2.4. Relace typu uspořádání
|
|
- Drahomíra Jandová
- před 8 lety
- Počet zobrazení:
Transkript
1 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana Relace typu uspořádání Definice 2.4.1: na množině X je /částečné a neostré/ uspořádání, jestliže je současně refl exivní, antisymetrická a tranzitivní. na množině X je úplné /neostré/ uspořádání, jestliže je současně reflexivn í, antisymetrická, tranzitivní a souvislá. na množině X je /částečné/ ostré uspořádání, jestliže je současně asymetri cká /a tedy také ireflexivní a antisymetrická - viz věta 2.2.2/ a tranzitiv ní. na množině X je úplné ostré uspořádání, jestliže je současně asymetrická / a tedy také ireflexivní a antisymetrická/, tranzitivní a souvislá. Všechny výše uvedené druhy relací nazýváme relacemi typu uspořádání. Místo termínu částečné užíváme také termín parciální a místo termínu úplné také termíny totální nebo lineární. Je-li ρ uspořádání na množině X, pak dvojici /relačnímu systému/ <X,ρ > říkáme uspořádaná množina. Úplně uspořádané množině říkáme řetězec. Poznámky 2.4.1: Dva různé prvky x,y jsou srovnatelné v uspořádání ρ, jestliže platí xρy yρx. V opačném případě, tj. platí-li (xρy yρx), nazývají se prvky x,y nesrovnatelné. V úplném /lineárním/ uspořádání j sou každé dva prvky srovnatelné. 2. Označuje-li symbol neostré uspořádání /částečné nebo úplné/ na množině X, pak symbol < ozn ačuje sdružené ostré uspořádání /částečné nebo úplné/ na téže množině. M ezi relačními symboly /relátory/ předpokládáme vždy tuto vazbu: x<y x y x y, neboli: x y x<y x=y. Má-li relace vlastnost RE a AN, pak relace < má vlastnost IR a AS /a obráceně/. 3. Relace typu uspořádání jsou - vzhledem k vlastnosti TR - většinou roz sáhlými relacemi. Proto, podobně jako relace typu ekvivalence, je reprez entujeme jinými menšími relacemi, z nichž se dají původní relace uspořád ání jednoznačně rekonstruovat. Podstatnou roli přitom hraje operace redu kce relace - viz definice Průnik uspořádání je opět uspořádáním. Sjednocení uspořádání nemusí b ýt obecně uspořádáním. Inverze uspořádání je opět uspořádáním /duální k původnímu/. Direktní součin /mocnina/ uspořádání je opět uspořádáním, úp lnost uspořádání se však na direktní součin nepřenáší. Příklady 2.4.1: Nejjednodušší příklady:... na systému všech podmnožin dané množiny je částečné a neostré uspořádání... na množině reálných čísel je úplné a neostré uspořádání... na systému všech podmnožin dané množiny je částečné a ostré uspořádání <... na množině reálných čísel je úplné a ostré uspořádání
2 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 2 2. Dvě množiny, z nichž jedna je podmnožinou druhé jsou srovnatelné. Dvě disjunktní množiny jsou nesrovnatené /nesrovnatelné mohou být i množiny, které nejsou disjunktní/. Každá dvě reálná čísla jsou srovnatelná. Relace, jsou vzájemně sdružené a stejně tak i relace,<. Relace "x dělí y" je relací uspořádání na množině přirozených čísel. Formálně můžeme tuto relaci zapisovat a definovat takto: x y def ( z)[y=x.z]. Snadno ověříme, že relace má vlastnosti RE,AN,TR. Definice 2.4.2: Redukce relace ρ je relace ρ r =ρ\ρ 2 /symbol "\" je symbolem množinového rozdílu/. Je-li relace ρ relací ostrého uspořádání /částečného nebo úplného/, pak se redukce ρ r nazývá relací pokrytí nebo