Metoda konečných prvků. 1. přednáška Úvod Martin Vrbka, Michal Vaverka
|
|
- Jaromír Macháček
- před 9 lety
- Počet zobrazení:
Transkript
1 Metoda konečných prvků 1. přednáška Úvod Martin Vrbka, Michal Vaverka
2 Metoda konečných prvků MKP (Finite element method FEM): MKP je numerická metoda pro řešení rozsáhlé třídy inženýrských problémů. Vznikla zhruba v polovině 50. let minulého století, další rozvoj metody je spojen s rozvojem výpočetní techniky. Základy MKP jsou spojeny se jmény např. Clough, Turner, Martin a mnoho dalších, První knihu o MKP napsali Zienkiewicz a Cheung. Inženýři používali metodu dříve než vznikla její korektní matematická formulace Matematici si zpočátku neuvědomovali široké možnosti praktického využití metody. Ke korektní matematické formulaci přispělo koncem 60. let i VUT (Zlámal, Ženíšek, Kolář..) Metoda vznikla pro potřeby výpočtů konstrukcí v leteckém (Boeing), kosmickém (Apollo), jaderném a vojenském průmyslu (ponorky, rakety), odtud se rozšířila do akademického prostředí a do průmyslové praxe.
3 Metoda konečných prvků MKP (Finite element method FEM): Dnes má MKP mezi numerickými metodami (metoda sítí, Ritzova netoda, Galerkinova metoda, metoda hraničních prvků, metoda konečných objemů..) zcela dominantní postavení. Metoda se používá pro řešení problémů pružnosti a dynamiky, její variační formulace umožnila rozšíření na řešení proudění kapalin a plynů, vedení tepla, záření, elektromagnetismus, akustiku, piozeelektrické děje, mechaniku hornin atd. Metoda vychází z variačních principů. O MKP existuje obrovské množství publikací a koná se řada konferencí. Algoritmus metody se dá vysvětlit na jednoduché úloze. Dnes je MKP samostatným oborem obsahujícím část teoreticko-matematickou, počítačovou a inženýrsko-problémovou K dispozici je množství komerčních systémů (ANSYS, ABAQUS, Cosmos, MSC software Adams, Nastran, Patran, Marc..).
4 Metoda konečných prvků - úvod Metoda konečných prvků MKP (Finite element method FEM): Název metody zdůrazňuje skutečnost, že základním stavebním kamenem je prvek konečných rozměrů narozdíl od infinitesimálního pohledu klasické pružnosti, která vychází z představy rovnováhy na nekonečně malém elementu.
5 Metoda konečných prvků MKP (Finite element method FEM): MKP vyžaduje rozdělení řešené oblasti na konečný počet podoblastí - prvků. Je tedy třeba na modelu tělesa vytvořit síť konečných prvků. Pro každý typ prvku je kromě dimenze a tvaru charakteristický počet a poloha jeho uzlů. Uzly sítě jsou body v nichž hledáme neznámé parametry řešení (např. posuvy a natočení, z kterých dále počítáme napětí atd.). Hustota, a topologie prvků sítě zásadně ovlivňuje kvalitu výsledků a potřebnou kapacitu pro řešení. y z x a) b) c) d)
6 Metoda konečných prvků MKP (Finite element method FEM): Výhodou analytických metod je, že jako výsledek řešení dostaneme závislost mezi vstupními a výstupními veličinami a to v nekonečně mnoha bodech na rozdíl od MKP, kde dostáváme výsledek v konečném počtu bodů (uzlů sítě). V případě jakékoli změny vstupních parametrů (např. zatížení) je nutno úlohu vyřešit znovu. Výhodou numerických metod je, že umožňuje řešit i problémy na složitějších tělesech oproti analytickému přístupu, kdy lze řešit jen tělesa elementární, která se jako strojní součásti vyskytují zcela výjimečně.
7 Metoda konečných prvků MKP (Finite element method FEM): Faktickým omezením je pouze kapacita dostupného hardwaru a časové nároky na výpočet. Výsledky se ovšem vztahují jen ke konkrétně zadanému případu, jakékoli úpravy, optimalizace apod. vyžadují opakování celého náročného procesu řešení.
8 Metoda konečných prvků MKP (Finite element method FEM): Při řešení problému pomocí MKP je třeba kontinuum rozdělit na konečný počet podoblastí (prvků) - diskretizace. Neznámé funkce představující spojité řešení problému pak hledáme přibližně ve formě lineární kombinace předem vhodně zvolených funkcí (tzv. bázových funkcí) a neznámých parametrů řešení (např. posuvy u def.-nap. analýzy nebo teploty u teplotní analýzy). Z posuvů jsme pak schopni dále vypočítat přetvoření a napětí. Od hledání spojitých funkcí tak přejdeme na hledání konečného počtu parametrů - posuvů v uzlech sítě. Východiskem jsou přitom variační principy mechaniky. Algoritmus MKP vede na řešení soustavy lineárních algebraických rovnic (!!) (SLR) a ta se pak řeší některou z metod pro řešení SLR (viz. příště)
9 Modelování Řešení problémů modelováním:: Analogové a podobnostní modelování Experimentální modelování Výpočtové modelování - analytický přístup - numerický přístup
10 Základní veličiny obecné pružnosti: V obecné prostorové statické úloze představují: celkem 15 neznámých funkcí proměnných x, y, z. Jedná se o: tři posuvy: šest přetvoření: šest napětí: u, v, w ε x, ε y, ε z, γ xy, γ yz, γ zx σ, σ, σ, τ, τ, τ x y z xy yz zx. Tyto funkce jsou navzájem vázány systémem obecných rovnic pružnosti, které musí být splněny uvnitř řešené oblasti. Jsou to rovnice rovnováhy, rovnice fyzikální neboli konstitutivní a rovnice geometrické. Na hranici řešené oblasti musí pak být splněny předepsané okrajové podmínky.
