. Obdobným působem poveďte měření a paute výsled po všen adané plo.. Počítačové paování a vodnoení měření Poveďte analýu naměřený dat. etodou nemenší čtveů položte sféou naměřeným dat a stěte polomě této sféé plo. Sféá ploa apomae měřený dat Uvažume stua náoněnou na následuíím obáu. Neť O e počáte souřadné soustav, střed oule, polomě oule a A lbovolný bod na povu oule. ovn oule můžeme psát ve vetoovém tvau ao, de e poloový veto bodu A,, ležíío na povu oule a e poloový veto středu oule,,. ěřením s pomoí souřadnovéo měříío aříení ísáme souřadne bodů,, na povu oule. Napíšeme-l s předáeíí ovn oule po dva ůné bod A a A na povu oule, t.,, potom e váemným odečtením dostaneme
3 ,. Napíšeme-l s nní předoí ovn po a,,,, potom ísáme soustavu lneání ovn b A, de sme onačl, A 4 b,,,,,,. Řešením této soustav ovn metodou nemenší čtveů vpočteme souřadne,, středu oule. Polomě oule poté učíme ao půměnou odnotu vdáleností ednotlvý měřený bodů na povu oule od eío středu, t.,.
4 . ěření poloměu sféé plo pomoí sféometu Postudute s návod e sféometu a poté poveďte měření adaný voů sféý plo. Použte všen půmě sond sféometu, teé sou po měření dané plo vodné a poveďte výpočet poloměu sféé plo. Polomě sféé plo e dán vtaem: D / de e výša ulovéo vlíu odečteme číslovéo úloměu a D e půmě sond sféometu D D Poo na odnotu D u ednotlvý sond sou uveden vžd dvě odnot a to vntřní a vněší půmě pstene sond. Př měření sféé plo vpulé onvení se uplatní vntřní půmě a naopa př měření sféé plo vduté onávní se uplatní vněší půmě sond. Naměřené odnot paute statst spočítete atmetý půmě a poveďte výpočet 95% b měření poloměu sféé plo. Výsled poovnete s odnotam ísaným předoí metod. Pomů : sféomet, souřadnové měříí aříení dgtální číslový úlomě, řížový stole se stoanem, džá na číslový úlomě, měřené vo plo, magnet po upevnění voů, počítač, dseta
5 Ko postupu:. Poveďte měření adaný sféý a válový plo pomoí souřadnovéo měříío aříení. ěření pováděte na ovnoměné sít bodů v ovně řížovéo stolu. Dělení volte po 5. Zísané odnot souřadne apsute do přpavené tabul v S Eel. Uáa vplněné tabul: ,975 9,7498 9,467 8,9975 8,4 5 9,975 9,875 9,687 9,74 8,947 8,68 0 9,7498 9,687 9,4994 9,858 8,746 8,79 5 9,467 9,74 9,858 8,878 8,4 7, ,9975 8,947 8,746 8,4 7,9899 7, ,4 8,68 8,79 7,866 7,409 6,850 Data uložená v soubou S Eel budou sloužt po počítačové paování měření.. Poveďte analýu naměřený dat. Vpočtěte polomě měřené plo a měřením paute gaf, neednoduše v sstému atlab. Výstup počítače s uložte na dsetu a použte př paování potoolu měření.. Poveďte měření poloměu řvost adaný sféý plo pomoí sféometu. ěřte pomoí vše vodný sond, aždou plou měřte 0át a vpočtěte odnotu poloměu e vtau D / Zísané výsled paute statst t. učete půměnou odnotu poloměu a poveďte výpočet 95% b měření.
Moderní metody měření geometrických rozměrů a tvaru stavebních prvků a konstrukcí
FP 7 odení metod měření geometýh oměů a tvau stavebníh pvů a onstuí Úol :. Změřte tva ploh pomoí souřadnového měříího aříení, poveďte eonstu tvau ploh na počítač. Změřte polomě sféýh ploh pomoí sféometu.