relací bezprostředního předcházení. Poznámky 2.4.2: Redukce ρ r vznikne z původní neredukované relace ρ vyloučením všech těch dvojic <x,y> ρ, pro které existuje zprostředkující prvek z /pro tento prvek platí: <x, z> ρ, <z,y> ρ/. Je-li xρ ry, říkáme, že prvek x je pokrýván prvkem y, nebo, že prvek y kryje prve k x. 2. Platí: ρ je reflexivní ρ r =ω /ω označuje prázdnou relaci/. Důkaz: xρ 2 y ( z)[xρz zρy] 2. xρ 2 x ( z)[xρz zρx] 3. xρ 2 x xρx xρx 4. xρ 2 x xρx 5. ρ 2 = ρ 6. ρ r = ρ\ρ 2 =ω 3. Platí: ρ je ostré uspořádání na množině reálných čísel ρ r =ω. Důkaz: ( x,y)[xρy ( z)[xρz zρy]] 2. xρy xρ 2 y 3. ρ ρ 2 4. ρ r = ρ\ρ 2 =ω 4. Haaseův diagram relace ρ typu uspořádání je grafový diagram relace (ρ\δ) r, kreslený tak, že všechny orientované hrany směřují vzhůru, takže jeji ch orientaci netřeba na obrázku vyznačovat. Haaseův diagram relace ρ získáme z diagramu relace ρ tak, že: vyloučíme všechny elementární smyčky, 2. zrušíme všechny hrany <x,y>, které mohou být nahrazeny dvojicí hran < x,z>,<z,y>, 3. topologicky transformuje diagram tak, aby všechny orientované hrany m ířily vzhůru. Věta 2.4.1: Nechk ρ je neostré uspořádání na konečné množině X a σ=ρ\δ je s ním sdružené ostré uspořádání. Potom platí: (1) (σ r ) + = σ, (2) (σ r ) * = ρ. Redukce σ r je minimální relace, ze které jsou uspořádání σ a ρ rekonstruovatelné.
3 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 3 Důkaz: (1): - (σ r ) + σ Důkazem je následující implikační řetězec: σ r =σ\σ 2 σ r σ (σ r ) + σ + =σ - σ (σ r ) + Důkazem je následující implikační řetězec: xσy 2. xσz 1 z 1 σz 2... z k σy všechna z i jsou nutně různá, jinak by σ byla SY, počet z i je nutně konečný, nebok X je konečná, předpokládáme, že z 1,z 2,...,z k je nejdelší posloupn ost ze všech možných /je-li takových posloupností více, v ybereme libovolnou z nich/ 3. xσ r z 1 z 1 σ r z 2... z k σ r y 4. x(σ r ) k+1 y 5. x(σ r ) + y (2): ρ = σ δ = (σ r ) + δ = (σ r ) * Příklad 2.4.2: Nechk ρ je relace dělitelnosti na množině {2,3,4,6,8,12}. Grafové diagramy relací ρ, σ=ρ\δ a σ r jsou na obrázcích relace ρ relace σ=ρ\δ 2 3 relace σ r 2 3 Haaseův diagram rel. ρ a σ Definice 2.4.3: Nechk je uspořádání na množině X /říkáme také, že relační systém <X, > je uspořádaná množina/ a nechk M X. Potom: a je minimální prvek množiny M, jestliže: a M ( x M)[x<a]. a je maximální prvek množiny M, jestliže:
4 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 4 a M ( x M)[a<x]. a je nejmenší prvek množiny M, jestliže: a M ( x M)[a x]. a je největší prvek množiny M, jestliže: a M ( x M)[x a]. a je dolní závora množiny M, jestliže: ( x M)[a x]. a je horní závora množiny M, jestliže: ( x M)[x a]. a je infimum množiny M /a = inf M/, jestliže a je největší ze v šech dolních závor množiny M, tj. je-li: ( x M)[a x] ( b)[( x M)[b x] b a]. a je supremum množiny M /a = sup M/, jestliže a je nejmenší ze všech horních závor množiny M, tj. je-li: ( x M)[x a] ( b)[( x M)[x b] a b]. Poznámky 2.4.3: Nejmenší prvek je také minimálním prvkem a je jediný. Minimálních prv ků může být více a žádný z nich nemusí být nejmenším prvkem. Podobně nej větší prvek je také maximálním prvkem a je jediný. Maximálních prvků mů že být více a žádný z nich nemusí být největším prvkem. 