11 Základní rovnice obecné pružnosti: 1. Rovnice rovnováhy: -rovnováha elementárního vnitřního prvku, na který kromě složek napětí působí vnější objemová síla (např. gravitační) o složkách 3 o, o, o [ N. m ] x y z σ τ x xy τ xz ox x y z = 0 τ xy σ y τ yz oy x y z = 0 τ τ xz yz σ z oz x y z = 0
12 Základní rovnice obecné pružnosti: 2. Geometrické rovnice: -vazba mezi složkami posuvů a složkami přetvoření -pro malé deformace: ε γ x xy u x u y v x = = + ε γ y yz v y v z w y = = + ε γ z zx w z w x u z = = +
13 Základní rovnice obecné pružnosti: 3. Konstitutivní vztahy: -vztah mezi deformací a napjatostí -pro Hookovský materiál: ( ) 1 [ ] 1 ε = σ µ σ + σ γ = τ E G 1 1 ε = [ σ µ ( σ + σ )] γ = τ E G 1 ε = [ σ µ ( σ + σ )] 1 γ = τ E G x x y z xy xy y y x z yz yz z z x y zx zx
14 Základní rovnice obecné pružnosti: Okrajové podmínky: -sílové -deformační Γ v : u = u, v = v, w = w častý je případ u = v = w = 0 potom hovoříme o homogenních geometrických podmínkách. na části povrchu, kde jsme nepředepsali nic, je v úlohách, řešených deformační variantou MKP, implicitně zadána homogenní silová okrajová podmínka. Normálové i smykové napětí na tomto povrchu by mělo být nulové.
15 Přístupy k řešení přímé úlohy pružnosti: - 15 rovnic pro 15 neznámých, 1 řešení Hledisko matematické formulace problému Diferenciální formulace řešení soustavy DR Variační formulace řešení problému hledáme jako stav, kdy určitá forma energie vyšetřovaného tělesa dosahuje stacionární hodnoty Hledisko výběru nezávislých funkcí - dosazováním a vylučováním dostaneme nakonec jeden typ neznámých (např. posuvy) Deformační přístup neznámé jsou složky posuvů Silový přístup neznámé jsou složky napětí Smíšený přístup neznámé jsou složky posuvů i napětí
16 Přístupy k řešení přímé úlohy pružnosti: Hledisko realizace řešení Analyticky využití integrálního a diferenciálního počtu Numericky převedení problému hledání spojitých funkcí na problém hledání konečného počtu parametrů, pomocí nichž se hledané funkce aproximují - diskretizace S rozvojem počítačů v budoucnu jednoznačně převáží při řešení praktických úloh numerické metody. Znalost analytického řešení základních typů úloh pružnosti však přesto zůstane jedním ze základů odborných znalostí výpočtáře i konstruktéra. Tvoří totiž základ inženýrského citu, nutného k racionálnímu posouzení numerických výsledků komplikovaných problémů praxe.
17 Přístupy k řešení přímé úlohy pružnosti: U MKP jako variační numerické metody pak jednoznačně převládá deformační varianta
18 Typické kroky analytického řešení (ilustrace na 1D úloze): rovnice rovnováhy: Hookeův zákon: geometrická rovnice: dσ + ρg = 0 dx σ = E. ε ε = du dx DR 2. řádu: okrajové podmínky: 2 du dx ρg + = E 2 0 u( 0) = 0 du = 0 dx x= L Řešení posuvů je dáno parabolou: u 2 ρg E Lx x = 2 Průběh napětí je lineární: σ = ρgl ( x)
19 Základní řada produktů fy. ANSYS Inc., určených pro analýzy metodou konečných prvků. ANSYS je obecně nelineární, multifyzikální program, zahrnující strukturální analýzu (statika, dynamika, pružnost pevnost, deformační stabilita), rázové děje, vedení tepla, proudění, elektromagnetické pole, elektrostatiku, ale také akustiku, lomovou mechaniku a kompozity. ANSYS umožňuje provádět nejen kontrolní výpočty, ale na základě kontrolních výpočtů následně optimalizaci a to jak topologickou, tak i citlivostní analýzy. Nad výpočty je možné provést hodnocení únavy a životnosti. Speciální řešič pro rychlé dynamické děje: ANSYS LS-DYNA
20 ANSYS Workbench Environment - představuje nově koncipované uživatelské prostředí, zavedené v programech ANSYS od verze 7.0. Umožňuje obousměrné propojení libovolného programu ANSYS s CAD systémy. Import geometrie modelu, generace sítě, jednoduché ovládání a možnost provádění kontrolních výpočtů, nebo optimalizačních analýz s využitím klasického ANSYSu
21 Ansys Main menu Begin (FINI) Preprocesor (/PREP7) Solution (/SOLU) General Postprocesor (/POST1) TimeHistoryPostprocesor (/POST26) Další: Optimalizace, odhady potřebných prostředků a výpočtového času
22
23 Geometrické entity v Ansysu Top - Down Volumes Objemy Areas Plochy Lines Křivky Keypoints Klíčové body Bottom -Up
24 Entity sítě v Ansysu Elements Prvky Nodes Uzly
(a) = (a) = 0. x (a) > 0 a 2 ( pak funkce má v bodě a ostré lokální maximum, resp. ostré lokální minimum. Pokud je. x 2 (a) 2 y (a) f.
