2.2. Homogenní binární relace
|
|
- Vojtěch Bezucha
- před 8 lety
- Počet zobrazení:
Transkript
1 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana Homogenní binární relace Definice 2.2.1: Binární relace v /na/ množině X je podmnožina ρ druhé kartézské mocniny množiny X, tj. ρ X X, neboli ρ X 2. Poznámky 2.2.1: 1. Tématem této kapitoly je relační systém <{X},{ρ }>, neboli, zjednodušeně zapsáno, <X,ρ >. Jelikož předpokládáme implicitní zadání nosiče X, hovoříme pouze o r elaci ρ. 2. Homogenní binární relace /tj. binární relace na množině/ je speciální m případem obecné korespondence /heterogenní binární relace/ a platí te dy o ní vše, co o korespondenci. Definice operací inverze a kompozice a vlastnosti těchto operací se přenášejí beze změny. 3. Každou nehomogenní binární relaci <X,Y,ρ > lze převést na homogenní binární relaci <Z,Z,σ> takto: Z=X Y, ( x,y Z)[xσy x X y Y xρy] /Příklad: X,Y,Z jsou po řadě množinami žen, mužů, lidí a ρ,σ relacemi "x je manželka y"/ 4. Triviální binární relace na množině X: ω=... prázdná relace ι=x X=X 2... úplná relace δ={<x,x>: x X}... identická /diagonální/ relace Pro všechny relace ρ platí: δoρ = ρoδ = ρ ωoρ = ρoω = ω 5. Booleovské operace s binárními relacemi: x(ρ σ)y xρy xσy x(ρ σ)y xρy xσy xρay xρy 6. Binární relace na konečné množině lze reprezentovat orientovanými gra fy podle následujícího pravidla: xρy (z uzlu x do uzlu y vede orientovaná hrana). Teorii orientovaných grafů lze považovat za teorii konečných binárních relací, teorii neorientovaných grafů za teorii konečných symetrických b inárních relací /homogenních/. Věta 2.2.1: Neche ρ,σ,τ jsou libovolné binární relace na téže množině X. Potom platí: (1) (ρ σ)oτ = (ρoτ) (σoτ) (2) ρo(σ τ) = (ρoσ) (ρoτ) (3) (ρ σ)oτ = (ρoτ) (σoτ)
2 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 2 (4) ρo(σ τ) = (ρoσ) (ρoτ) (5) (ρ σ) -1 = ρ -1 σ -1 (6) (ρ σ) -1 = ρ -1 σ -1 (7) (ρoσ) -1 = σ -1 oρ -1 (8) ρ σ (ρoτ) (σoτ) (9) ρ σ (τoρ) (τoσ) Důkazy /ukázky/: (2) 1. x(ρo(σ τ))y levá strana 2. ( z)[xρz z(σ τ)y] definice o: 1 3. ( z)[xρz (zσy zτy)] definice : 2 4. ( z)[(xρz zσy) (xρz zτy)] p (q r) p q p r: 3 5. ( z)[xρz zσy] ( z)[xρz zτy] z[p q] zp zq: 4 6. x(ρoσ)y x(ρoτ)y definice o: 5 7. x((ρoσ) (ρoτ))y definice :6, pravá strana (7) 1. x(ρoσ) -1 y levá strana 2. y(ρoσ)x definice -1 : 1 3. ( z)[yρz zσx] definice o: 2 4. ( z)[zρ -1 y xσ -1 z] definice -1 : 3 5. ( z)[xσ -1 z zρ -1 y] p q q p: 4 6. x(σ -1 oρ -1) y definice o:5, pravá strana (9) 1. ρ σ předpoklad 2. xρy xσy přepis: 1 3. x(τoρ)y předpoklad 4. ( z)[xτz zρy] definice o: 3 5. ( z)[xτz zσy] (p r) (q p q r): 2,4 6. x(τoσ)y definice o: 5 Definice 2.2.2: Celočíselná mocnina binární relace ρ je definována /pomocí diagonální relace, operace kompozice a operace inver ze/ induktivně takto: ρ 0 =δ ρ k =ρoρ k-1, k=1,2,... ρ -k =(ρ k ) -1 Poznámky 2.2.2: 1. Je-li relace ρ na konečné množině zobrazena orientovaným grafem /jeho diagramem/, pak: xρ k y značí, že existuje orientovaná cesta délky k z uzlu x do uzlu y, xρ -k y značí, že existuje orientovaná cesta délky k z uzlu y do uzlu x. 2. Příklad: Neche xρy značí "x je rodič y" Potom: xρ 2 y... značí "x je prarodič y" xρ 3 y... značí "x je praprarodič y" xρ -1 y... značí "x je dítě y" xρ -2 y... značí "x je potomek v 2.pokolení y" Definice 2.2.3:
3 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 3 Direktní součin relací ρ a σ definovaných na množině X je relace ρ σ definovaná na množině X 2 =X X takto: <x 1,x 2 >(ρ σ)<y 1,y 2 > x 1 ρy 1 x 2 σy 2. Obecněji direktní součin n relací ρ 1,ρ 2,...,ρ n definovaných na množině X je relace ρ 1 ρ 2... ρ n definovaná na množině Xn =X X... X takto: <x 1,x 2,...,x n >(ρ 1 ρ 2... ρ n )<y 1,y 2,...,y n > x 1 ρ 1 y 1 x 2 ρ 2 y 2... x n ρ n y n Je-li speciálně ρ 1 =ρ 2 =...=ρ n =ρ, pak hovoříme o n-té direktní mocnině relace ρ. Poznámky 2.2.3: 1. Zatímco množinové operace /sjednocení, průnik, komplement, rozdíl, sy metrický rozdíl,.../ a operace kompozice a inverze /a z nich odvozená op erace mocniny/ s binárními operacemi na množině X vedou opět k binárním relacím na téže množině X, operace direktního součinu /a direktní mocnin y/ vedou k operacím s novým nosičem: místo nosiče X má nová relace nosič X n =X X... X. 2. Příklad: Je-li nosičem množina reálných čísel a označují-li symboly =,< relace rovnosti a uspořádání na této množině, pak n-té direktní mocni ny těchto relací jsou relace rovnosti a uspořádání /částečného/ na množi ně všech n-rozměrných reálných vektorů. Definice 2.2.4: Binární relace ρ na množině X se nazývá..., jestliže pro všechna x,y,z X platí: reflexivní /RE/: xρx ireflexivní /IR/: xρx symetrická /SY/: xρy yρx asymetrická /AS/: xρy yρx antisymetrická /AN/: xρy yρx x=y tranzitivní /TR/: xρy yρz xρz souvislá /SO/: xρy yρx x=y univalentní /FU/: xρy xρz y=z Poznámky 2.2.4: 1. Binární relace, se kterými se v praxi nejčastěji setkáváme, jsou větš inou charakterizovány určitou kombinací výše uvedených tzv. základních v lastností. Tak např. relace typu ekvivalence je relace, která je současn ě RE,SY,TR, nebo relace typu uspořádání /částečného, neostrého/ je relac e, která je současně RE,AN,TR. Relace s vlastnostmi RE,TR se nazývá kvaz iuspořádáním nebo tolerancí či předuspořádáním /preorder/. 2. Základní vlastnosti binárních relací byly definovany formulemi predik átové logiky. Rovnocenným způsobem lze je také definovat pomocí množinov ých vztahů: reflexivita /RE/: δ ρ, nebo δ ρ=ρ, nebo δ ρ=δ ireflexivita /IR/: ρ δa, nebo ρ δa=δa, nebo ρ δa=ρ symetrie /SY/: ρ=ρ -1 asymetrie /AS/: ρ ρ -1 =ω antisymetrie /AN/: ρ ρ -1 =δ