2. Dolní a horní závora, infimum a supremum množiny M může do množiny M patřit, ale nemusí. 3. V případě úplného uspořádání pokmy minimálního a nejmenšího prvku mno žiny splývají a stejně tak pojmy maximálního a největšího prvku. Příklady 2.4.3: Na obr je pomocí Haaseho diagramu zobrazena množina všech dělit elů čísla 72=8.9= uspořádaná relací dělitelnosti. Každý z dělitelů lze napsat ve tvaru 2 j.3 k, kde 0 j 3 a 0 k 2. Je tedy X={1,2,3,4,6,8,9,12,18,24,36,72}. Uvažujme podmnožinu M={4,6,12,18,36} množiny X a ilustrujme pojmy zavede né v definici Množina M má dva minimální prvky 4 a 6 a nemá nejmenší prvek. Množina M má jediný maximální prvek 36, který je současně jejím největším prvkem. Dolními závorami množiny M jsou čísla 1 a 2, která do množiny M nepatří. Hornímí závorami množiny M jsou čísla 36 a 72, z nichž prvé do množiny M patří a druhé nikoliv. Infimum množiny M je prvek 2, který do množiny M nepatří. Supremum množiny M je prvek 36, který do množiny M patří. Infimum /supremum/ množiny M je největší společný dělitel /nej menší společný násobek/ všech čísel patřících do množiny M. 2. Na obr je Haaseovým diagramem zobrazena uspořádaná množina <X, >, kde X={1,2,3,4,5,6,7,8,9} a je přirozené uspořádání přirozených čísel podle velikosti. Podmnožina M ={3,5,6,7} množiny X má za dolní závory čísla 1,2,3 a za horní závory 7, 8,9. Číslo 3 je současně minimálním prvkem, nejmenším prvkem a infimem m nožiny M. Podobně číslo 7 je současně maximálním prvkem, největším prvke m a supremem množiny M.
5 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana Obr Obr Nechk X je množina reálných čísel přirozeně uspořádaná relací a nechk M je otevř. interval (1,2). Potom 1= infm M, 2= supm M. Definice 2.4.4: Uspořádanou množinu <X, > nazýváme svazem /lattice/, jestliže spolu s každými dvěma prvky z X exist uje v X jejich infimum a supremum /x,y X inf{x,y},sup{x,y} X/. Uspořádanou množinu <X, > nazýváme úplným svazem, jestliže pro každou neprázdnou podmnožinu M X existuje v X inf M a sup M. Poznámky 2.4.4: Každý úplný svaz je svazem, protože infimum a supremum existuje i pro dvouprvkové množiny. 2. Každý úplný svaz <X, > obsahuje nejmenší prvek 0 = inf X /svazová nula/ a největší prvek 1 = sup X /svazová jednička/, nebok X X. Příklad 2.4.4: Množina všech dělitelů čísla 72 spolu s relací dělitelností /viz obr / je svazem a to úplným. Infimem libovolné podmnožiny této množiny je největší společný dělitel všech čísel patřících do podmnožiny a supre mem pak jejich nejmenší společný násobek. Nulou svazu je číslo 1 a jedni čkou svazu číslo Systém všech podmnožin dané množiny A tvoří vzhledem k relaci inkluze úplný svaz. Nulou svazu je prázdná množina a jedničkou svazu množina A. Infimem libovolného systému podmnožin je p růnik těchto podmnožin a supremem sjednocení. 3. Uspořádaná množina zobrazená Haaseovým digramem na obr je úplmý