I. Funkce dvou a více reálných proměnných 5. Lokální extrémy. Budeme uvažovat funkci f = f(x 1, x 2,..., x n ), která je definovaná v otevřené množině G R n. Řekneme, že funkce f = f(x 1, x 2,..., x n
1 Metoda konečných prvků (MKP)
1 METODA KONEČNÝCH PRVKŮ (MKP) 1 1 Metoda konečných prvků (MKP) Přibližná metoda pro řešení problémů popsaných diferenciálními rovnicemi Motivace v problémech mechaniky spojitého prostředí (kontinua) Diskretizace:
Tvorba trendové funkce a extrapolace pro roční časové řady
Tvorba trendové funkce a extrapolace pro roční časové řady Příklad: Základem pro analýzu je časová řada živě narozených mezi lety 1970 a 2005. Prvním úkolem je vybrat vhodnou trendovou funkci pro vystižení
Jemný úvod do numerických metod
Jemný úvod do numerických metod Matematické algoritmy (11MAG) Jan Přikryl Ústav aplikované matematiky ČVUT v Praze, Fakulta dopravní 8. přednáška 11MAG pondělí 24. listopadu 2014 verze:2014-11-24 16:35
výpočtem František Wald České vysoké učení technické v Praze
Prokazování požární odolnosti staveb výpočtem František Wald České vysoké učení technické v Praze Motivace Prezentovat metodiku pro prokázání požární spolehlivosti konstrukce k usnadnění spolupráci při
NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH
Předmět: Ročník: Vytvořil: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 10. BŘEZNA 2013 Název zpracovaného celku: NAMÁHÁNÍ NA TAH NAMÁHÁNÍ NA TAH Přímá tyč je namáhána na tah, je-li zatíţena dvěma silami
PROCESY V TECHNICE BUDOV 3
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESY V TECHNICE BUDOV 3 (2.část) Dagmar Janáčová, Hana Charvátová Zlín 2013 Tento studijní materiál vznikl za finanční podpory Evropského
Pingpongový míček. Petr Školník, Michal Menkina. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií
Petr Školník, Michal Menkina TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.7/../7.47, který je spolufinancován
Kvadratické rovnice pro učební obory
Variace 1 Kvadratické rovnice pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jkaékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Optika. VIII - Seminář
Optika VIII - Seminář Op-1: Šíření světla Optika - pojem Historie - dva pohledy na světlo ČÁSTICOVÁ TEORIE (I. Newton): světlo je proud částic VLNOVÁ TEORIE (Ch.Huygens): světlo je vlnění prostředí Dělení
Dualita v úlohách LP Ekonomická interpretace duální úlohy. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 6 Katedra ekonometrie FEM UO Brno Uvažujme obecnou úlohu lineárního programování, tj. úlohu nalezení takového řešení vlastních omezujících podmínek a 11 x 1 + a 1 x +... + a 1n x n = b 1 a
Vzdělávací oblast: Matematika a její aplikace. Obor vzdělávací oblasti: Seminář z matematiky. Ročník: 7. Poznámky
Vzdělávací oblast: Matematika a její aplikace Obor vzdělávací oblasti: Seminář z matematiky Ročník: 7. Výstupy - kompetence Učivo Průřezová témata,přesahy, a další poznámky - převádí jednotky délky, času,
Generování sítě konečných prvků
Generování sítě konečných prvků Jaroslav Beran Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování vlastností
1 Statické zkoušky. 1.1 Zkouška tahem L L. R = e [MPa] S S
1 Statické zkoušky 1.1 Zkouška tahem Zkouška tahem je základní a nejrozšířenější mechanická zkouška. Princip: Přetržení zkušební tyče a následné stanovení tzv. napěťových a deformačních charakteristik
MKP a MHP Martin Fusek, Radim Halama
MKP a MHP Martin Fusek, Radim Halama Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), na kterém se společně podílela Vysoká škola báňská
Kvadratické rovnice pro studijní obory
Variace 1 Kvadratické rovnice pro studijní obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kvadratické
Autodesk Inventor Professional 9
časopis pro moderní konstruktéry Recenze grafických karet Metoda konečných prvků Tipy a triky DWF Coposer MITCalc Autodesk Inventor Professional 9 3/2004 Vážení čtenáři, před řadou z vás stojí upgrade
MODEL MECHANISMU STĚRAČE SE TŘENÍM. Inženýrská mechanika a mechatronika Martin Havlena