Více1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů
VíceMOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
VíceMOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:
MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,
VíceMAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ
Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..
VíceŘešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016
Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se
VíceMĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU
Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové
Více1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3
lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál
VíceELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje
EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ
VíceSMR 1. Pavel Padevět
SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně
VíceDélka kružnice (obvod kruhu) II
.10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede
VíceÍ Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž
VíceP. Bartoš, J. Blažek, P. Špatenka. Katedra fyziky, Pedagogická fakulta Jihočeské univerzity, Jeronýmova 10, České Budějovice
VYUŽITÍ MATLABU PŘI STATISTICKÉM ZPRACOVÁNÍ AT PŘI POČÍTAČOVÉM MOELOVÁNÍ EBYEOVA STÍNĚNÍ TECHNIKOU MAKROČÁSTIC P. Batoš, J. Blaže, P. Špatena Kateda fz, Pedagogcá faulta Jhočesé unvezt, Jeonýmova, Česé
VíceUrčení geometrických a fyzikálních parametrů čočky
C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky
VíceNewtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce
Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí
Vícea polohovými vektory r k
Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,
Více7.1.2 Kartézské soustavy souřadnic II
7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě
VíceFabryův-Perotův rezonátor
Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně
VíceMěření indukčností cívek
7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ
VíceLINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM
LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d
VíceÚlohy domácího kola kategorie B
54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny
Více6A Paralelní rezonanční obvod
6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní
Více15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)
15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch
VícePro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah:
SOUPY PŘÍČE TROJOUBOVÁ H Vpěné él: Po vojloubové a tojloubové á se slone stoje enší než cca 5 (v obáe), le po vpěnou élu stoje použít tento přblžný vtah: l s h 4+ 3, + E e, s. h h Opovíající vpěná éla
VíceS k l á d á n í s i l
S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících
VíceKinematika. Hmotný bod. Poloha bodu
Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény
Více7.1.2 Kartézské soustavy souřadnic II
7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě
Více= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1
Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol
VícePlatí Coulombův zákon? Pole nabité koule.
Platí Coulombův zákon? Pole nabité koule. Návody na pokusy Tato sada pokusů je ozdělena do tří samostatných expeimentálních částí: 1. Poměřování Coulombova zákona 2. Intenzita elektického pole v okolí
VíceTenzor malé deformace
Moerní technologe ve stuu plkovné fk CZ..7/../7.8 Tenor mlé eformce stuní opor k přenášce SLO/EXTM Anlý stvu eformce těles e ž po řu esetletí enou nečetněších úloh mechnk. Účelem tohoto krátkého stuního
Více5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.
5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w
VíceAnalytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
VíceGeometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační
Více(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.
STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné
VíceD ělení racionálních čísel Zobrazeni racionálního čísla na číselné o se...30 Periodická čísla...30 M o c n in a a o d m o c n in a...
OBSAH ARITMETIKA A ALGEBRA Přirozená čísla ( N )...9 Zaokrouhlování čísel... 11 Násobení přirozených čísel... 11 Děleni přirozených čísel... 12 Dvojková soustava...13 D ě lite ln o s t p řiro z e n ý c
Více5. Statika poloha střediska sil
5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny
Více9. Kombinované namáhání O kombinovaném namáhání nosníku mluvíme, když průřez namáhán nějakou kombinací vnitřních sil:
9. Komnované namáání O komnovaném namáání nosníku mluvím, kdž průř namáán nějakou komnací vntřníc sl: M normálová síla M,M oové momnt M = M k M M = M k kroutící momnt Vntřní síl dostanm ntgrací napětí
VíceDynamika tuhého tělesa. Petr Šidlof
Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se
VíceRovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.
Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n
VíceCvičení 5 (Potrubní systémy)
VŠ Techncá unvezta Ostava aulta stoní Kateda pužnost a pevnost (9) Pužnost a pevnost v enegetce (Návody do cvčení) Cvčení (Potubní systémy) uto: aoslav oíče Veze: Ostava 9 PP Cvčení Potubní systémy: Ob
VíceOptické zobrazování - čočka
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka
Víceh n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k
h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná
Vícedat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv
Určení vodorovné a o b e c n é r o v n Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový objem emních prací bl stejný násp = výkop, 2. najít obecnou rovnc rovn, která dobře
Více1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
Více1.3.8 Rovnoměrně zrychlený pohyb po kružnici I
1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb
VíceReprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005
Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme
Více21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů)
1 očník, úloha II 3 víno teče poudem (4 body; půmě,8; řešilo 38 studentů) Vinaři a řidiči kamionu dobře znají šikovné přelévání kapalin z těžkých nádob Vinař Ignác chce stočit víno z jednoho demižonu do
VícePříklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum)
Přílad 7 Vypočt onstanty šířní (fáová onstanta, ěný útlu) adání : Rovinná haonicá ltoagnticá vlna o itočtu : a) f 5 b) f 7 M c) f 9 G s šíří v postřdí s těito paaty:.[ S ], ε 8, µ. Vaianta a) Vaianta b)
VíceIng. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.
Vyoké učení technické v Bně Fakulta tojního inženýtví Útav tojíenké technologie Odbo obábění Téma: 3. cvičení - Geometie řezného nátoje Okuhy: Učení nátojových úhlů po nátoje ovinnými plochy Aγ, Aα Kontola
VíceZáklady počítačové grafiky
Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto
VícePružnost a plasticita II
Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz
Víceú ď ů ů ď ů ů ů ů ó ň ň ó ů ů ó ť ú ů ů ů ů ů ň ů ů ů ů ť ů ú É ť ů ů ů ů ů Ú ň ů Ý Ť ů ó ů ó ů ů ť ť ů ů ů Ě Ť Ě ů ů Ú ů ť ň ť ů ů ň ú ů ů ď ť ů ť ů Ě ň ť Ť ť Ť Ť ň ň ů Ý Ý Ý Ť ó ú ů ť ť ť ů ť ď ů Ý ů
Vícehmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost
Kinematika hmotný bod: těleso s nekonečně malými omě, ale nenulovou hmotností, tj. žádné otáčení, žádná defomace atd. = bodová hmotnost popis pohbu hmotného bodu tj. poloha hmotného bodu v ávislosti na
VíceLineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2
Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky
VíceVYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH
VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu
Více3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso
3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje
VícePŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN
PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti
VíceEntropie (opičí tým) M možných výsledků (x 1, x 2, x M ) jak přiřadit pravděpodobnosti jednotlivým výsledkům?
ntroe (očí tým) možnýh výsledů (,, ) a řřadt ravděodobnost ednotlvým výsledům? aždou možnost rerezentueme rabí a náhodně do rab rozházíme mní ravděodobnost -tého výsledu: výsledem e -te ravděodobností:
VíceStřední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT
Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po
VíceFyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách
Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu
Víceválec 2 komolý rotační kužel válec 1 Objem válce V = πr Těžiště válce výšky h leží v
Příkla ĚŽIŠĚ ÁZY Zaání Učete těžiště váz tvau lave viz. Ob. vobené ze skla. Dáno: 8 cm cm cm 5 cm 5 cm cm cm 5 cm cm Řešení ázu tvau lave apoimujme třemi na sobě postavenými těles válec komolý otační válec
VíceFyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2
Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III
Více14. Základy elektrostatiky
4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých
Více6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi
6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové
VíceEASYSTAT 1.0 Uživatelský manuál
EASYSTAT.0 Užvatelsý manuál Josef Novotný, Votěch Nose, Kael Jelíne Kontat: pepno@natu.cun.cz Příodovědecá faulta Unvezt Kalov v Paze OBSAH. Úvod... 2. Spuštění pogamu, načtení dat, volba počítaných ndátoů...
VíceUčební text k přednášce UFY102
Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy
VíceÚlohy krajského kola kategorie B
61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé
VíceNázev školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.
Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník
VíceSouřadnicové výpočty I.
Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli
VícePřímková a rovinná soustava sil
Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit
VíceLineární regrese ( ) 2
Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující
VíceX = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
VíceMAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem
MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických
VíceF n = F 1 n 1 + F 2 n 2 + F 3 n 3.
Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,
VíceChemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce
» Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna
Více3.7. Magnetické pole elektrického proudu
3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam
VíceTechnická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text
Technická univezita v Libeci Fakulta příodovědně-humanitní a pedagogická Kateda matematiky a didaktiky matematiky KŘIVKY Pomocný učební text Peta Piklová Libeec, leden 04 V tomto textu si budeme všímat
Vícedat měření do vnitřní paměti přístroje (k polohovému a
U R Č E N Í V O D O R O V N É A O B E C N É R O V I N Y místopsný pops: park v ulc Nkol Tesl Poslední úprava: 25.9.208 7:23 Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový
VíceVýslednice, rovnováha silové soustavy.
Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky
VíceFakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydrostatika
aula savební ČVUT v Pae Kaeda hdauli a hdoloie Předmě HYA K4 Sv ČVUT Hdosaia Doc. In. Aleš Havlí, CSc., In. Tomáš Pice PhD. K4 HYA Hdosaia ŘEŠENÍ HYDROSTATICKÉ SÍLY VE SLOŽKÁCH Dvě navájem olmé vodoovné
VíceOBSAH. Seznam zkratek používaných v textu... 14 Ú V O D... 15
Seznam zkratek používaných v textu... 14 Ú V O D... 15 1. ALTERNATIVNÍ OPATŘENÍ: ÚČEL, PODSTATA, VÝHODY. RESTORATIVNÍ JUSTICE... 19 1.1. Krize trestu odnětí sv o b o d y... 19 1.2. Alternativy к u v ězn
VíceRovinná napjatost a Mohrova kružnice
Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují
Více111 Všeobecná zdravotní pojišťovna
1 111 Všeobecná zdravotní pojišťovna Pro naše pojištěnce - bezpříspěvkové dárce krve (BDK) a dárce kostní dřeně (DKD) jsme připravili: zvýhodněné cestovní pojištění bodové zvýhodnění v rámci programu Zdravý
VíceHledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:
7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin
VíceObr.1. LD1..4 ložiskové domky. DŘK1-3 roztečné průměry řetězových kol
Přemět : 34750/0 Konstukční cvčení I Gaant přemětu : oc Ing Jří Havlík, PhD Ročník : navazující, magsteské Školní ok : 07/08 Semest : zmní Zaání : Navhněte a konstukčně zpacujte poháněcí stanc hozontálního
VíceZískejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru
J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!
VíceCavendishův pokus: Určení gravitační konstanty,,vážení Země
Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem
Více2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?
. LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,
VícePružnost a plasticita II
Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová
VíceReciprokou funkci znáte ze základní školy pod označením nepřímá úměra.
@091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba
Vícev 1 = at 1, (1) t 1 = v 1
Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného
VíceAnalýza a zpracování signálů. 5. Z-transformace
nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná
VíceM ě ř e n í o d p o r u r e z i s t o r ů
M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:
VíceVÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 01 4809
VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 0 4809 DIAGRAM PRO VOLBU ŘETĚZU Z JMENOVITÉHO VÝONU A OTÁČE PASTORU Js /4 ŘETĚZY_VÝPOČET_04809 SOUČINITEL VÝONU κ Počet zuů pstoku z Převoový pomě i 2 3 5 7 3 0,39 0,50 0,57
VíceDoc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
VíceAgregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
VíceÚloha 8. Analýza signálů
Úloha 8. Analýza signálů Požadované znalosti: Lidský hlas a jeho vlastnosti; Elektické vlastnosti tkání, uč. 1. Měření napětí a fekvence elektických signálů osciloskopem Naučit se manipulaci s osciloskopem
VíceFYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava
VíceNewtonův gravitační zákon
Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační
Více