6 Markl: 2.4.Relace typu uspořádání /ras24.doc/ Strana 6 m svazem. Nulou svazu je číslo 1, jedničkou svazu číslo 9. Infimem libov olné podmnožiny je minimum z čísel jež do ní patří a supremem maximum. 4. Množina všech přirozených čísel je svazem vzhledem k jejich přirozené mu uspořádání podle velikosti. Není však úplným svazem, nebok není pravd a, že ke každé podmnožině /např. k podmnožině sudých čísel/ existuje sup remum. V tomto svazu neexistuje největší prvek /jednička svazu/. Věta /o pevném bodu/: Nechk <X, > je úplný svaz a nechk ϕ je zobrazení z X do X zachovávající uspořádání, tj. s vlastností: y z ϕ(y) ϕ(z). Potom existuje prvek x X takový, že ϕ(x)=x. /Zobrazení zachovávající uspořádání nazýváme izotonním zobrazením a p rvek x pro který platí ϕ(x)=x nazýváme pevným bodem zobrazení ϕ/. Důkaz: Označme A={a X: a ϕ(a)}. Vzhledem k tomu, že 0 ϕ(0), je 0 A a tedy A. Protože A je neprázdnou podmnožinou úplného svazu <X, >, musí v X existovat supremum této množiny s=supa. Z izotonie zobrazení ϕ vyplývá s ϕ(s) ϕ(ϕ(s)). Tedy s,ϕ(s) A. Jelikož s=supa, musí platit ϕ(s) s. Na druhé straně z izotonie vyplývá s ϕ(s). Tedy ϕ(s)=s, tj. prvek ϕ(s) =s je pevným bodem zobrazení ϕ. Definice 2.4.5: Lexikografické uspořádání množiny X n vytvořené uspořádáním množiny X je uspořádání [ ] definované takto: <x 1,x 2,...,x n >[ ]<y 1,y 2,...,y n > def def ( i)[x i =y i ] ( j n)[( i<j)[x i =y i ] x j y j ]] Lexikografické uspořádání množiny X * vytvořené uspořádáním množiny X je uspořádání [ ] definované takto: <x 1,x 2,...,x m >[ ]<y 1,y 2,...,y n > def def (m n ( i m)[x i =y i ]) ( j n)[( i<j)[x i =y i ] x j y j ]] /Poznamenejme, že symbol je v definici použit ve dvojím smyslu: jednak jako symbol uspořádání přiro zených čísel "j n" a jednak jako symbol uspořádání množiny X "x j y j "./ Poznámky 2.4.5: Uspořádání množiny slov ve slovníku je lexikografické /slovníkové/ us pořádání množiny A * všech slov nad abecedou A vytvořené uspořádáním písm en v abecedě. 2. Lexikografické uspořádání množiny X n /resp. X * /, vytvořené úplným usp ořádáním množiny X, je úplné. Naproti tomu direktní n-tá mocnina úplného uspořádání množiny X nepředstavuje úplné uspořádání množiny X n.
Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace
RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,
Matematická analýza 1
Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod
2.2. Homogenní binární relace
Markl: 2.2.Homogenní binární relace /ras22.doc/ Strana 1 2.2. Homogenní binární relace Definice 2.2.1: Binární relace v /na/ množině X je podmnožina ρ druhé kartézské mocniny množiny X, tj. ρ X X, neboli
M M. Je-li ρ M 2 relace, pak vztah (x, y) ρ zapisujeme x ρ y.
Matematický ústav Slezské univerzity v Opavě Učební textykpřednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 8. Uspořádání asvazy Uspořádání je další užitečná abstraktní struktura na množině. Modeluje
Oproti definici ekvivalence jsme tedy pouze zaměnili symetričnost za antisymetričnost.
Kapitola 3 Uspořádání a svazy Pojem uspořádání, který je tématem této kapitoly, představuje (vedle zobrazení a ekvivalence) další zajímavý a důležitý speciální případ pojmu relace. 3.1 Uspořádání Definice
Úlohy k procvičování textu o svazech
Úlohy k procvičování textu o svazech Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky - zadání
Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37
Svazy Jan Paseka Masarykova univerzita Brno Svazy p.1/37 Abstrakt Zmíníme se krátce o úplných a distributivních svazech, resp. jaké vlastnosti má řetězec reálných čísel. Svazy p.2/37 Abstrakt V této kapitole
Pro každé formule α, β, γ, δ platí: Pro každé formule α, β, γ platí: Poznámka: Platí právě tehdy, když je tautologie.