MODEL MECHANISMU STĚRAČE SE TŘENÍM Inženýrská mechanika a mechatronika Martin Havlena Osnova 2/17 Obsah prezentace Cíle práce Požadavky společnosti PAL International s.r.o. Souprava stěrače čelního skla
Identifikátor materiálu: ICT-1-06
Identifikátor materiálu: ICT-1-06 Předmět Informační a komunikační technologie Téma materiálu Základní pojmy Autor Ing. Bohuslav Nepovím Anotace Student si procvičí / osvojí základní pojmy jako hardware,
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost
SPOLEHLIVOST KONSTRUKCÍ & TEORIE SPOLEHLIVOSTI část 2: Statistika a pravděpodobnost Drahomír Novák Jan Eliáš 2012 Spolehlivost konstrukcí, Drahomír Novák & Jan Eliáš 1 část 2 Statistika a pravděpodobnost
STEREOMETRIE. Vzdálenost bodu od přímky. Mgr. Jakub Němec. VY_32_INOVACE_M3r0113
STEREOMETRIE Vzdálenost bodu od přímky Mgr. Jakub Němec VY_32_INOVACE_M3r0113 VZDÁLENOST BODU OD PŘÍMKY V PROSTORU Při hledání vzdálenosti bodu od geometrického útvaru v prostoru je nutné si vždy úlohu
Mechanika tuhého tělesa. Dynamika + statika
Mechanika tuhého tělesa Dynamika + statika Moment hybnosti U tuhého tělesa není hybnost vhodnou veličinou pro posouzení dynamického stavu rotujícího tělesa Definujeme veličinu analogickou hybnosti, která
http://www.zlinskedumy.cz
Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast Autor Ročník 2, 3 Obor Anotace CZ.1.07/1.5.00/34.0514 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Elektronické obvody, vy_32_inovace_ma_42_06
M - Rovnice - lineární a s absolutní hodnotou
Rovnice a jejich ekvivalentní úpravy Co je rovnice Rovnice je matematický zápis rovnosti dvou výrazů. př.: x + 5 = 7x - M - Rovnice - lineární a s absolutní hodnotou Písmeno zapsané v rovnici nazýváme
Srovnání posledních dvou verzí studijních plánů pro studijní obor. Informační systémy. (studijní program Aplikovaná informatika)
Srovnání posledních dvou verzí studijních plánů pro studijní obor Informační systémy (studijní program Aplikovaná informatika) Úvod Ve STAGu jsou poslední verze studijních plánů pro studijní obor Informační
Ústav technologie, mechanizace a řízení staveb. CW01 - Teorie měření a regulace 10.5.2 ZS 2010/2011. reg-5-2. 2010 - Ing. Václav Rada, CSc.
Ústav technologie, mechanizace a řízení staveb CW01 - Teorie měření a regulace ZS 2010/2011 reg-5-2 10.5.2 2010 - Ing. Václav Rada, CSc. Ústav technologie, mechanizace a řízení staveb Teorie měření a regulace
Zadání bakalářské/diplomové práce
Analýza systémového chování experimentální smyčky S-ALLEGRO V rámci projektu SUSEN Udržitelná energetika bude vyprojektována a postavena experimentální heliová smyčka S-Allegro. Tato smyčka má modelově
Hodnocení způsobilosti procesu. Řízení jakosti
Hodnocení způsobilosti procesu Řízení jakosti Hodnocení způsobilosti procesu a její cíle Způsobilost procesu je schopnost trvale dosahovat předem stanovená kriteria kvality. Snaha vyjádřit způsobilost
MATEMATICKÉ MODELOVÁNÍ A METODA KONEČNÝCH PRVKŮ
MATEMATICKÉ MODELOVÁNÍ A METODA KONEČNÝCH PRVKŮ Radim Blaheta Text byl vytvořen v rámci realizace projektu Matematika pro inženýry 21. století (reg. č. CZ.1.7/2.2./7.332), na kterém se společně podílela
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY
INŽENÝRSKÁ MATEMATIKA LOKÁLNÍ EXTRÉMY FUNKCÍ DVOU PROMĚNNÝCH Robert Mařík 2. října 2009 Obsah z = x 4 +y 4 4xy + 30..................... 3 z = x 2 y 2 x 2 y 2........................ 18 z = y ln(x 2 +y)..........................
18. Metoda konečných prvků
18. Metoda konečných prvků Mezi moderními metodami napěťově-deformační analýzy dnes jednoznačně dominuje metoda konečných prvků (dále jen MKP), používaná i v jiných oblastech inženýrských výpočtů (vedení
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba
Úlohy 22. ročníku Mezinárodní fyzikální olympiády - Havana, Cuba Petr Pošta Text pro soutěžící FO a ostatní zájemce o fyziku 2 1. úloha Obrázek 1.1 ukazuje pevný, homogenní míč poloměru R. Před pádem na
Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců.
