Měření tvaru ploch. Postup :

Rozměr: px
Začít zobrazení ze stránky:

Download "Měření tvaru ploch. Postup :"

Transkript

1 B ěření tvau plo Úol :. Změřte tva plo pomoí souřadnovéo měříío aříení. Poveďte eonstu tvau plo na počítač. Učete polomě sféé plo pomoí sféometu Postup :. ěření tvau plo pomoí souřadnovéo měříío aříení Souřadnové měříí aříení se sládá řížovéo mometéo stolu a číslovéo úloměu posuvnéo ve svslém směu tím e aštěno měření polo ve tře naváem olmý osá,,..0

2 Umístěte měřenou plou na řížový stole a afute eí polou pomoí upevňovaí magnetů. Poveďte měření souřadn bodů plo. ěření pováděte na ovnoměně odělené sít bodů v ovně řížovéo stolu. Dělení ve směu os volte po 5 osa pobu řížovéo stolu e 5, tn. ísáte souřadne 6 bodů plo. Naměřené odnot apsute na tabul. Hodnot odečtené na dgtálním číslovém úloměu apsute do soubou S Eel - budete s nm dále paovat na počítač. Obdobným působem poveďte měření a paute výsled po všen adané plo.. Počítačové paování a vodnoení měření Poveďte analýu naměřený dat. etodou nemenší čtveů položte sféou naměřeným dat a stěte polomě této sféé plo. Sféá ploa apomae měřený dat Uvažume stua náoněnou na následuíím obáu. Neť O e počáte souřadné soustav, střed oule, polomě oule a A lbovolný bod na povu oule. ovn oule můžeme psát ve vetoovém tvau ao, de e poloový veto bodu A,, ležíío na povu oule a e poloový veto středu oule,,. ěřením s pomoí souřadnovéo měříío aříení ísáme souřadne bodů,, na povu oule. Napíšeme-l s předáeíí ovn oule po dva ůné bod A a A na povu oule, t.,, potom e váemným odečtením dostaneme

3 ,. Napíšeme-l s nní předoí ovn po a,,,, potom ísáme soustavu lneání ovn b A, de sme onačl, A 4 b,,,,,,. Řešením této soustav ovn metodou nemenší čtveů vpočteme souřadne,, středu oule. Polomě oule poté učíme ao půměnou odnotu vdáleností ednotlvý měřený bodů na povu oule od eío středu, t.,.

4 . ěření poloměu sféé plo pomoí sféometu Postudute s návod e sféometu a poté poveďte měření adaný voů sféý plo. Použte všen půmě sond sféometu, teé sou po měření dané plo vodné a poveďte výpočet poloměu sféé plo. Polomě sféé plo e dán vtaem: D / de e výša ulovéo vlíu odečteme číslovéo úloměu a D e půmě sond sféometu D D Poo na odnotu D u ednotlvý sond sou uveden vžd dvě odnot a to vntřní a vněší půmě pstene sond. Př měření sféé plo vpulé onvení se uplatní vntřní půmě a naopa př měření sféé plo vduté onávní se uplatní vněší půmě sond. Naměřené odnot paute statst spočítete atmetý půmě a poveďte výpočet 95% b měření poloměu sféé plo. Výsled poovnete s odnotam ísaným předoí metod. Pomů : sféomet, souřadnové měříí aříení dgtální číslový úlomě, řížový stole se stoanem, džá na číslový úlomě, měřené vo plo, magnet po upevnění voů, počítač, dseta

5 Ko postupu:. Poveďte měření adaný sféý a válový plo pomoí souřadnovéo měříío aříení. ěření pováděte na ovnoměné sít bodů v ovně řížovéo stolu. Dělení volte po 5. Zísané odnot souřadne apsute do přpavené tabul v S Eel. Uáa vplněné tabul: ,975 9,7498 9,467 8,9975 8,4 5 9,975 9,875 9,687 9,74 8,947 8,68 0 9,7498 9,687 9,4994 9,858 8,746 8,79 5 9,467 9,74 9,858 8,878 8,4 7, ,9975 8,947 8,746 8,4 7,9899 7, ,4 8,68 8,79 7,866 7,409 6,850 Data uložená v soubou S Eel budou sloužt po počítačové paování měření.. Poveďte analýu naměřený dat. Vpočtěte polomě měřené plo a měřením paute gaf, neednoduše v sstému atlab. Výstup počítače s uložte na dsetu a použte př paování potoolu měření.. Poveďte měření poloměu řvost adaný sféý plo pomoí sféometu. ěřte pomoí vše vodný sond, aždou plou měřte 0át a vpočtěte odnotu poloměu e vtau D / Zísané výsled paute statst t. učete půměnou odnotu poloměu a poveďte výpočet 95% b měření.

Moderní metody měření geometrických rozměrů a tvaru stavebních prvků a konstrukcí

Moderní metody měření geometrických rozměrů a tvaru stavebních prvků a konstrukcí FP 7 odení metod měření geometýh oměů a tvau stavebníh pvů a onstuí Úol :. Změřte tva ploh pomoí souřadnového měříího aříení, poveďte eonstu tvau ploh na počítač. Změřte polomě sféýh ploh pomoí sféometu.

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ

MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ Úloha č. 6 a MAGNETICKÉ POLE CÍVEK V HELMHOLTZOVĚ USPOŘÁDÁNÍ ÚKOL MĚŘENÍ:. Změřte magnetickou indukci podél osy ovinných cívek po případy, kdy vdálenost mei nimi je ovna poloměu cívky R a dále R a R/..

Více

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016

Řešení testu 2b. Fyzika I (Mechanika a molekulová fyzika) NOFY ledna 2016 Řešení testu b Fika I (Mecanika a molekulová fika NOFY. ledna 6 Příklad Zadání: Po kouli o poloměu se be pokluovaní valí malá koule o poloměu. Jaká bude úlová clost otáčení malé koule v okamžiku kd se

Více

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU

MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU Úloha č 5 MĚŘENÍ MOMENTU SETRVAČNOSTI Z DOBY KYVU ÚKOL MĚŘENÍ: Určete moment setrvačnosti ruhové a obdélníové desy vzhledem jednotlivým osám z doby yvu Vypočtěte moment setrvačnosti ruhové a obdélníové

Více

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3

1. Dvě stejné malé kuličky o hmotnosti m, jež jsou souhlasně nabité nábojem Q, jsou 3 lektostatické pole Dvě stejné malé kuličk o hmotnosti m jež jsou souhlasně nabité nábojem jsou pověšen na tenkých nitích stejné délk v kapalině s hustotou 8 g/cm Vpočtěte jakou hustotu ρ musí mít mateiál

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité rozložení náboje EEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Spojité ozložení náboje Pete Doumashkin MIT 006, překlad: Jan Pacák (007) Obsah. SPOJITÉ OZOŽENÍ NÁBOJE.1 ÚKOY. AGOITMY PO ŘEŠENÍ POBÉMU ÚOHA 1: SPOJITÉ OZOŽENÍ

Více

SMR 1. Pavel Padevět

SMR 1. Pavel Padevět SMR Pavel Padevět Oganzace předmětu Přednášející Pavel Padevět, K 3, D 09 e-mal: pavel.padevet@fsv.cvut.cz Infomace k předmětu: https://mech.fsv.cvut.cz/student SMR Heslo: odné číslo bez lomítka (případně

Více

Délka kružnice (obvod kruhu) II

Délka kružnice (obvod kruhu) II .10.7 Déla užnice (obvod uhu) II Předpolady: 01006 Př. 1: Bod je od středu užnice ( ;cm) vzdálen 7 cm. Uči početně vzdálenost z bodu do bodu, teý je tečným bodem tečny užnice jdoucí z bodu. vůj výslede

Více

Í Č ú Č Š Í Á É Č Č ú š š Ž ž š Ť Ť Ž ž Ó ó Ž ž ž Í ú ž Ť ž ž š ň ž š š Í ž Í ň Ž ň š ó š Ž Ž Í Š ú Í ž ž Í š ž ž Ť š š Ž Ž Á ž ó ž Ť š ž ť š Í ň ť ž Ž ž Ž ž Ť ž šť š ž Ž ň ú ž š ž ú ú ť Ž ň ú š ú ž Ž

Více

P. Bartoš, J. Blažek, P. Špatenka. Katedra fyziky, Pedagogická fakulta Jihočeské univerzity, Jeronýmova 10, České Budějovice

P. Bartoš, J. Blažek, P. Špatenka. Katedra fyziky, Pedagogická fakulta Jihočeské univerzity, Jeronýmova 10, České Budějovice VYUŽITÍ MATLABU PŘI STATISTICKÉM ZPRACOVÁNÍ AT PŘI POČÍTAČOVÉM MOELOVÁNÍ EBYEOVA STÍNĚNÍ TECHNIKOU MAKROČÁSTIC P. Batoš, J. Blaže, P. Špatena Kateda fz, Pedagogcá faulta Jhočesé unvezt, Jeonýmova, Česé

Více

Určení geometrických a fyzikálních parametrů čočky

Určení geometrických a fyzikálních parametrů čočky C Určení geoetrickýc a yzikálníc paraetrů čočky Úkoly :. Určete poloěry křivosti ploc čočky poocí séroetru. Zěřte tloušťku čočky poocí digitálnío posuvnéo ěřítka 3. Zěřte oniskovou vzdálenost spojné čočky

Více

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce

Newtonův gravitační zákon Gravitační a tíhové zrychlení při povrchu Země Pohyby těles Gravitační pole Slunce Gavitační pole Newtonův gavitační zákon Gavitační a tíhové zychlení při povchu Země Pohyby těles Gavitační pole Slunce Úvod V okolí Země existuje gavitační pole. Země působí na každé těleso ve svém okolí

Více

a polohovými vektory r k

a polohovými vektory r k Mechania hmotných soustav Hmotná soustava (HS) je supina objetů, o teých je vhodné uvažovat jao o celu Pvy HS se pohybují účinem sil N a) vnitřních: Σ ( F + F + L+ F ) 0 i 1 i1 b) vnějších: síly od objetů,

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

Fabryův-Perotův rezonátor

Fabryův-Perotův rezonátor Úvod do laseové tehniky KFE FJFI ČVUT Paha Pet Koanda, 00 Fabyův-Peotův ezonáto Fabyův-Peotův ezonáto je optiké zařízení tvořené dvěma plan-paalelními (ovnoběžnými) ovinnými částečně odaznými plohami (ideálně

Více

Měření indukčností cívek

Měření indukčností cívek 7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ

Více

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d

Více

Úlohy domácího kola kategorie B

Úlohy domácího kola kategorie B 54. roční Matematicé olympiády Úlohy domácího ola ategorie 1. Určete všechny dvojice (a, b) reálných čísel, pro teré má aždá rovnic x + ax + b 0, x + (a + 1)x + b + 1 0 dva růné reálné ořeny, přičemž ořeny

Více

6A Paralelní rezonanční obvod

6A Paralelní rezonanční obvod 6A Paalelní ezonanční obvod Cíl úlohy Paktickým měřením ověřit základní paamety eálného paalelního ezonančního obvodu (PRO) - činitel jakosti Q, ezonanční kmitočet f a šířku pásma B. Vyšetřit selektivní

Více

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)

15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut) 15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch

Více

Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah:

Pro dvojkloubové a trojkloubové rámy se sklonem stojek menším než cca 15 (viz obrázek), lze pro vzpěrnou délku stojek použít tento přibližný vztah: SOUPY PŘÍČE TROJOUBOVÁ H Vpěné él: Po vojloubové a tojloubové á se slone stoje enší než cca 5 (v obáe), le po vpěnou élu stoje použít tento přblžný vtah: l s h 4+ 3, + E e, s. h h Opovíající vpěná éla

Více

S k l á d á n í s i l

S k l á d á n í s i l S l á d á í s i l Ú o l : Všetřovat rovováhu tří sil, působících a tuhé těleso v jedom bodě. P o t ř e b : Viz sezam v desách u úloh a pracovím stole. Obecá část: Při sládáí soustav ěolia sil působících

Více

Kinematika. Hmotný bod. Poloha bodu

Kinematika. Hmotný bod. Poloha bodu Kinematika Pohyb objektů (kámen, automobil, střela) je samozřejmou součástí každodenního života. Pojem pohybu byl poto známý už ve staověku. Modení studium pohybu začalo v 16. století a je spojeno se jmény

Více

7.1.2 Kartézské soustavy souřadnic II

7.1.2 Kartézské soustavy souřadnic II 7..2 Kartéské soustav souřadnic II Předpoklad: 70 Zavedení kartéské soustav souřadnic minulé hodin: Kartéskou soustavou souřadnic v rovině naýváme dvojici číselných os, v rovině, pro které platí:. obě

Více

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1 Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol

Více

Platí Coulombův zákon? Pole nabité koule.

Platí Coulombův zákon? Pole nabité koule. Platí Coulombův zákon? Pole nabité koule. Návody na pokusy Tato sada pokusů je ozdělena do tří samostatných expeimentálních částí: 1. Poměřování Coulombova zákona 2. Intenzita elektického pole v okolí

Více

Tenzor malé deformace

Tenzor malé deformace Moerní technologe ve stuu plkovné fk CZ..7/../7.8 Tenor mlé eformce stuní opor k přenášce SLO/EXTM Anlý stvu eformce těles e ž po řu esetletí enou nečetněších úloh mechnk. Účelem tohoto krátkého stuního

Více

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník.

5. Ohýbané nosníky Únosnost ve smyku, momentová únosnost, klopení, MSP, hospodárný nosník. 5. Ohýbané nosník Únosnost ve smku, momentová únosnost, klopení, P, hospodárný nosník. Únosnost ve smku stojina pásnice poue pro válcované V d h t w Posouení na smk: V pružně: τ = ( τ pl, Rd) I V V t w

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometie RND. Yvetta Batáková Gymnázium, OŠ a VOŠ Ledeč nad ázavou Objemy a povchy těles otační válec a kužel VY_3_INOVACE_05_3_17_M Gymnázium, OŠ a VOŠ Ledeč nad ázavou 1 Objemy a povchy těles A) Rotační

Více

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace.

(3) Vypočítejte moment setrvačnosti kvádru vzhledem k zadané obecné ose rotace. STUDUM OTÁčENÍ TUHÉHO TěLESA TEREZA ZÁBOJNÍKOVÁ 1. Pracovní úkol (1) Změřte momenty setrvačnosti kvádru vzhledem k hlavním osám setrvačnosti. (2) Určete složky jednotkového vektoru ve směru zadané obecné

Více

D ělení racionálních čísel Zobrazeni racionálního čísla na číselné o se...30 Periodická čísla...30 M o c n in a a o d m o c n in a...

D ělení racionálních čísel Zobrazeni racionálního čísla na číselné o se...30 Periodická čísla...30 M o c n in a a o d m o c n in a... OBSAH ARITMETIKA A ALGEBRA Přirozená čísla ( N )...9 Zaokrouhlování čísel... 11 Násobení přirozených čísel... 11 Děleni přirozených čísel... 12 Dvojková soustava...13 D ě lite ln o s t p řiro z e n ý c

Více

5. Statika poloha střediska sil

5. Statika poloha střediska sil 5. Statika poloha střediska sil 5.1 Rovnoběžné sily a jejich střed Uvažujeme soustavu vzájemně rovnoběžných sil v prostoru s pevnými působišti. Každá síla má působiště dané polohovým vektorem. Všechny

Více

9. Kombinované namáhání O kombinovaném namáhání nosníku mluvíme, když průřez namáhán nějakou kombinací vnitřních sil:

9. Kombinované namáhání O kombinovaném namáhání nosníku mluvíme, když průřez namáhán nějakou kombinací vnitřních sil: 9. Komnované namáání O komnovaném namáání nosníku mluvím, kdž průř namáán nějakou komnací vntřníc sl: M normálová síla M,M oové momnt M = M k M M = M k kroutící momnt Vntřní síl dostanm ntgrací napětí

Více

Dynamika tuhého tělesa. Petr Šidlof

Dynamika tuhého tělesa. Petr Šidlof Dnaika tuhého tělesa Pet Šidlof Dnaika tuhého tělesa Pvní věta ipulsová F dp dt a t Zchlení těžiště Výslednice vnějších sil F A F B F C Celková hbnost soustav p p i Hotnost soustav i těžiště soustav se

Více

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i.

Rovinný svazek sil. Lze odvodit z obecného prostorového svazku sil vyloučením jedné dimenze. =F i. =F ix. F 2x. e 2. = F 1x. F ix. n Fi sin i. Rovnný svazek sl Lze odvodt z obecného prostorového svazku sl vloučením edné dmenze = cos cos =sn e 2 = cos = sn = e 1 e 2 e 1 Určení výslednce r n r = =1 r e 1 r e 2 =...e 1...e 2 : r = n = n =1 =1 n

Více

Cvičení 5 (Potrubní systémy)

Cvičení 5 (Potrubní systémy) VŠ Techncá unvezta Ostava aulta stoní Kateda pužnost a pevnost (9) Pužnost a pevnost v enegetce (Návody do cvčení) Cvčení (Potubní systémy) uto: aoslav oíče Veze: Ostava 9 PP Cvčení Potubní systémy: Ob

Více

Optické zobrazování - čočka

Optické zobrazování - čočka I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 10 Optické zobrazování - čočka

Více

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k

h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k h n i s k o v v z d á l e n o s t s p o j n ý c h č o č e k Ú k o l : P o t ř e b : Změřit ohniskové vzdálenosti spojných čoček různými metodami. Viz seznam v deskách u úloh na pracovním stole. Obecná

Více

dat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv

dat měření do vnitřní paměti přístroje (k polohovému a Souřadnicový systém: S-JTSK, výškový systém: Bpv Určení vodorovné a o b e c n é r o v n Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový objem emních prací bl stejný násp = výkop, 2. najít obecnou rovnc rovn, která dobře

Více

1.5.7 Prvočísla a složená čísla

1.5.7 Prvočísla a složená čísla 17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:

Více

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I

1.3.8 Rovnoměrně zrychlený pohyb po kružnici I 1.3.8 Rovnoměně zychlený pohyb po kužnici I Předpoklady: 137 Opakování: K veličinám popisujícím posuvný pohyb existují analogické veličiny popisující pohyb po kužnici: ovnoměný pohyb pojítko ovnoměný pohyb

Více

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005

Reprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005 Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme

Více

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů)

21. ročník, úloha II. 3... víno teče proudem (4 body; průměr 2,08; řešilo 38 studentů) 1 očník, úloha II 3 víno teče poudem (4 body; půmě,8; řešilo 38 studentů) Vinaři a řidiči kamionu dobře znají šikovné přelévání kapalin z těžkých nádob Vinař Ignác chce stočit víno z jednoho demižonu do

Více

Příklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum)

Příklad 70 Vypočet konstanty šíření (fázová konstanta, měrný útlum) Přílad 7 Vypočt onstanty šířní (fáová onstanta, ěný útlu) adání : Rovinná haonicá ltoagnticá vlna o itočtu : a) f 5 b) f 7 M c) f 9 G s šíří v postřdí s těito paaty:.[ S ], ε 8, µ. Vaianta a) Vaianta b)

Více

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc.

Ing. Petra Cihlářová. Odborný garant: Doc. Ing. Miroslav Píška, CSc. Vyoké učení technické v Bně Fakulta tojního inženýtví Útav tojíenké technologie Odbo obábění Téma: 3. cvičení - Geometie řezného nátoje Okuhy: Učení nátojových úhlů po nátoje ovinnými plochy Aγ, Aα Kontola

Více

Základy počítačové grafiky

Základy počítačové grafiky Základy počítačové gafky Pezentace přednášek Ústav počítačové gafky a multmédí Téma přednášky Radozta Motto Světlo se šíří podle fyzkálních zákonů! Př ealstcké zobazení vtuálních počítačových scén e poto

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3 ročník bakalářského studa doc Ing Martn Kresa PhD Katedra stavební mechank Řešení pravoúhlých nosných stěn metodou sítí Statcké schéma nosné stěn q G υ (μ) h l d 3 wwwfastvsbcz

Více

ú ď ů ů ď ů ů ů ů ó ň ň ó ů ů ó ť ú ů ů ů ů ů ň ů ů ů ů ť ů ú É ť ů ů ů ů ů Ú ň ů Ý Ť ů ó ů ó ů ů ť ť ů ů ů Ě Ť Ě ů ů Ú ů ť ň ť ů ů ň ú ů ů ď ť ů ť ů Ě ň ť Ť ť Ť Ť ň ň ů Ý Ý Ý Ť ó ú ů ť ť ť ů ť ď ů Ý ů

Více

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost

hmotný bod: těleso s nekonečně malými rozměry, ale nenulovou hmotností, tj. žádné otáčení, žádná deformace atd. = bodová hmotnost Kinematika hmotný bod: těleso s nekonečně malými omě, ale nenulovou hmotností, tj. žádné otáčení, žádná defomace atd. = bodová hmotnost popis pohbu hmotného bodu tj. poloha hmotného bodu v ávislosti na

Více

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2

Lineární a adaptivní zpracování dat. 8. Kumulační zvýrazňování signálů v šumu 2 Lneární a adaptvní zpracování dat 8. Kumulační zvýrazňování sgnálů v šumu 2 Danel Schwarz Investce do rozvoe vzdělávání Opakování Kumulační zpracování sgnálů co to e, k čemu to e? Prncp metody? Nutné podmínky

Více

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH

VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH VYUŽITÍ MATLABU JAKO MOTIVAČNÍHO PROSTŘEDKU VE VÝUCE FYZIKY NA STŘEDNÍCH ŠKOLÁCH J. Tesař, P. Batoš Jihočesá univezita, Pedagogicá faulta, Kateda fyziy, Jeonýmova 0, 37 5 Česé Budějovice Abstat V příspěvu

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN

PŘÍKLAD VÝPOČTU RÁMU PODLE ČSN EN PŘÍKLAD VÝPOČTU RÁU PODLE ČS E 99-- Jaub Dolejš*), Zdeně Sool**).Zadání avrhněte sloup plnostěnného dvouloubového rámu, jehož roměr jsou patrné obráu. Horní pásnice příčle je po celé délce ajištěna proti

Více

Entropie (opičí tým) M možných výsledků (x 1, x 2, x M ) jak přiřadit pravděpodobnosti jednotlivým výsledkům?

Entropie (opičí tým) M možných výsledků (x 1, x 2, x M ) jak přiřadit pravděpodobnosti jednotlivým výsledkům? ntroe (očí tým) možnýh výsledů (,, ) a řřadt ravděodobnost ednotlvým výsledům? aždou možnost rerezentueme rabí a náhodně do rab rozházíme mní ravděodobnost -tého výsledu: výsledem e -te ravděodobností:

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Střední půmyslová škola a Vyšší odboná škola technická Bno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky postřednictvím ICT Název: Téma: Auto: Číslo: Anotace: Mechanika, dynamika Pohybová ovnice po

Více

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách

Fyzika. Fyzikální veličina - je mírou fyzikální vlastnosti, kterou na základě měření vyjadřujeme ve zvolených jednotkách Fyzika Studuje objekty neživé příody a vztahy mezi nimi Na základě pozoování a pokusů studuje obecné vlastnosti látek a polí, indukcí dospívá k obecným kvantitativním zákonům a uvádí je v logickou soustavu

Více

válec 2 komolý rotační kužel válec 1 Objem válce V = πr Těžiště válce výšky h leží v

válec 2 komolý rotační kužel válec 1 Objem válce V = πr Těžiště válce výšky h leží v Příkla ĚŽIŠĚ ÁZY Zaání Učete těžiště váz tvau lave viz. Ob. vobené ze skla. Dáno: 8 cm cm cm 5 cm 5 cm cm cm 5 cm cm Řešení ázu tvau lave apoimujme třemi na sobě postavenými těles válec komolý otační válec

Více

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2

Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM. Fyzikální praktikum 2 Fyzikální sekce přírodovědecké fakulty Masarykovy univerzity v Brně FYZIKÁLNÍ PRAKTIKUM Fyzikální praktikum 2 Zpracoval: Markéta Kurfürstová Naměřeno: 16. října 2012 Obor: B-FIN Ročník: II Semestr: III

Více

14. Základy elektrostatiky

14. Základy elektrostatiky 4. Základy elektostatiky lektostatické pole existuje kolem všech elekticky nabitých tles. Tato tlesa na sebe vzájemn jeho postednictvím psobí. lektický náboj dva významy: a) vyjaduje stav elekticky nabitých

Více

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi

6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi 6. přednáška z předmětu GIS1 Souřadnicové systémy a transformace mezi nimi Vyučující: Ing. Jan Pacina, Ph.D. e-mail: jan.pacina@ujep.cz Pro přednášku byly použity texty a obrázky od Ing. Magdaleny Čepičkové

Více

EASYSTAT 1.0 Uživatelský manuál

EASYSTAT 1.0 Uživatelský manuál EASYSTAT.0 Užvatelsý manuál Josef Novotný, Votěch Nose, Kael Jelíne Kontat: pepno@natu.cun.cz Příodovědecá faulta Unvezt Kalov v Paze OBSAH. Úvod... 2. Spuštění pogamu, načtení dat, volba počítaných ndátoů...

Více

Učební text k přednášce UFY102

Učební text k přednášce UFY102 Matematický popis vlnění vlna - ozuch šířící se postředím zachovávající svůj tva (pofil) Po jednoduchost začneme s jednodimenzionální vlnou potože ozuch se pohybuje ychlostí v, musí být funkcí jak polohy

Více

Úlohy krajského kola kategorie B

Úlohy krajského kola kategorie B 61. očník matematické olmpiád Úloh kajského kola kategoie B 1. Je dáno 01 kladných čísel menších než 1, jejichž součet je 7. Dokažte, že lze tato čísla ozdělit do čtř skupin tak, ab součet čísel v každé

Více

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady.

Název školy. Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková. Autor. Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Číslo projektu Z.1.07/1.5.00/34.0743 Název školy Moravské gymnázium rno s.r.o. utor Tematická oblast Mgr. Marie hadimová Mgr. Věra Jeřábková Matematika. Planimetrie. Trojúhelníky. Teorie a příklady. Ročník

Více

Souřadnicové výpočty I.

Souřadnicové výpočty I. Geodézie přednáška 7 Souřadnicové výpočt I. Ústav geoinformačních technologií Lesnická a dřevařská fakulta ugt.mendelu.cz tel.: 545134015 Výpočet směrníku a délk stran v základním i podrobném bodovém poli

Více

Přímková a rovinná soustava sil

Přímková a rovinná soustava sil Přímková a rovinná soustava sil 1) Souřadný systém - v prostoru - v rovině + y + 2) Síla P ( nebo F) - vektorová veličina - působiště velikost orientace Soustavy sil - přehled Soustavy sil můžeme rodělit

Více

Lineární regrese ( ) 2

Lineární regrese ( ) 2 Leárí regrese Častým úolem je staoveí vzájemé závslost dvou (č více) fzálích velč a její matematcé vjádřeí. K tomuto účelu se používají růzé regresí metod, pomocí chž hledáme vhodou fuc f (), apromující

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem

MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU. r je vyjádřen vztahem MAGNETICKÉ POLE ELEKTRICKÉHO PROUDU udeme se zabývat výpočtem magnetického pole vytvořeného danou konfiguací elektických poudů (podobně jako učení elektického pole vytvořeného daným ozložením elektických

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce

Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce » Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna

Více

3.7. Magnetické pole elektrického proudu

3.7. Magnetické pole elektrického proudu 3.7. Magnetické pole elektického poudu 1. Znát Biotův-Savatův zákon a umět jej použít k výpočtu magnetické indukce v jednoduchých případech (okolí přímého vodiče, ve středu oblouku apod.).. Pochopit význam

Více

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text

Technická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky KŘIVKY. Pomocný učební text Technická univezita v Libeci Fakulta příodovědně-humanitní a pedagogická Kateda matematiky a didaktiky matematiky KŘIVKY Pomocný učební text Peta Piklová Libeec, leden 04 V tomto textu si budeme všímat

Více

dat měření do vnitřní paměti přístroje (k polohovému a

dat měření do vnitřní paměti přístroje (k polohovému a U R Č E N Í V O D O R O V N É A O B E C N É R O V I N Y místopsný pops: park v ulc Nkol Tesl Poslední úprava: 25.9.208 7:23 Úkolem je vpočítat pro aměřený rovnatý terén:. vodorovnou rovnu tak, ab celkový

Více

Výslednice, rovnováha silové soustavy.

Výslednice, rovnováha silové soustavy. Výslednce, ovnováha slové soustavy. Základy mechanky, 2. přednáška Obsah přednášky : výslednce a ovnováha slové soustavy, ovnce ovnováhy, postoová slová soustava Doba studa : as 1,5 hodny Cíl přednášky

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydrostatika

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydrostatika aula savební ČVUT v Pae Kaeda hdauli a hdoloie Předmě HYA K4 Sv ČVUT Hdosaia Doc. In. Aleš Havlí, CSc., In. Tomáš Pice PhD. K4 HYA Hdosaia ŘEŠENÍ HYDROSTATICKÉ SÍLY VE SLOŽKÁCH Dvě navájem olmé vodoovné

Více

OBSAH. Seznam zkratek používaných v textu... 14 Ú V O D... 15

OBSAH. Seznam zkratek používaných v textu... 14 Ú V O D... 15 Seznam zkratek používaných v textu... 14 Ú V O D... 15 1. ALTERNATIVNÍ OPATŘENÍ: ÚČEL, PODSTATA, VÝHODY. RESTORATIVNÍ JUSTICE... 19 1.1. Krize trestu odnětí sv o b o d y... 19 1.2. Alternativy к u v ězn

Více

Rovinná napjatost a Mohrova kružnice

Rovinná napjatost a Mohrova kružnice Rovinná napjatost a ohrova kružnice Dvojosý stav napjatosti - ukák anačení orientace napětí v rovině x Na obr. vlevo dole jsou vnačen složk napětí. Kladná orientace napětí x a je v případě, že vektor směřují

Více

111 Všeobecná zdravotní pojišťovna

111 Všeobecná zdravotní pojišťovna 1 111 Všeobecná zdravotní pojišťovna Pro naše pojištěnce - bezpříspěvkové dárce krve (BDK) a dárce kostní dřeně (DKD) jsme připravili: zvýhodněné cestovní pojištění bodové zvýhodnění v rámci programu Zdravý

Více

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku:

Hledané složky vektoru tvoří odvěsny pravoúhlého trojúhelníku: 7 Vektor III Předpoklad: 006 Pedagogická ponámka: Příklad, 4, 5 je možné vnechat, důležité je, ab alespoň 5 minut blo na příklad 7 Pedagogická ponámka: Úvodní příklad vužívám k prokoušení látk minulé hodin

Více

Obr.1. LD1..4 ložiskové domky. DŘK1-3 roztečné průměry řetězových kol

Obr.1. LD1..4 ložiskové domky. DŘK1-3 roztečné průměry řetězových kol Přemět : 34750/0 Konstukční cvčení I Gaant přemětu : oc Ing Jří Havlík, PhD Ročník : navazující, magsteské Školní ok : 07/08 Semest : zmní Zaání : Navhněte a konstukčně zpacujte poháněcí stanc hozontálního

Více

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru

Získejte nové zákazníky a odměňte ty stávající slevovým voucherem! V čem jsme jiní? Výše slevy Flexibilní doba zobrazení Délka platnosti voucheru J s m e j e d i n ý s l e v o v ý s e r v e r B E Z P R O V I Z E s v o u c h e r y p r o u ž i v a t e l e Z D A R M A! Z í s k e j t e n o v é z á k a z n í kzy v! i d i t e l n t e s e n a i n t e r!