Zpracoval: hypspave@fel.cvut.cz 5. Výroková logika, formule výrokové logiky a jejich pravdivostní ohodnocení, splnitelné formule, tautologie, kontradikce, sémantický důsledek, tautologicky ekvivalentní
Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.
2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška šestá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN
KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc
Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:
Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé
p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že
KAPITOLA 1: Reálná čísla [MA1-18:P1.1] 1.1. Číselné množiny Přirozená čísla... N = {1,, 3,...} nula... 0, N 0 = {0, 1,, 3,...} = N {0} Celá čísla... Z = {0, 1, 1,,, 3,...} Racionální čísla... { p } Q =
0. ÚVOD - matematické symboly, značení,
0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní
1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad
1.3. Cíle Cílem kapitoly je seznámení čtenáře s axiomy číselných oborů a jejich podmnožin (intervalů) a zavedení nových pojmů, které nejsou náplní středoškolských osnov. Průvodce studiem Vývoj matematiky
Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno
Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená
RELACE, OPERACE. Relace
RELACE, OPERACE Relace Užití: 1. K popisu (evidenci) nějaké množiny objektů či jevů, které lze charakterizovat pomocí jejich vlastnostmi. Entita je popsána pomocí atributů. Ty se vybírají z domén. Různé
IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
Matematická analýza pro informatiky I.
Matematická analýza pro informatiky I. 1. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 14. února 2011 Jan Tomeček, tomecek@inf.upol.cz
Doporučené příklady k Teorii množin, LS 2018/2019
Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x
Množiny, základní číselné množiny, množinové operace
2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás
Základy matematiky pro FEK
Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice
Aritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM1 / 0001 Přednáška 02 Opakování základních pojmů - 2. část O čem budeme hovořit: Binární relace a jejich vlastnosti Speciální typy binárních relací
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
Úvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška pátá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008 a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní
Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:
Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní
B i n á r n í r e l a c e. Patrik Kavecký, Radomír Hamřík
B i n á r n í r e l a c e Patrik Kavecký, Radomír Hamřík Obsah 1 Kartézský součin dvou množin... 3 2 Binární relace... 6 3 Inverzní relace... 8 4 Klasifikace binární relací... 9 5 Ekvivalence... 12 2 1
Princip rozšíření a operace s fuzzy čísly
Center for Machine Perception presents Princip rozšíření a operace s fuzzy čísly Mirko Navara Center for Machine Perception Faculty of Electrical Engineering Czech Technical University Praha, Czech Republic
Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina
Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU
Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření
PŘEDNÁŠKA 2 POSLOUPNOSTI
PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému
1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
Markl: 3.3.Svazy /ras33.doc/ Strana 1
Markl: 3.3.Svazy /ras33.doc/ Strana 1 3.3. Svazy V kapitole 2.4. jsme definovali svaz jako uspořádanou množinu, jejíž každé prvky mají uvnitř této množiny supremum a infimum, tj. definovali jsm e svaz
1. Množiny, zobrazení, relace
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 1. Množiny, zobrazení, relace První kapitola je věnována základním pojmům teorie množin. Pojednává o množinách
3. Algebraické systémy
Markl: 3.1. Morfismy a kongruence /ras31.doc/ Strana 1 3. Algebraické systémy Na rozdíl od klasické algebry, jejíž ústředním tématem jsou rovnice a potřebný aparát pro jejich řešení /matice, polynomy,.../,
Co je to univerzální algebra?
Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé
Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α
1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny
goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:
KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová
Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na přednáškách, kde k ní přidávám slovní komentář. Některé důležité části látky píšu pouze na tabuli a nejsou zde obsaženy.