Přednáška 6 Inovace výuky předmětu Robotika v lékařství Paradigmata kinematického řízení a ovládání otevřených kinematických řetězců. Kinematickým zákonem řízení rozumíme předpis, který na základě direktiv
2.4.11 Nerovnice s absolutní hodnotou
.. Nerovnice s absolutní hodnotou Předpoklady: 06, 09, 0 Pedagogická poznámka: Hlavním záměrem hodiny je, aby si studenti uvědomili, že se neučí nic nového. Pouze používají věci, které dávno znají, na
Matematika - Tercie Matematika tercie Výchovné a vzdělávací strategie Učivo ŠVP výstupy
- Tercie Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo
Umělá inteligence. Příklady využití umělé inteligence : I. konstrukce adaptivních systémů pro řízení technologických procesů
Umělá inteligence Pod pojmem umělá inteligence obvykle rozumíme snahu nahradit procesy realizované lidským myšlením pomocí prostředků automatizace a výpočetní techniky. Příklady využití umělé inteligence
7. Silně zakřivený prut
7. Silně zakřivený prut 2011/2012 Zadání Zjistěte rozložení napětí v průřezu silně zakřiveného prutu namáhaného ohybem analyticky a experimentálně. Výsledky ověřte numerickým výpočtem. Rozbor Pruty, které
2.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou
.8.9 Parametrické rovnice a nerovnice s absolutní hodnotou Předpoklady: 0,, 806 Pedagogická poznámka: Opět si napíšeme na začátku hodiny na tabuli jednotlivé kroky postupu při řešení rovnic (nerovnic)
Matice a maticová algebra, soustavy lineárních rovnic, kořeny polynomu a soustava nelin.rovnic
co byste měli umět po dnešní lekci: definovat matici, přistupovat k jejím prvkům provádět základní algebraické operace spočíst inverzní matici najít řešení soustavy lineárních rovnic určit vlastní čísla
Signály Mgr. Josef Horálek
Signály Mgr. Josef Horálek Signály = Jedná se o nejstarší metody komunikace mezi procesem a jádrem, a mezi samotnými procesy. = Princip: = Prosec vykonává určitou činnost přijde mu signál přeruší původní
Vedení tepla v MKP. Konstantní tepelné toky. Analogické úlohám statiky v mechanice kontinua
Vedení tepla v MKP Stacionární úlohy (viz dále) Konstantní tepelné toky Analogické úlohám statiky v mechanice kontinua Nestacionární úlohy (analogické dynamice stavebních konstrukcí) 1 Základní rovnice
Metoda konečných prvků. 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka
Metoda konečných prvků 6. přednáška Tělesové prvky - úvod (lineární trojúhelník a lineární čtyřstěn) Martin Vrbka, Michal Vaverka Diskretizace Analýza pomocí MKP vyžaduje rozdělení řešené oblasti na konečný
125 MOEB ČVUT v Praze FSv K125 2008/2009
Modelování energetických systémů budov 125MOEB 2 3.9. 1 14.1. 2 Téma přednášky Základy - budova a energie, základy termodynamiky, solární procesy, psychrometrie Modelování a simulace energetického chování
Historie výpočetní techniky Vývoj počítačů 4. generace. 4. generace mikroprocesor
4. generace mikroprocesor V roce 1971 se podařilo dosáhnout takové hustoty integrace (množství součástek v jednom obvodu), která umožňovala postavení celého mozku počítače z jednoho obvodu tento obvod
ÚVOD DO MODELOVÁNÍ V MECHANICE
ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které
NK 1 Konstrukce. Základní prvky konstrukce
NK 1 Konstrukce Přednášky: Doc. Ing. Karel Lorenz, CSc., Prof. Ing. Milan Holický, DrSc., Ing. Jana Marková, Ph.D. FA, Ústav nosných konstrukcí, Kloknerův ústav Cvičení: Ing. Naďa Holická, CSc., Fakulta
Novinky v Maple T.A. 10
Novinky v Maple T.A. 10 Maple T.A. 10 je nová verze aplikace Maple T.A., jejíž nová funkcionalita je zejména založena na požadavcích uživatelů z řad studentů, instruktorů, administrátorů. Došlo k rozšíření
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza maticového klíče
VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti Úvod do MKP Napěťová analýza maticového klíče Autor: Michal Šofer Verze 0 Ostrava 2011 Zadání: Proveďte napěťovou analýzu
Téma 10: Podnikový zisk a dividendová politika
Téma 10: Podnikový zisk a dividendová politika 1. Tvorba zisku (výsledku hospodaření) 2. Bod zvratu a provozní páka 3. Zdanění zisku a rozdělení výsledku hospodaření 4. Dividendová politika 1. Tvorba hospodářského
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V. 2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V. 2.15 Konstrukční materiály Kapitola 1 Vlastnosti
Metodika - Postupy optimálního využití moderních komunikačních kanálů
Informatika v telemedicíně FBMI ČVUT Metodika - Postupy optimálního využití moderních komunikačních kanálů Kolektiv autorů: David Gillar, Jiří Brada, Mikuláš Miček, Miroslav Poledňák, Marie Tichá, Martin
Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( 2) 3 = 8 4 = 2 ; 16 = 4 ; 1 = 1 a podobně. 2