Více

Cavendishův pokus: Určení gravitační konstanty,,vážení Země

Cavendishův pokus: Určení gravitační konstanty,,vážení Země Cavendishův pokus: Učení gavitační konstanty,,vážení Země Jiří Kist - Mendlovo gymnázium, Opava, SO@seznam.cz Teeza Steinhatová - gymnázium J. K. Tyla Hadec Kálové, SteinT@seznam.cz 1. Úvod Abstakt: Cílem

Více

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu?

2.1.2 Jaký náboj projde proudovodičem, klesá-li v něm proud z 18 A na nulu tak, že za každou sekundu klesne hodnota proudu na polovinu? . LKTCKÝ POD.. lektický odpo, páce a výkon el. poudu.. Jaké množství el. náboje Q pojde vodičem za t = 0 s, jestliže a) poud = 5 A je stálý, b) poud ovnoměně oste od nuly do A?.. Jaký náboj pojde poudovodičem,

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a plastcta II 3. ročník bakalářského stua oc. Ing. Martn Kresa Ph.D. Katera stavební mechank Řešení nosných stěn metoou sítí 3 Řešení stěn metoou sítí metoa sítí (metoa konečných ferencí) těnová

Více

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra.

Reciprokou funkci znáte ze základní školy pod označením nepřímá úměra. @091 7. Reciproá funce Reciproou funci znáte ze záladní šoly pod označením nepřímá úměra. Definice: Reciproá funce je dána předpisem ( 0 je reálné číslo) f : y R \ {0} A) Definiční obor funce: Je třeba

Více

v 1 = at 1, (1) t 1 = v 1

v 1 = at 1, (1) t 1 = v 1 Příklad Statující tyskové letadlo musí mít před vzlétnutím ychlost nejméně 360 km/h. S jakým nejmenším konstantním zychlením může statovat na ozjezdové dáze dlouhé,8 km? Po ychlost v ovnoměně zychleného

Více

Analýza a zpracování signálů. 5. Z-transformace

Analýza a zpracování signálů. 5. Z-transformace nalýa a pracování signálů 5. Z-transformace Z-tranformace je mocný nástroj použitelný pro analýu lineárních discretetime systémů Oboustranná Z-transformace X j F j x, je omplexní číslo r e r e Oboustranná

Více

M ě ř e n í o d p o r u r e z i s t o r ů

M ě ř e n í o d p o r u r e z i s t o r ů M ě ř n í o d p o r u r z s t o r ů Ú k o l : Proměřt sadu rzstorů s nznámým odporm různým mtodam a porovnat přsnost jdnotlvých měřní P o t ř b y : Vz sznam v dskách u úlohy na pracovním stol Obcná část:

Více

VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 01 4809

VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 01 4809 VÝPOČET ŘETĚZOVÝCH PŘEVODŮ ČSN 0 4809 DIAGRAM PRO VOLBU ŘETĚZU Z JMENOVITÉHO VÝONU A OTÁČE PASTORU Js /4 ŘETĚZY_VÝPOČET_04809 SOUČINITEL VÝONU κ Počet zuů pstoku z Převoový pomě i 2 3 5 7 3 0,39 0,50 0,57

Více

Doc. Ing. Dagmar Blatná, CSc.

Doc. Ing. Dagmar Blatná, CSc. PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava

Více

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů

Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech

Více

Úloha 8. Analýza signálů

Úloha 8. Analýza signálů Úloha 8. Analýza signálů Požadované znalosti: Lidský hlas a jeho vlastnosti; Elektické vlastnosti tkání, uč. 1. Měření napětí a fekvence elektických signálů osciloskopem Naučit se manipulaci s osciloskopem

Více

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Mechanická energie. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Mechanická enegie Pof. RND. Vilém Mád, CSc. Pof. Ing. Libo Hlaváč, Ph.D. Doc. Ing. Iena Hlaváčová, Ph.D. Mg. At. Dagma Mádová Ostava

Více

Newtonův gravitační zákon

Newtonův gravitační zákon Gavitační pole FyzikaII základní definice Gavitační pole je posto, ve kteém působí gavitační síly. Zdojem gavitačního pole jsou všechny hmotné objekty. Každá dvě tělesa jsou k sobě přitahována gavitační

Více