Přijímací zkouška - matematika
Přijímací zkouška - matematika Jméno a příjmení pište do okénka Číslo přihlášky Číslo zadání 1 Grafy 1 Pro který z následujících problémů není znám žádný algoritmus s polynomiální časovou složitostí? Problém,
NAIVNÍ TEORIE MNOŽIN, okruh č. 5
NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.
Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky.
Relace. Pojem relace patří mezi pojmy, které prostupují všemi částmi matematiky. Definice. Mějme množiny A a B. Binární relace R z množiny A do množiny B je každá množina uspořádaných dvojic (a, b), kde
Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...
Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -
Množiny, relace, zobrazení
Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,
2. Test 07/08 zimní semestr
2. Test 07/08 zimní semestr Příklad 1. Najděte tříprvkový poset (částečně uspořádanou množinu), která má právě dva maximální a právě dva minimální prvky. Řešení. Takový poset je až na izomorfismus jeden:
1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Pravděpodobnost a její vlastnosti
Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale
1 Základní pojmy. 1.1 Množiny
1 Základní pojmy V této kapitole si stručně připomeneme základní pojmy, bez jejichž znalostí bychom se v dalším studiu neobešli. Nejprve to budou poznatky z logiky a teorie množin. Dále se budeme věnovat
Projekty - Úvod do funkcionální analýzy
Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt
Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry
S Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry Michal Bulant Masarykova univerzita Fakulta informatiky 31. 3. 2008 O Uspořádané množiny Množinová a booleovská (Booleova) algebra
Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno
Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský
Markl: 2.1.Korespondence a zobrazení /ras21.doc/ Strana 1
Markl: 2.1.Korespondence a zobrazení /ras21.doc/ Strana 1 2. Relační systémy 2.1. Korespondence a zobrazení Definice 2.1.1: Korespondence množiny X do množiny Y je relační systém , se dvěma
Grafy. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta.
6 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info množina vrcholů a množina hran hrana vždy spojuje
1. Posloupnosti čísel
1. Posloupnosti čísel 1.1. Posloupnosti a operace s nimi Definice 1.1 Posloupnost reálných čísel ( = reálná posloupnost ) je zobrazení, jehož definičním oborem je množina N a oborem hodnot je nějaká podmnožina
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy
MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika
Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.
1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti
PŘEDNÁŠKA 7 Kongruence svazů
PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí
Modely Herbrandovské interpretace
Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší
Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ
Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá
množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 26.9.2016 Fakulta přírodovědně-humanitní a pedagogická
Lineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Diskrétní matematika študenti MFF 15. augusta 2008 1 16 Diskrétní matematika Požadavky Uspořádané množiny Množinové systémy, párování, párování v bipartitních
Zavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
10 Funkce více proměnných
M. Rokyta, MFF UK: Aplikovaná matematika II kap. 10: Funkce více proměnných 16 10 Funkce více proměnných 10.1 Základní pojmy Definice. Eukleidovskou vzdáleností bodů x = (x 1,...,x n ), y = (y 1,...,y
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Aplikovaná matematika I, NMAF071
M. Rokyta, MFF UK: Aplikovaná matematika I kap. 1: Úvod, čísla, zobrazení, posloupnosti 1 Aplikovaná matematika I, NMAF071 M. Rokyta, KMA MFF UK ZS 2013/14 Sylabus = obsah (plán) přednášky [a orientační
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
FUNKCE POJEM, VLASTNOSTI, GRAF
FUNKCE POJEM, VLASTNOSTI, GRAF Zavedení pojmu funkce funkce Funkce f na množině D R je předpis, který každému číslu x z množiny D přiřazuje právě jedno reálné číslo y z množiny R. Množina D se nazývá definiční
Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.
Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1
1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),
Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních
a = a 0.a 1 a 2 a 3...
Reálná čísla Definice 1 Nekonečným desetinným rozvojem čísla a nazýváme výraz a = a 0.a 1 a 2 a 3... kde a 0 je celé číslo a každé a i, i =1, 2,... je jedna z číslic 0,...,9. Pokud existuje m N takové,
Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry
Matematika IV - 7. přednáška Uspořádané množiny, svazy a Booleovy algebry Michal Bulant Masarykova univerzita Fakulta informatiky 31. 3. 2008 O Uspořádané množiny Q Množinová a booleovská (Booleova) algebra
Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25
Matematika 2 Úvod Jiří Fišer KMA, PřF UP Olomouc ZS09 Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25 Studijní materiály web předmětu: aix-slx.upol.cz/ fiser St. Trávníček: Matematická analýza kag.upol.cz/travnicek/1-matan.
Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí. x y = 1, x y = 0.
Kapitola 4 Booleovy algebry 4.1 Definice Definice 4.1 Nechť (X, ) je svaz s nejmenším prvkem 0 a největším prvkem 1. Komplement prvku x X je každý prvek y, pro který platí x y = 1, x y = 0. Představu o
Základy teorie množin
1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé
Základy teorie množin
Základy teorie množin Teorie Výběr základních pojmů: Množina Podmnožina Prázdná množina Označení běžně používaných množin Množinová algebra (sjednocení, průnik, rozdíl) Doplněk množiny Potenční množina
Limita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Pravděpodobnost a statistika
Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,
α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace
Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme
2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se
MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina
Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.
Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými
Základní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
Marie Duží
Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít
Matematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.
TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li
Grafy. doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava. Prezentace ke dni 13.
Grafy doc. Mgr. Jiří Dvorský, Ph.D. Katedra informatiky Fakulta elektrotechniky a informatiky VŠB TU Ostrava Prezentace ke dni 13. března 2017 Jiří Dvorský (VŠB TUO) Grafy 104 / 309 Osnova přednášky Grafy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy
PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)
LEKCE10-RAD Otázky
Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá
Lebesgue Manuál. Josef Hekrdla 1. prosince (Vzniklo pro potřeby předmětu Matematická teorie signálů ) 1 Objem intervalu. 3
Lebesgue Manuál Josef Hekrdla 1. prosince 2011 (Vzniklo pro potřeby předmětu Matematická teorie signálů Obsah I Měřitelné množiny v R p Lebesgueova míra 3 1 Objem intervalu. 3 2 Objem otevřené množiny.
1 Topologie roviny a prostoru
1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí
Jazyk matematiky. 2.1. Matematická logika. 2.2. Množinové operace. 2.3. Zobrazení. 2.4. Rozšířená číslená osa
2. Jazyk matematiky 2.1. Matematická logika 2.2. Množinové operace 2.3. Zobrazení 2.4. Rozšířená číslená osa 1 2.1 Matematická logika 2.1.1 Výrokový počet logická operace zapisujeme čteme česky negace
Patří-li do množiny A právě prvky a, b, c, d, budeme zapisovat A = {a, b, c, d}.
2 Množiny a intervaly lgebraické výrazy 2.1 Množiny Chápání množiny lze shrnout takto: Množinou rozumíme každé shrnutí určitých a navzájem různých předmětů m našeho nazírání nebo myšlení (které nazýváme
V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? 2n M = 3n + 1 n N.
4 4. týden 4.1 supremum a infimum množiny Příklad 4.1 Zapište pomocí kvantifikátorů definice minima, maxima, infima a suprema podmnožiny R. Čemu se rovná sup a inf? Příklad 4.2 Zkuste uhádnout sup M, inf
4. Topologické vlastnosti množiny reálných
Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině
Uspořádání. Základy diskrétní matematiky, BI-ZDM ZS 2014/15, Lekce 4 https://edux.fit.cvut.cz/courses/bi-zdm/
Uspořádání doc. RNDr. Josef Kolář, CSc. Katedra teoretické informatiky FIT České vysoké učení technické v Praze c Josef Kolar, 2014 Základy diskrétní matematiky, BI-ZDM ZS 2014/15, Lekce 4 https://edux.fit.cvut.cz/courses/bi-zdm/