Lineární rovnice o jedné neznámé O rovnicích obecně Vztah mezi dvěma čísly, které se rovnají, se nazývá rovnost, jako například : ( ) 8 ; 6 ; a podobně. ; Na rozdíl od rovností obsahuje rovnice kromě čísel
PREMIER 446. . přízemí je řešené jako denní část, z velké časti je tvořené optickým. 3 250 000 Kč 1 750 000 Kč -137 000 Kč
PREMIER 446 5 1007 m 2 s garáží 1218 m 2 6195 m 3 1351 m 2 785 m 2 předpokl spotřeba energie za rok 104 kwh/m 2 7115 m poschoďový rodinný dům s obytným podkrovím bez suterénu přízemí je řešené jako denní
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49
Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Informační
PRAKTIKUM II Elektřina a magnetismus
Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM II Elektřina a magnetismus Úloha č.: XIV Název: Relaxační kmity Pracoval: Pavel Brožek stud. skup. 12 dne 5.12.2008 Odevzdal
( ) 2.5.7 Neúplné kvadratické rovnice. Předpoklady: 020501
..7 Neúplné kvadratické rovnice Předpoklady: Pedagogická poznámka: Tato hodina patří mezi vzácné výjimky, kdy naprostá většina studentů skončí více než pět minut před zvoněním. Nechávám je dělat něco jiného
Diferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 Diferenciální počet funkcí jedné proměnné - Úvod Diferenciální počet funkcí jedné proměnné - úvod V přírodě se neustále dějí změny. Naší snahou je nalézt příčiny
Definice 6.2.1. z = f(x,y) vázané podmínkou g(x,y) = 0 jsou z geometrického hlediska lokálními extrémy prostorové křivky k, Obr. 6.2.1. Obr. 6.2.
Výklad Dalším typem extrémů, kterým se budeme zabývat jsou tzv. vázané extrémy. Hledáme extrémy nějaké funkce vzhledem k předem zadaným podmínkám. Definice 6.2.1. Řekneme, že funkce f : R n D f R má v
Pojem stability v elektrizační soustavě
Pojem stability v elektrizační soustavě Pro KEE/PJS Karel Noháč 2015 1 Úhlová stabilita: Rozdělení stabilit v ES Interakce přenášeného činného výkonu a rozdílu úhlu napětí uzlu připojení zdroje (elektrárny)
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita IV. Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol Téma IV.. Kvadratické funkce, rovnice a nerovnice
PC, POWER POINT, dataprojektor
Název školy Číslo projektu Autor Název šablony Název DUMu Stupeň a typ vzdělávání Vzdělávací oblast Střední škola hotelová a služeb Kroměříž CZ.1.07/1.5.00/34.0911 Ing. Anna Grussová VY_32_INOVACE 29_MAR
Povinná literatura: [1] ČASTORÁL, Z. Strategický znalostní management a učící se organizace. Praha : EUPRESS, 2007.
Metodické listy pro kombinované studium Anotace : Studijní předmět poskytuje základní informace spojené se strategickým znalostním managementem a učícími se organizacemi, které jsou společensky významné.
Řešení: ( x = (1 + 2t, 2 5t, 2 + 3t, t); X = [1, 2, 2, 0] + t(2, 5, 3, 1), přímka v E 4 ; (1, 2, 2, 0), 0, 9 )
. Vyjádřete koeficienty vektoru (, 8, 9) vzhledem k následující bázi vektorového prostoru V : (,, 5), (,, ), (5,, ). [,, ].. Určete všechny hodnoty parametru u, pro které vektor a patří do vektorového
Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)
Inovace studijního oboru Geotechnika Reg. č. CZ.1.07/2.2.00/28.0009 Metoda konečných prvků Charakteristika metody (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika) Doc. RNDr.
PRAVDĚPODOBNOST A STATISTIKA OPAKOVÁNÍ, pro rozpoznávání
PRAVDĚPODOBNOST A STATISTIKA OPAKOVÁNÍ, pro rozpoznávání Václav Hlaváč Fakulta elektrotechnická ČVUT v Praze katedra kybernetiky, Centrum strojového vnímání hlavac@fel.cvut.cz, http://cmp.felk.cvut.cz/~hlavac
Výpočtové modelování deformačně-napěťových stavů ve zdravých a patologických kyčelních kloubech
Výpočtové modelování deformačně-napěťových stavů ve zdravých a patologických kyčelních kloubech Michal Vaverka, Martin Vrbka, Zdeněk Florian Anotace: Předložený článek se zabývá výpočtovým modelováním
Rozložení magnetického pole v elektrických strojích část 1
Rozložení magnetického pole v elektrických strojích část 1 Ing. Miroslav Skalka, Ing. Roman Bok, Doc. Ing. Čestmír Ondrůšek, CSc. Vysoké učení technické v Brně, Fakulta elektrotechniky a komunikačních
Dopravní úloha. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 9 Katedra ekonometrie FEM UO Brno Distribuční úlohy Budeme se zabývat 2 typy distribučních úloh dopravní úloha přiřazovací problém Dopravní úloha V dopravním problému se v typickém případě
INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL,
INTEGRÁLNÍ POČET NEURČITÝ INTEGRÁL, URČITÝ INTEGRÁL Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
3.2.4 Podobnost trojúhelníků II
3..4 odobnost trojúhelníků II ředpoklady: 33 ř. 1: Na obrázku jsou nakresleny podobné trojúhelníky. Zapiš jejich podobnost (aby bylo zřejmé, který vrchol prvního trojúhelníku odpovídá vrcholu druhého trojúhelníku).