4 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 4 3. tranzitivita /TR/: ρoρ ρ souvislost /SO/: ρ ρ -1 δ=ι Na obr jsou zobrazeny základní vlastnosti RE,SY,TR pomocí grafo vých diagramů. x x y x z y Reflexivita Symetrie Tranzitivita Obr Základní vlastnosti homogenních binárních relací 4. Základní vlastnosti vyjmenované v definici nejsou nezávislé jak uk azuje následující věta Ne všechny kombinace základních vlastností jsou tedy možné. Věta 2.2.2: (1) Relace ρ je asymetrická relace ρ je ireflexivní. (2) Relace ρ je asymetrická relace ρ je antisymetrická. (3) Relace ρ je souvislá relace ρa je antisymetrická. Důkaz: Ad (1): 1. xρy yρx předpoklad /asymetrie/ 2. xρx xρx substituce y/x: 1 3. xρx jinak by 2. neplatilo /ireflexivita/ Ad (2): 1. xρy yρx předpoklad /asymetrie/ 2. xρy yρx VI: 1 3. (xρy yρx) de Morgan: 2 4. xρy yρx x=y neboe xρy yρx neplatí - 3 /antisym./ Ad (3): 1. xρy yρx x=y předpoklad /souvislost/ 2. (xρy yρx) x=y ZI: 1 3. xρy yρx x=y De Morgan: 2 4. xρay yρax x=y definice a: 3 /antisymetrie ρa/ Věta 2.2.3: Pro všechny zákl. vlastnosti RE,IR,SY,AS,AN,TR,SO homogenních binární ch relací platí: (1) Vlastnosti jsou dědičné, tj.jejich platnost se přenáší z dané relace na každé její zúžení. (2) Má-li relace danou vlastnost, pak ji má i relace k ní inverzní. (3) Mají-li dvě relace určitou vlastnost, pak tuto vlastnost má i jejich průnik. Důkaz: Ad (1): Proměnné v definičních formulích základních vlastností /definice 2.2.4/ jsou všechny obecně kvantifikovány. Formule musí proto zůstat v platnosti i při libovolném zúžení relace. Dědičnými proto např. nejsou negace základních vlastností, např. vlastnost relace nebýt reflexivní, nebýt symetrickou a pod. Ad (2): Důkaz tvrzení např. pro vlastnost tranzitivity: 1. xρy yρz xρz 2. yρ -1 x zρ -1 y zρ -1 x 3. zρ -1 y yρ -1 x zρ -1 x
5 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 5 Ad (3): Důkaz tvrzení např. pro vlastnost symetrie: 1. (xρy yρx) (xσy yσx) 2. (xρy xσy) (yρx yσx) 3. x(ρ σ)y y(ρ σ)x Definice 2.2.5: Uzávěr relace je nejmenší nadrelace této relace, která má určitou vla stnost charakteristickou pro daný druh uzávěru.. Reflexivní uzávěr relace ρ je nejmenší relace, která relaci ρ obsahuje a současně je reflexivní. Tento uzávěr označíme ρ. Symetrický uzávěr /symetrizace/ relace ρ je nejmenší relace, která relaci ρ obsahuje a současně je symetrická. Tento uzávěr označíme ρ. Tranzitivní uzávěr relace ρ je nejmenší relace, která relaci ρ obsahuje a současně je tranzitivní. Tento uzávěr označíme ρ +. Reflexivně-tranzitivní uzávěr relace ρ je nejmenší relace, která relaci ρ obsahuje a současně je reflexivní i tranzitivní. Tento uzávěr označíme ρ *. Věta 2.2.4: (1) Reflexivní uzávěr lze vyjádřit ve tvaru: ρ =ρ δ (2) Symetrický uzávěr lze vyjádřit ve tvaru: ρ =ρ ρ -1 (3) Tranzitivní uzávěr lze vyjádřit ve tvaru: ρ + =ρ ρ 2 ρ 3... (4) Refl.-tranzit. uzávěr lze vyjádřit ve tvaru: ρ * =δ ρ ρ 2 ρ 3... Důkaz: Ad (1): Triviální - vyplývá ihned z definice. Ad (2): Třeba dokázat: a) ρ je obsažena v ρ, b) ρ je symetrická, c) ρ je nejmenší relace s oběma vlastnostmi a),b). a) Z ρ =ρ ρ -1 vyplývá ρ ρ. b) Důkazem je následující řetězec rovností: xρ y=x(ρ ρ -1 )y=xρy xρ -1 y=yρx yρ -1 x=y(ρ ρ -1 )x=yρ x. c) Neche σ je libovolná symetrická relace obsahující relaci ρ, tj. ρ σ a σ=σ -1. Máme dokázat ρ σ. Důkazem je následující řetězec vztahů: ρ =ρ ρ -1 σ σ -1 =σ σ=σ /neboe je-li ρ σ, je také ρ -1 σ -1 /. Ad (3): Třeba dokázat a),b),c) podobně jako v předchozím bodě. a) ρ ρ + b) xρ + y yρ + z xρ m y yρ n z x(ρ m oρ n )z xρ m+n y xρ + z c) Neche σ je libovolná tranzitivní relace obsahující relaci ρ, Máme dokázat ρ + σ. Důkazem je následující řetězec inkluzí a rovností: ρ + =ρ ρ 2 ρ 3... σ σ 2 σ 3... σ σ σ... =σ Ad (4): Vyplývá ihned z (1) a (3). Poznámky 2.2.5: 1. Je-li relace ρ na konečné množině zobrazena orientovaným grafem /jeho diagramem/, pak:
6 Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 6 (1) Diagram reflexivního uzávěru ρ vznikne z diagramu relace ρ tak, že ke každému uzlu přidáme smyčku /hranu vedoucí do téhož uzlu/, pokud tato smyčka již v grafu neexistuje. (2) Diagram relace symetrického uzávěru ρ vznikne z diagramu relace ρ tak, že ke každé hraně připojíme opačně orientovanou hranu - pokud již v diagramu neexistuje. (3) Diagram tranzitivního uzávěru ρ + získáme z diagramu relace ρ tak, že diagram obohatíme o hrany spojující každý uzel se všemi uzly, které jsou z něho dosažitelné. (4) Diagram reflexivně-tranzitivního uzávěru ρ * vznikne z diagramu tranzitivního uzávěru ρ + doplněním diagramu o elementární smyčky ke každému uzlu u kterého neexistují. 2. Příklad. Je-li ρ relace "býti rodičem", pak tranzitivní uzávěr ρ + je relací "býti předkem". Je-li ρ relace "býti dítětem", pak tranzitivní uzávěr ρ + je relací "býti potomkem".
Markl: 2.1.Korespondence a zobrazení /ras21.doc/ Strana 1
Markl: 2.1.Korespondence a zobrazení /ras21.doc/ Strana 1 2. Relační systémy 2.1. Korespondence a zobrazení Definice 2.1.1: Korespondence množiny X do množiny Y je relační systém , se dvěma
2.4. Relace typu uspořádání
Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 1 2.4. Relace typu uspořádání Definice 2.4.1: na množině X je /částečné a neostré/ uspořádání, jestliže je současně refl exivní, antisymetrická a tranzitivní.
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc
B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík
B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
3. Algebraické systémy
Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Relace. R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace
Relace 1. Nechť A = {n N; n < 10}, B = {m N; m 12}, R = {[m, n] A B; m + 1 = n}, S = {[m, n] A B; m 2 = n}. Zapište relace R, S vyjmenovaním prvků. Sestrojte grafy relací R, S. Určete relace R R, S S,
Fuzzy množiny, Fuzzy inference system. Libor Žák
Fuzzy množiny, Fuzzy inference system Proč právě fuzzy množiny V řadě případů jsou parametry, které vstupují a ovlivňují vlastnosti procesu, popsané pomocí přibližných nebo zjednodušených pojmů. Tedy
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2018/2019 1 / 15 Platnost (pravdivost) Platnost ve struktuře
Výroková a predikátová logika - VI
Výroková a predikátová logika - VI Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VI ZS 2017/2018 1 / 24 Predikátová logika Úvod Predikátová logika Zabývá
Množina je nejdůležitější matematický pojem, na kterém stojí veškeré další matematické pojmy.
1 Teorie množin Základní informace V této výukové jednotce se student seznámí se základními pojmy a algoritmy z teorie množin. Začneme základními operacemi s množinami, seznámíme se s pojmy jako kartézský
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.
Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010
Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Vlastnosti regulárních jazyků
Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí
2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se
MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina
Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.
Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Matematická logika. Rostislav Horčík. horcik
Matematická logika Rostislav Horčík horcik@math.feld.cvut.cz horcik@cs.cas.cz www.cs.cas.cz/ horcik Rostislav Horčík (ČVUT FEL) Y01MLO Letní semestr 2007/2008 1 / 18 Příklad Necht L je jazyk obsahující
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz. Algebra Struktury s jednou operací
Teoretická informatika Tomáš Foltýnek foltynek@pef.mendelu.cz Algebra Struktury s jednou operací Teoretická informatika 2 Proč zavádíme algebru hledáme nástroj pro popis objektů reálného světa (zejména
Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.
Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU
PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz
3 Množiny, Relace a Funkce
3 Množiny, Relace a Funkce V přehledu matematických formalismů informatiky se v této lekci zaměříme na základní datové typy matematiky, tj. na množiny, relace a funkce. O množinách jste sice zajisté slyšeli
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Úlohy k procvičování textu o svazech
Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů):
I) Příklady (převeďte následující věty do formulí PL1 a ověřte jejich ekvivalenci pomocí de Morganových zákonů): 1. Všechna prvočísla větší než 2 jsou lichá. Je-li prvočíslo větší než 2, pak je liché.
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.
Úvod do informatiky přednáška čtvrtá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Pojem relace 2 Vztahy a operace s (binárními) relacemi
Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.
1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
ÚVOD DO ARITMETIKY. Michal Botur
ÚVOD DO ARITMETIKY Michal Botur 2011 2 Obsah 1 Algebraické základy 3 1.1 Binární relace.................................. 3 1.2 Zobrazení a operace............................... 7 1.3 Algebry s jednou
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Výroková a predikátová logika - II
Výroková a predikátová logika - II Petr Gregor KTIML MFF UK ZS 2017/2018 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - II ZS 2017/2018 1 / 17 Předběžnosti Základní pojmy n-ární relace a funkce
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony.
Booleovská algebra. Booleovské binární a unární funkce. Základní zákony. Tomáš Bayer bayertom@natur.cuni.cz Katedra aplikované geoinformatiky a kartografie, Přírodovědecká fakulta UK. Tomáš Bayer bayertom@natur.cuni.cz
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
MIDTERM D. Příjmení a jméno:
MIDTERM D Příjmení a jméno: 1 2 3 4 5 6 7 8 9 10 11 12 1 Doplňte místo otazníku ten ze symbolů, aby platil vztah (log n) / (log n 2 ) =?(1/ n): A) o B) O (a současně nelze použít ani o ani Θ) C) Θ D) Ω
1. Množiny, zobrazení, relace
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2014
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 204 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
0. Množiny, relace a zobrazení
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2002/2003 Michal Marvan 0. Množiny, relace a zobrazení Ukázuje se, že pojem,,množina nelze jednoduše definovat
Relace a kongruence modulo
Relace a kongruence modulo Jiří Velebil: X01DML 5. listopadu 2010: Relace a kongruence modulo 1/17 Definice Binární relace R na množině A je podmnožina R A A. Píšeme x R y (čteme: x je v relaci R s y)
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ
ORIENTOVANÉ GRAFY, REPREZENTACE GRAFŮ Doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky, FIT České vysoké učení technické v Praze BI-GRA, LS 2/2, Lekce Evropský sociální fond Praha & EU: Investujeme
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika študenti MFF 15. augusta 2008 1 16 Diskrétní matematika Požadavky Uspořádané množiny Množinové systémy, párování, párování v bipartitních
Výroková a predikátová logika - X
Výroková a predikátová logika - X Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - X ZS 2018/2019 1 / 16 Rozšiřování teorií Extenze o definice Rozšiřování
Bakalářská matematika I
1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,
5 Orientované grafy, Toky v sítích
Petr Hliněný, FI MU Brno, 205 / 9 FI: IB000: Toky v sítích 5 Orientované grafy, Toky v sítích Nyní se budeme zabývat typem sít ových úloh, ve kterých není podstatná délka hran a spojení, nýbž jejich propustnost
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2017
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 207 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 206 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.
2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Pravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
19 Eukleidovský bodový prostor
19 Eukleidovský bodový prostor Eukleidovským bodovým prostorem rozumíme afinní bodový prostor, na jehož zaměření je definován skalární součin. Víme, že pomocí skalárního součinu jsou definovány pojmy norma
Automaty a gramatiky(bi-aag) Motivace. 1. Základní pojmy. 2 domácí úkoly po 6 bodech 3 testy za bodů celkem 40 bodů
BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 2/29 Hodnocení předmětu BI-AAG (2011/2012) J. Holub: 1. Základní pojmy p. 4/29 Automaty a gramatiky(bi-aag) 1. Základní pojmy Jan Holub Katedra teoretické
4 Pojem grafu, ve zkratce
Petr Hliněný, FI MU Brno, 2014 1 / 24 FI: IB000: Pojem grafu 4 Pojem grafu, ve zkratce Třebaže grafy jsou jen jednou z mnoha struktur v matematice a vlastně pouze speciálním případem binárních relací,
Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
Obsah. Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání
Obsah Množiny (opakování) Relace a zobrazení (opakování) Relace Binární relace na množině Zobrazení Rozklady, ekvivalence Uspořádání lgebry lgebry s jednou operací lgebry se dvěma operacemi Svazy 2 Teorie
1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
2. přednáška 8. října 2007
2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =
Matematická logika. Miroslav Kolařík
Matematická logika přednáška šestá Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika
Relační datový model. Integritní omezení. Normální formy Návrh IS. funkční závislosti multizávislosti inkluzní závislosti
Relační datový model Integritní omezení funkční závislosti multizávislosti inkluzní závislosti Normální formy Návrh IS Funkční závislosti funkční závislost elementární redundantní redukovaná částečná pokrytí
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce
Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
Matematická analýza III.
1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )
MATEMATIKA I. Marcela Rabasová
MATEMATIKA I Marcela Rabasová Obsah: 1. Úvod 1.1. Osnovy předmětu 1.2. Literatura 1.3. Podmínky absolvování předmětu 1.4. Použité označení a symbolika 2. Funkce jedné reálné proměnné 2.1. Definice 2.2.
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
Cvičení 1. Úvod do teoretické informatiky(2014/2015) cvičení 1 1
Úvod do teoretické informatiky(2014/2015) cvičení 1 1 Cvičení 1 Příklad 1: Pro každý z následujících formálních zápisů množin uveďte(svými slovy), jaké prvky daná množina obsahuje: a) {1,3,5,7,...} b)
Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno
Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský
Základy teorie množin
Základy teorie množin Teorie Výběr základních pojmů: Množina Podmnožina Prázdná množina Označení běžně používaných množin Množinová algebra (sjednocení, průnik, rozdíl) Doplněk množiny Potenční množina
Výroková a predikátová logika - VII
Výroková a predikátová logika - VII Petr Gregor KTIML MFF UK ZS 2013/2014 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - VII ZS 2013/2014 1 / 21 Sémantika PL Teorie Vlastnosti teorií Teorie
Funkce a základní pojmy popisující jejich chování
a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny
1 Pravdivost formulí v interpretaci a daném ohodnocení
1 Pravdivost formulí v interpretaci a daném ohodnocení Než uvedeme konkrétní příklady, zopakujme si definici interpretace, ohodnocení a pravdivosti. Necht L je nějaký jazyk. Interpretaci U, jazyka L tvoří