českém Úvod Obsah balení WWW.SWEEX.COM LC100040 USB adaptér Sweex pro bezdrátovou síť LAN
LC100040 USB adaptér Sweex pro bezdrátovou síť LAN Úvod Nejprve bychom vám rádi poděkovali za zakoupení USB adaptéru Sweex pro bezdrátovou síť LAN. USB adaptér umožňuje snadno a bleskově nastavit bezdrátovou
( ) ( ) ( ) 2 ( ) 2.7.16 Rovnice s neznámou pod odmocninou II. Předpoklady: 2715
.7.6 Rovnice s neznámou pod odmocninou II Předpoklady: 75 Př. : Vyřeš rovnici y + + y = 4 y + + y = 4 / ( y + + y ) = ( 4) y + + 4 y + y + 4 y = 6 5y + 4 y + y = 8 5y + 4 y + y = 8 - v tomto stavu nemůžeme
Profilová část maturitní zkoušky 2015/2016
Střední průmyslová škola, Přerov, Havlíčkova 2 751 52 Přerov Profilová část maturitní zkoušky 2015/2016 TEMATICKÉ OKRUHY A HODNOTÍCÍ KRITÉRIA Studijní obor: 78-42-M/01 Technické lyceum Předmět: MATEMATIKA
Systém zvukové signalizace a spouštění motoru na základě stavu světla
Systém zvukové signalizace a spouštění motoru na základě stavu světla vzorová úloha (SŠ) Jméno Třída.. Datum.. 1. Teoretický úvod Cílem této úlohy je sestavit systém sledující stav světla, které bude vyhodnocováno
SUPPORT VECTOR MACHINES
SUPPORT VECTOR MACHINES (SVM Algoritmy nosných vektorů) Stručný úvod do efektivní metody lineární klasifikace Jan Žižka Ústav informatiky PEF, Mendelova universita v Brně Lineární oddělování tříd, výhody
Zřizování věcných břemen na pozemcích ve vlastnictví města Zábřeh
1. Identifikační číslo 2. Kód 3. Pojmenování (název) životní situace Zřizování věcných břemen na pozemcích ve vlastnictví města Zábřeh 4. Základní informace Jedná se o uložení inženýrských sítí v souvislosti
Matematická analýza III.
4. Extrémy funkcí více proměnných Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Tato kapitola nás seznámí s metodami určování lokálních extrémů funkcí více proměnných a ukáže využití těchto metod v praxi.
7. DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH... 83. 7.1. Definiční oblasti... 83 Úlohy k samostatnému řešení... 83
Sbírka úloh z matematik 7 DIFERENCIÁLNÍ POČET FUNKCÍ DVOU PROMĚNNÝCH 8 7 Definiční oblasti 8 Úloh k samostatnému řešení 8 7 Parciální derivace 8 Úloh k samostatnému řešení 8 7 Tečná rovina a normála 8
PROCESNÍ INŽENÝRSTVÍ cvičení 4
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY PROCESNÍ INŽENÝRSTVÍ cvičení 4 Hana Charvátová, Dagmar Janáčová Zlín 01 Tento studijní materiál vznikl za finanční podpory Evropského sociálního
Návrh složení cementového betonu. Laboratoř stavebních hmot
Návrh složení cementového betonu. Laboratoř stavebních hmot Informativní příklady stupňů vlivu prostředí ČSN EN 206-1 2 www.fast.vsb.cz 3 www.fast.vsb.cz 4 www.fast.vsb.cz 5 www.fast.vsb.cz 6 www.fast.vsb.cz
Adresa příslušného úřadu
Příloha č. 9 k vyhlášce č. 503/2006 Sb. Adresa příslušného úřadu Úřad: Obecní úřad Výprachtice Stavební úřad PSČ, obec: Výprachtice č.p.3, 561 34 Výprachtice Věc: ŽÁDOST O STAVEBNÍ POVOLENÍ podle ustvení
GIS HZS ČR pro ORP a přednostní připojení k veřejné komunikační síti
GIS HZS ČR pro ORP a přednostní připojení k veřejné komunikační síti plk. Ing Jan Brothánek jan.brothanek@grh.izscr.cz MV GŘ HZS ČR Obsah Co je to GIS? Historie GIS HZS ČR Segmentace GIS HZS ČR Tenký mapový
Věra Keselicová. červen 2013
VY_52_INOVACE_VK67 Jméno autora výukového materiálu Datum (období), ve kterém byl VM vytvořen Ročník, pro který je VM určen Vzdělávací oblast, obor, okruh, téma Anotace Věra Keselicová červen 2013 9. ročník
AUTORKA Barbora Sýkorová
ČÍSLO SADY III/2 AUTORKA Barbora Sýkorová NÁZEV SADY: Číslo a proměnná číselné označení DUM NÁZEV DATUM OVĚŘENÍ DUM TŘÍDA ANOTACE PLNĚNÉ VÝSTUPY KLÍČOVÁ SLOVA FORMÁT (pdf,, ) 1 Pracovní list číselné výrazy
Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE)
CAD/CAE ÚNOD: Jan Tippner, Václav Sebera, Miroslav Trcala, Eva Troppová. Úvod do předmětu, úvod do problematiky CAE a MKP (přehled nástrojů a obecné postupy CAD/CAE, vazby součástí CAE) Podpořeno projektem
Vývoj systému RoadPAC 2009-2013
Vývoj systému RoadPAC 2009-2013 Ing. Jeráček Karel, Ing. Ivan Sitař CSc. 21.5.2013, Praha Nové vlastnosti programového systému RoadPAC : Opuštění platformy VBA a úplný přechod na platformu.net DLL, pro
TVORBA PROGRAMU PRO URČOVÁNÍ PRŮBĚHŮ A HODNOT
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,
VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY
VOLBA TYPU REGULÁTORU PRO BĚŽNÉ REGULAČNÍ SMYČKY Jaroslav Hlava TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
STROPNÍ DÍLCE PŘEDPJATÉ STROPNÍ PANELY SPIROLL
4.1.1 PŘEDPJATÉ STROPNÍ PANELY SPIROLL POUŽITÍ Předpjaté stropní panely SPIROLL slouží k vytvoření stropních a střešních konstrukcí pozemních staveb. Pro svou vysokou únosnost, odlehčení dutinami a dokonalému
Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448
Střední odborná škola elektrotechnická, Centrum odborné přípravy Zvolenovská 537, Hluboká nad Vltavou Využití ICT pro rozvoj klíčových kompetencí CZ.1.07/1.5.00/34.0448 CZ.1.07/1.5.00/34.0448 1 Číslo projektu
UNIVERZITA V PLZNI. Model ALADIN A08N0205P MAN/MA
ZÁPADOČESKÁ UNIVERZITA V PLZNI Semestrální práce z předmětu Matematické Modelování Model ALADIN Jitka Váchová A08N0P MAN/MA 1 1 Úvod Model ALADIN (Aire Limitée, Adaption Dynamique, Development International)
Poznámky k verzi. Scania Diagnos & Programmer 3, verze 2.27
cs-cz Poznámky k verzi Scania Diagnos & Programmer 3, verze 2.27 Verze 2.27 nahrazuje verzi 2.26 programu Scania Diagnos & Programmer 3 a podporuje systémy ve vozidlech řady P, G, R a T a řady F, K a N
Energetický regulační
Energetický regulační ENERGETICKÝ REGULAČNÍ ÚŘAD ROČNÍK 16 V JIHLAVĚ 25. 5. 2016 ČÁSTKA 4/2016 OBSAH: str. 1. Zpráva o dosažené úrovni nepřetržitosti přenosu nebo distribuce elektřiny za rok 2015 2 Zpráva
CERTIFIKOVANÉ TESTOVÁNÍ (CT) Výběrové šetření výsledků žáků 2014
(CT) Výběrové šetření výsledků žáků 2014 Uživatelská příručka pro přípravu školy Verze 1 Obsah 1 ÚVOD... 3 1.1 Kde hledat další informace... 3 1.2 Posloupnost kroků... 3 2 KROK 1 KONTROLA PROVEDENÍ POINSTALAČNÍCH
Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.
Škola Střední odborná škola a Střední odborné učiliště, Hustopeče, Masarykovo nám. 1 Autor Ing. Ivana Bočková Číslo projektu CZ.1.07/1.5.00/34.0394 Číslo dumu VY_32_INOVACE_14_MY_1.01 Název Vlastnosti
INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov. Tematický okruh. Ročník 1. Inessa Skleničková. Datum výroby 21.8.
Číslo projektu Název školy Předmět CZ.107/1.5.00/34.0425 INTEGROVANÁ STŘEDNÍ ŠKOLA TECHNICKÁ BENEŠOV Černoleská 1997, 256 01 Benešov IKT Tematický okruh Téma Ročník 1. Autor Počítač Datum výroby 21.8.2013
Post-Processingové zpracování V módu post-processingu je možné s tímto přístrojem docílit až centimetrovou přesnost z běžné 0,5m.
Výjimečná EVEREST technologie Aplikovaná EVEREST technologie pro dobrou ochranu vícecestného šíření GNSS signálu a pro spolehlivé a přesné řešení. To je důležité pro kvalitní měření s minimální chybou.
PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ
PŘEPOČET ZÚČTOVANÝCH ZÁLOH V 10% NA 14% V KONOCOVÉ FAKTUŘE 2012 Výrazná změna, která nás v letošním roce potkala je změna sazby DPH. NASTAVENÍ SAZEB DPH Nastavení jednotlivých sazeb DPH provedete v menu
MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-4
MĚŘENÍ Laboratorní cvičení z měření Měření nízkofrekvenčního koncového zesilovače, část 3-13-4 Výukový materiál Číslo projektu: CZ.1.07/1.5.00/34.0093 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím