Doc. Ing. Tomáš Šubrt, Ph.D. PEF ZU v Praze MODELY OPTIMÁLNÍHO D LENÍ ZAKÁZEK
|
|
- Zdeňka Martina Janečková
- před 8 lety
- Počet zobrazení:
Transkript
1 Doc. Ing. Tomáš Šubrt, Ph.D. PEF ZU v Praze MODELY OPTIMÁLNÍHO DLENÍ ZAKÁZEK
2 MODELY OPTIMÁLNÍHO DLENÍ ZAKÁZEK Osnova prezentace Charakteristika problému Matematický model pro lineární problém Matematický model pro nelineární problém Možnosti ešení nelineárního modelu
3 CHARAKTERISTIKA PROBLÉMU Cílem píspvku je odvození a návrh ešení modelu matematického programování pro optimální dlení dodávek v logistické síti. Východiskem modelu je eistence logistické sít ve form orientovaného grafu, kde první vrchol reprezentuje dodavatelské stedisko a ostatní vrcholy odbytová centra. Každé centrum vyžaduje urité množství zboží, každá spojnice mezi uzly trasa je ohodnocena vlastní nákladovou funkcí, ve form jednotkových náklad pepravy.
4 CHARAKTERISTIKA PROBLÉMU Strukturu sít a požadavk odbytových center vymezuje soustava lineárních omezujících podmínek. V pípad dopravy s pevažujícími finími náklady lze pedpokládat lineární nákladovou funkci. V pípad dopravy s pevažující variabilní složkou náklad se dá pedpokládat konkávní nákladová funkce (s rozsahem pepravy degresivn klesají jednotkové náklady). Cílem je nalézt optimální pepravované množství na konkrétních trasách (s minimálními náklady).
5 CHARAKTERISTIKA PROBLÉMU Je dána logistická dopravní sí, kde jediný zdroj zásobuje všechny zákazníky (cíle). Zdroj je schopen uspokojit požadavky zákazník.(požadavky v jednotkách zboží jsou uvedené ve vrcholech). Nosnost dopravních prostedk je neomezená. Zásilky lze libovoln dlit.
6 CHARAKTERISTIKA PROBLÉMU Vymezení stavového prostoru soustava omezujících podmínek ve form lineárních rovnic. íklad 1: = = 65 Zdroj = = 35 i aj, k 1, 2,..., n1 i množství materiálu pepravovaného po hran i ie k jv k 35 a j požadavek j-tého zákazníka E k množina hran incidujících s uzly vpravo od ezu k V k množina uzl vpravo od ezu k
7 DOPRAVA S PEVAŽUJÍCÍMI FIXNÍMI NÁKLADY Minimalizaní lineární kriteriální funkce Jednotkové náklady nezávisí na velikosti epravy funkce jednotkových náklad je konstantní funkce celkových náklad je lineární z m i1 min ešení standardními algoritmy LP i
8 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY Jednotkové náklady klesají s rozsahem epravy Každá hrana (úsek dopravní cesty) charakterizován jinou funkcí jednotkových náklad Funkce jednotkových náklad je konkávní, obvykle ve tvaru ri zi( i) s i i
9 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY Funkce celkových náklad má tvar z m m r z i i i i i s i1 i1 i i ( ) min Funkce celkových náklad po úprav m z rs i1 i i i min
10 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY ešitelnost úlohy Úloha nelineárního programování s minimalizaní konkávní funkcí Obecn: heuristika, metaheuristika Stavový prostor je vymezen lineárními rovnicemi i neomezené minimalizaci prohledáváme celý stavový prostor (pohybujeme se po celém povrchu parabolické kuželu) i omezení lineární rovností se mžeme pohybovat pouze v rámci omezující nadroviny. ešitelnost gradientními metodami nap. metodami projekce gradientu na omezení (Rosenova metoda).
11 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY ešitelnost úlohy SW realizace nap. s využitím Solver Frontline Systems - Premium Solver Platform, menší problémy Ecel Slover íklad 1 (pokraování) Funkce jednotkových náklad dílích tras: z1( 1) ; z2( 2) ; z3( 3) ; z4( 4) ; z5( 5) ; z6( 6) 1; z7( 7) 1; Funkce celkových náklad po úprav z( ) 2 0,5 2 0,75 5 0,
12 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY Výsledková zpráva Solver Nastavovaná buka (Min) Buka Název vodní hodnota Konená hodnota $J$13 Celk. nakl. Z 0 19, né buky Buka Název vodní hodnota Konená hodnota $C$ , $C$ $C$ Zdroj $C$ $C$ , $C$ $C$ Omezující podmínky Buka Název Hodnota buky Vzorec Stav Odchylka $L$5 D1 80, $L$5=$M$5 Neplatí 0 $L$6 D2 65, $L$6=$M$6 Neplatí 0 $L$7 D3 55 $L$7=$M$7 Neplatí 0 $L$8 D4 35 $L$8=$M$8 Neplatí 0
13 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY U problém s pevažujícími variabilními náklady se se nikdy nevyplatí dlit zakázky! kaz Zvolme 1 výchozí uzel (zdroj) a 1 cílový uzel (zákazník) Mezi tmito uzly ureme 2 cesty tak, aby jedna vedla pímo a druhá nepímo, tj. pes alespo jeden jiný uzel. Ustanovme promnnou vyjadující podíl zboží dodaného pes jiného zákazníka ku veškerému dodanému zboží do cíle
14 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY Po substituci za jednotlivé promnné z omezujících podmínek dostáváme jedinou nákladovou funkci, jejíž volný etrém na oboru D(f) = <0;1> hledáme. Funkce má lokální etrém vždy na hranicích D(f), tedy bu pro =0 nebo =1 veškeré zboží povezeme bu pímo, nebo nepímo (dle tvaru dílích nákladových funkcí), ale nikdy po ástech!
15 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY Zdroj (1 ) z z z / / (1 ) 8 4(1 ) z 2 (1 ) 6 (1 ) 4
16 DOPRAVA S PEVAŽUJÍCÍMI VARIABILNÍMI NÁKLADY z 0 8 0,05 8, ,1 8, ,15 8, ,2 8, ,25 8, ,3 8, ,35 8, ,4 8, ,45 8, ,5 8, ,55 8, ,6 8, ,65 8, ,7 8, ,75 8, ,8 8, ,85 8, ,9 8, ,95 7, , ,2 0,4 0,6 0,8 1 z z
17 MODELY OPTIMÁLNÍHO DLENÍ ZAKÁZEK kuji za pozornost
4EK311 Operační výzkum. 1. Úvod do operačního výzkumu
4EK311 Operační výzkum 1. Úvod do operačního výzkumu Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka Garant kurzu:
4EK213 LINEÁRNÍ MODELY
4EK213 LINEÁRNÍ MODELY Úterý 11:00 12:30 hod. učebna SB 324 Mgr. Sekničková Jana, Ph.D. 2. PŘEDNÁŠKA MATEMATICKÝ MODEL ÚLOHY LP Mgr. Sekničková Jana, Ph.D. 2 OSNOVA PŘEDNÁŠKY Obecná formulace MM Množina
3. Optimalizace pomocí nástroje Řešitel
3. Optimalizace pomocí nástroje Řešitel Rovnováha mechanické soustavy Uvažujme dvě různé nehmotné lineární pružiny P 1 a P 2 připevněné na pevné horizontální tyči splývající s osou x podle obrázku: (0,0)
Přiřazovací problém. Přednáška č. 7
Přiřazovací problém Přednáška č. 7 Přiřazovací problém je jednou podtřídou logistických úloh. Typickým problémem může být nejkratší převoz materiálu od dodavatelů ke spotřebitelům. spotřebitelé a i dodavatelé
Analýza Petriho sítí. Analýza Petriho sítí p.1/28
Analýza Petriho sítí Analýza Petriho sítí p.1/28 1. Základní pojmy Základní problémy analýzy bezpečnost (safeness) omezenost (boundness) konzervativnost (conservation) živost (liveness) Definice 1: Místo
4. Lineární diferenciální rovnice rovnice 1. ádu
4. Lineární diferenciální rovnice rovnice. ádu y + p( ) y = (4.) L[ y] = y + p( ) y p q jsou spojité na I = (ab) a < b. Z obecné teorie vyplývá že množina všech ešení rovnice (4.) na intervalu I (tzv.
4EK201 Matematické modelování. 2. Lineární programování
4EK201 Matematické modelování 2. Lineární programování 2.1 Podstata operačního výzkumu Operační výzkum (výzkum operací) Operational research, operations research, management science Soubor disciplín zaměřených
4EK212 Kvantitativní management. 2. Lineární programování
4EK212 Kvantitativní management 2. Lineární programování 1.7 Přídatné proměnné Přídatné proměnné jsou nezáporné Mají svoji ekonomickou interpretaci, která je odvozena od ekonomické interpretace omezení
2. část: Základy matematického programování, dopravní úloha. Ing. Michal Dorda, Ph.D.
2. část: Základy matematického programování, dopravní úloha. 1 Úvodní pojmy Metody na podporu rozhodování lze obecně dělit na: Eaktní metody metody zaručující nalezení optimální řešení, např. Littlův algortimus,
Systematická tvorba jízdního řádu 2. cvičení
Projektování dopravní obslužnosti Systematická tvorba jízdního řádu 2. cvičení Ing. Zdeněk Michl Ústav logistiky a managementu dopravy ČVUT v Praze Fakulta dopravní Rekapitulace zadání Je dána následující
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB D24FZS
OPTIMALIZACE A MULTIKRITERIÁLNÍ HODNOCENÍ FUNKČNÍ ZPŮSOBILOSTI POZEMNÍCH STAVEB Optimalizace a multikriteriální hodnocení funkční způsobilosti pozemních staveb Anotace: Optimalizace objektů pozemních staveb
Konference WITNESS 2005 Kroměříž, 26.-27. 5. 2005
PROPOJENÍ OPTIMALIZAČNÍHO A SIMULAČNÍHO MODELU PRO PLÁNOVÁNÍ A ŘÍZENÍ 1. Úvod FARMACEUTICKÉ VÝROBY Ing Petra Vegnerová Prof. Ing. Ivan Gros, CSc. Vysoká škola chemicko-technologická v Praze Fakulta chemicko-inženýrská,
2.2 Grafické ešení úloh LP
2. Lineární programování 21 zabránili záporným hodnotám produkce, nezabývali jsme se pípady, kdy jako výsledný objem produkce získáme desetinné číslo. Nápravu lze snadno sjednat zahrnutím tzv. podmínek
Úvod do optimalizace Matematické metody pro ITS (11MAMY)
Úvod do optimalizace Matematické metody pro ITS (11MAMY) Jan Přikryl (volně dle M.T. Heathe) 10. přednáška 11MAMY úterý 22. března 2016 verze: 2016-04-01 16:10 Obsah Optimalizační problém 1 Definice 1
4EK213 Lineární modely. 12. Dopravní problém výchozí řešení
4EK213 Lineární modely 12. Dopravní problém výchozí řešení 12. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování
Pokročilé matematické modely a metody
Pokročilé matematické modely a metody Jan Fábry ŠKODA AUTO Vysoká škola Katedra logistiky, kvality a automobilové techniky fabry@savs.cz http://nb.vse.cz/~fabry Leden 2017, Mladá Boleslav Jan Fábry Pokročilé
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
Zajímavé aplikace teorie grafů
Modulární systém dalšího vzdělávání pedagogických pracovníků JmK v přírodních vědách a informatice CZ.1.07/1.3.10/02.0024 Zajímavé aplikace teorie grafů Nejkratší cesta Problém: Jak nalézt nejkratší cestu
Plánování projektu. 3. dubna Úvod. 2 Reprezentace projektu. 3 Neomezené zdroje. 4 Variabilní doba trvání. 5 Přidání pracovní síly
Plánování proektu 3. dubna 2018 1 Úvod 2 Reprezentace proektu 3 Neomezené zdroe 4 Variabilní doba trvání 5 Přidání pracovní síly Problémy plánování proektu Zprostředkování, instalace a testování rozsáhlého
Optimalizace. Obsah přednášky. DÚ LP - Okružní problém. Lineární optimalizace. DÚ LP - Okružní problém. DÚ LP - Okružní problém
Obsah přednášky Mgr. Květuše Sýkorová Optimalizace Lineární programování Distribuční úlohy Okružní problém KI Př UJEP Ústí nad Labem Nederivační metody Metody 1D optimalizace Derivační metody Optimalizace
G( x) %, ν%, λ. x, x, N, N nezáporné přídatné proměnné, ( ) 2 Matematické programování
Matematicé programování Označení a definice veličin. opt i/maimalizace w, Žádaná hodnota,transpozice, relace typu nebo Inde diagonální formy vetoru. Obecná omezovací podmína Γ ( ( = ( Є, R, y podmíny typu
í í ý ý ý é íš ů ý í á ě í ří áš ý í ě í í ý ý ý á íš á í Ží á á ů í á í á é á é Č ů é é é á í š ě Ž Č ů ř í á ášť á ě á ř í Č áš á ě á é ř ý í é á ý ě ý š í ý ší í í á ř á í í í ý ě ř š í í Ž í é ř š
1 1 3 ; = [ 1;2]
Soustavy lineárních rovnic - Příklady k procvičení ) + y= y= [ ; ] ) + y= = ) y= y 0 y ; + = [ ;] ) y= + y= [ ;] ) + y= = ; ) y= = y ) y = y= 8) y= + y= 9) = 8 y 0) y=, y= ) a+ = a b ) = y 9 ) u ( ) v
Problém lineární komplementarity a kvadratické programování
Problém lineární komplementarity a kvadratické programování (stručný učební text 1 J. Rohn Univerzita Karlova Matematicko-fyzikální fakulta Verze: 17. 6. 2002 1 Sepsání tohoto textu bylo podpořeno Grantovou
4EK311 Operační výzkum. 2. Lineární programování
4EK311 Operační výzkum 2. Lineární programování 2.2 Matematický model úlohy LP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a 13 x
4EK311 Operační výzkum. 4. Distribuční úlohy LP část 1
4EK311 Operační výzkum 4. Distribuční úlohy LP část 1 4. Distribuční úlohy LP Úlohy výrobního plánování (alokace zdrojů) Úlohy finančního plánování (optimalizace portfolia) Úlohy reklamního plánování (plánování
Metody síťové analýzy
Metody síťové analýzy Řeší problematiku složitých systémů, zejména pak vazby mezi jejich jednotlivými prvky. Vychází z teorie grafů. Základní metody síťové analýzy: CPM (Critical Path Method) deterministický
í í ť í í í š ř í ří ř š í ý í í íí ůú ú ůů ů ů í ř řú ý ř ý ý ř í ří ů ří Ú í ř ý ř ý ý í ří í ý š í ř í š ší ž í í ř í í ú í ů ú ř í š í ž ž ů ý í Č Ú í í í ť Á ří í ř í ý í í ů ů ď ý í í ů íí ů í ž
Celkové dopravní náklady (TTC) lze spočítat jako : Součin variabilních nákladů a přepravovaného množství zvýšený o fixní náklad
Je dána dopravní síť. (Ohodnocení v nákladech na obsluhu). Řešení problému optimální obslužnosti úseku dopravní sítě vede z matematického hlediska na model: Vyberte jednu odpověď a. nejlevnějšího maximálního
Příklady ke cvičením. Modelování produkčních a logistických systémů
Modelování produkčních a logistických systémů Katedra logistiky, kvality a automobilové techniky Garant, přednášející, cvičící: Jan Fábry 10.12.2018 Příklady ke cvičením Opakování lineárního programování
4EK314 Diskrétní modely
4EK314 Diskrétní modely Jan Fábry Fakulta informatiky a statistiky Katedra ekonometrie fabry@vse.cz http://nb.vse.cz/~fabry Únor 2016, Praha Jan Fábry Diskrétní modely 1 / 153 Sylabus kurzu 1 Úloha celočíselného
e-mail: RadkaZahradnikova@seznam.cz 1. července 2010
Optimální výrobní program Radka Zahradníková e-mail: RadkaZahradnikova@seznam.cz 1. července 2010 Obsah 1 Lineární programování 2 Simplexová metoda 3 Grafická metoda 4 Optimální výrobní program Řešení
Voronoiův diagram. RNDr. Petra Surynková, Ph.D. Univerzita Karlova v Praze Matematicko-fyzikální fakulta
12 RNDr., Ph.D. Katedra didaktiky matematiky Univerzita Karlova v Praze Matematicko-fyzikální fakulta petra.surynkova@mff.cuni.cz http://surynkova.info Definice V( P) nad množinou bodů P { p v rovině 1,
4EK311 Operační výzkum. 5. Teorie grafů
4EK311 Operační výzkum 5. Teorie grafů 5. Teorie grafů definice grafu Graf G = uspořádaná dvojice (V, E), kde V označuje množinu n uzlů u 1, u 2,, u n (u i, i = 1, 2,, n) a E označuje množinu hran h ij,
Lineární klasifikátory
Lineární klasifikátory Lineární klasifikátory obsah: perceptronový algoritmus základní verze varianta perceptronového algoritmu přihrádkový algoritmus podpůrné vektorové stroje Lineární klasifikátor navrhnout
4EK213 Lineární modely. 10. Celočíselné programování
4EK213 Lineární modely 10. Celočíselné programování 10.1 Matematický model úlohy ILP Nalézt extrém účelové funkce z = c 1 x 1 + c 2 x 2 + + c n x n na soustavě vlastních omezení a 11 x 1 + a 12 x 2 + a
Otázky ke státní závěrečné zkoušce
Otázky ke státní závěrečné zkoušce obor Ekonometrie a operační výzkum a) Diskrétní modely, Simulace, Nelineární programování. b) Teorie rozhodování, Teorie her. c) Ekonometrie. Otázka č. 1 a) Úlohy konvexního
Metody lineární optimalizace Simplexová metoda. Distribuční úlohy
Metody lineární optimalizace Simplexová metoda Dvoufázová M-úloha Duální úloha jednofázová Post-optimalizační analýza Celočíselné řešení Metoda větví a mezí Distribuční úlohy 1 OÚLP = obecná úloha lineárního
4EK213 Lineární modely. 4. Simplexová metoda - závěr
4EK213 Lineární modely 4. Simplexová metoda - závěr 4. Simplexová metoda - závěr Konečnost simplexové metody Degenerace Modifikace pravidla pro volbu vstupující proměnné Blandovo pravidlo Kontrola výpočtu
1. Exponenciální rst. 1.1. Spojitý pípad. Rstový zákon je vyjáden diferenciální rovnicí
V tomto lánku na dvou modelech rstu - exponenciálním a logistickém - ukážeme nkteré rozdíly mezi chováním spojitých a diskrétních systém. Exponenciální model lze považovat za základní rstový model v neomezeném
SÍŤOVÁ ANALÝZA. Kristýna Slabá, kslaba@students.zcu.cz. 1. července 2010
SÍŤOVÁ ANALÝZA Kristýna Slabá, kslaba@students.zcu.cz 1. července 2010 Obsah 1 Úvod do síťové analýzy Hlavní metody síťové analýzy a jejich charakteristika Metoda CPM Metoda PERT Nákladová analýza Metoda
ANTAGONISTICKE HRY 172
5 ANTAGONISTICKÉ HRY 172 Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku, jejíž výše nezávisí
OSA. maximalizace minimalizace 1/22
OSA Systémová analýza metodika používaná k navrhování a racionalizaci systémů v podmínkách neurčitosti vyšší stupeň operační analýzy Operační analýza (výzkum) soubor metod umožňující řešit rozhodovací,
7. přednáška Systémová analýza a modelování. Přiřazovací problém
Přiřazovací problém Přiřazovací problémy jsou podtřídou logistických úloh, kde lze obecně říci, že m dodavatelů zásobuje m spotřebitelů. Dalším specifikem je, že kapacity dodavatelů (ai) i požadavky spotřebitelů
Teoretická informatika Tomáš Foltýnek Barvení grafů Platónská tělesa
Tomáš Foltýnek foltynek@pef.mendelu.cz Barvení grafů Platónská tělesa strana 2 Opakování z minulé přednášky Co je to prohledávání grafu? Jaké způsoby prohledávání grafu známe? Jak nalézt východ z bludiště?
Obecná úloha lineárního programování. Úloha LP a konvexní množiny Grafická metoda. Jiří Neubauer. Katedra ekonometrie FEM UO Brno
Přednáška č. 3 Katedra ekonometrie FEM UO Brno Optimalizace portfolia Investor se s pomocí makléře rozhoduje mezi následujícími investicemi: akcie A, akcie B, státní pokladniční poukázky, dluhopis A, dluhopis
Obsah prezentace. Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest
Obsah prezentace Základní pojmy v teorii o grafech Úlohy a prohledávání grafů Hledání nejkratších cest 1 Základní pojmy Vrchol grafu: {množina V} Je to styčná vazba v grafu, nazývá se též uzlem, prvkem
Faster Gradient Descent Methods
Faster Gradient Descent Methods Rychlejší gradientní spádové metody Ing. Lukáš Pospíšil, Ing. Martin Menšík Katedra aplikované matematiky, VŠB - Technická univerzita Ostrava 24.1.2012 Ing. Lukáš Pospíšil,
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů
Drsná matematika III 10. demonstrovaná cvičení Kostry grafů Martin Panák Masarykova univerzita Fakulta informatiky 21.11. 2006 1 Domácí úlohy z minulého týdne Příklad 1 Příklad 2 Příklad 3 2 Borůvkův algoritmus
P ílohy. P íloha 1. ešení úlohy lineárního programování v MS Excel
P ílohy P íloha 1 ešení úlohy lineárního programování v MS Excel V této p íloze si ukážeme, jak lze ešit úlohy lineárního programování pomocí tabulkového procesoru MS Excel 2007. Výpočet budeme demonstrovat
12. Lineární programování
. Lineární programování. Lineární programování Úloha lineárního programování (lineární optimalizace) je jedním ze základních problémů teorie optimalizace. Našim cílem je nalézt maximum (resp. minimum)
algoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V
Hledání lokálního maxima funkce algoritmus»postup06«p e t r B y c z a n s k i Ú s t a v g e o n i k y A V Č R Abstrakt : Lokální maximum diferencovatelné funkce je hledáno postupnou změnou argumentu. V
Minimalizace nákladů. Varian: Mikroekonomie: moderní přístup, kapitoly 19 a 20 Varian: Intermediate Microeconomics, 8e, Chapters 20 and 21 () 1 / 34
Minimalizace nákladů a nákladové křivky Varian: Mikroekonomie: moderní přístup, kapitoly 19 a 20 Varian: Intermediate Microeconomics, 8e, Chapters 20 and 21 () 1 / 34 Na této přednášce se dozvíte co je
Prbh funkce Jaroslav Reichl, 2006
rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad
Č Č ó Ř Ň ň Ň Ň ú ť Ž Ž ň Č Ř ó Ý ť Č Č ň Č Č Č Č ň Č ň Č Č ů Č Č Č ú Ž Č Č Č Ž Š Ž Š ú Č Č Í ň Ž ť Ž ť ú Ý Č Č ú Ř Č Š ú ú Ý ď ú ť ť ť ť ť Č Š Ž Í Ř Ř ů Í Ř Ý Ř ů ů Ř ó ň ň ň ď ů Ř ů ú Ž Č Ž Ž Č ť Š Š
3. ANTAGONISTICKÉ HRY
3. ANTAGONISTICKÉ HRY ANTAGONISTICKÝ KONFLIKT Antagonistický konflikt je rozhodovací situace, v níž vystupují dva inteligentní rozhodovatelé, kteří se po volbě svých rozhodnutí rozdělí o pevnou částku,
6. F U N K C E 6.1 F U N K C E. Sbírka úloh z matematiky pro SOU a SOŠ RNDr. Milada Hudcová, Mgr. Libuše Kubičíková 181/1 190/24 25
6. F U N K C E 6.1 F U N K C E Funkce (definice, značení) Způsoby zadání funkce (tabulka, funkční předpis, slovní popis, graf) 181/1 190/24 25 80/1 2 82/3 6.2 D E F I N I Č N Í O B O R, O B O R H O D N
Č Í Á Ě ť ň Š Í Ď ť ť Š Ě Í Í Í ň ň É É Ý Ě Í Ú Č Č Č ť Š Ď ň ř Č Č Č Ú ň ť Í ť Ú ú Í Č ť Č Č Č Č Č ň Č Š Š ď ň Č Á Í ú ň Í ň ť ň ú ŘÍ Š Ě Ý Č Í ď Í ňť ň Č Ú Á Ý Á Á Ó ť Í Í Í ť ú Ú Č ň ň Č Í ú ť ň Í ú
Systémové modelování. Ekonomicko matematické metody I. Lineární programování
Ekonomicko matematické metody I. Lineární programování Modelování Modelování je způsob zkoumání reality, při němž složitost, chování a další vlastnosti jednoho celku vyjadřujeme složitostí, chováním a
1 Úvod do celočíselné lineární optimalizace
Úvod do celočíselné lineární optimalizace Martin Branda, verze 7.. 7. Motivace Reálné (smíšeně-)celočíselné úlohy Optimalizace portfolia celočíselné počty akcií, modelování fixních transakčních nákladů,
Základy informatiky. Teorie grafů. Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová
Základy informatiky Teorie grafů Zpracoval: Pavel Děrgel Úprava: Daniela Szturcová Obsah přednášky Barvení mapy Teorie grafů Definice Uzly a hrany Typy grafů Cesty, cykly, souvislost grafů Barvení mapy
Úlohy nejmenších čtverců
Úlohy nejmenších čtverců Petr Tichý 7. listopadu 2012 1 Problémy nejmenších čtverců Ax b Řešení Ax = b nemusí existovat, a pokud existuje, nemusí být jednoznačné. Často má smysl hledat x tak, že Ax b.
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Katedra geotechniky a podzemního stavitelství
Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního
Static Load Balancing Applied to Time Dependent Mechanical Problems
Static Load Balancing Applied to Time Dependent Mechanical Problems O. Medek 1, J. Kruis 2, Z. Bittnar 2, P. Tvrdík 1 1 Katedra počítačů České vysoké učení technické, Praha 2 Katedra stavební mechaniky
í Č í í ř í š Č í ČÚ í ž í ř í í í í í í ř í íž í í í ž ž ž í í í í ří Č í í í í ž ší ž žší ř í ž í í í ř í í í í ž ší ž žší ř í ž í ů í ž í ř í í ří žší ř í ž ž ř í í í ří í ů ř ů í í ž í í ší í í ř ří
Funkce pro učební obory
Variace 1 Funkce pro učební obory Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Funkce Funkce je přiřazení,
č Ž ě ŘÍ Á Ž ť ř č ě ě ž ů ž ú ř ř ř š ž č ě ě Ž ř ř č ž ř š š š š ě ř ž úč ů Ž ř š Ž úč ů ě ř č Ž Č ě Ž Č Ž Ž Í ž úč š ŘÍ Č ŽÍ Á ě ěž ě ě Č Ž ú ě ů ó Ž ř ě ó š č ř ř ř ů ů ř č ž ď ř č ě ř č ř ů ž š ů
Ž Ž Ž Í é ř ž ž Ž Ž Ž Ž é ř ž ž ž ú ů é Ž ř ž é é ů ě ř Ž ě ě š é é ě Ž ě š ž š ř ř ů ě š ě ť ž ěř ů ů ě ž ž ž ř é é ů ě ů ěř ř é ř ěř ěř é é ř š ů é Ž é ř Ž ž ěř ě é š ě Ž ěř é Ž Ž é Ž ů ř š ě ř Ž ů š
Vytěžování znalostí z dat
Pavel Kordík, Josef Borkovec (ČVUT FIT) Vytěžování znalostí z dat BI-VZD, 2012, Přednáška 8 1/26 Vytěžování znalostí z dat Pavel Kordík, Josef Borkovec Department of Computer Systems Faculty of Information
ě ř š Š š ů í ť í í Ž ě ří š ř ě ř Š ě ó ě ž ě Š ý š ř ě š ě ě š ší Š ó ě ř ě š ě ě ě š ů š Ý ě ř ě Š ě ě ě š š ě í ř Ě ř š ó ě í í š ě ř ě š ě ě ě í í š ř ě š ě ě ě í š ř ř ě Š ě ě š ě ř Š ě ó ě Ť ě š
Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.
3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou
Otázku, kterými body prochází větev implicitní funkce řeší následující věta.
1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015
Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia
Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze
Dobývání znalostí Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze Dobývání znalostí Bayesovské modely Doc. RNDr. Iveta Mrázová, CSc.
Í ř ří ý ř ř Č Č Ó Č ý ř ý Í ř Č ř Ó Ó ř ř ř ů ň ů řů ý ů ř ř ř ý Í š ř š ú Á ó š ř šř ů š Í ř Í Č ýš ó ó ů ó ř ó ň ý ů ř ř ý ř ř ý ř ř ř ř ř š ř ř š ů ů ř ýš ř š ó ú ř š ó ú ó ř ú ý ň ý úó ř ř ý ýš ó
ů ó í ů ů ó í í í ů í ě í ě ší ř í ř ě ř ě ží ř ž ě í í í Á í ť š í ů í ě í ů ě í ě ě í ě ě ú í ůž ě í í í ť í š ř ů ě í í í í ů í ě í ší ší š ů š í ů ží ří ů ůž í ů í ří ží í ů ě ž ě í Í í í í ž ž í í
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP
CLARKEOVA-WRIGHTOVA METODA ŘEŠENÍ ÚLOHY VRP 1. Definice úlohy Úloha VRP (Vehicle Routing Problem problém okružních jízd) je definována na obecné dopravní síti S = (V,H), kde V je množina uzlů sítě a H
ANALÝZA A KLASIFIKACE DAT
ANALÝZA A KLASIFIKACE DAT prof. Ing. Jiří Holčík, CSc. INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. LINEÁRNÍ KLASIFIKACE PRINCIPY KLASIFIKACE pomocí diskriminačních funkcí funkcí,
Úvod do teorie grafů
Úvod do teorie grafů Neorientovaný graf G = (V,E,I) V množina uzlů (vrcholů) - vertices E množina hran - edges I incidence incidence je zobrazení, buď: funkce: I: E V x V relace: I E V V incidence přiřadí
4EK212 Kvantitativní management. 1. Úvod do kvantitativního managementu a LP
4EK212 Kvantitativní management 1. Úvod do kvantitativního managementu a LP Mgr. Jana SEKNIČKOVÁ, Ph.D. Nová budova, místnost 433 Konzultační hodiny InSIS E-mail: jana.seknickova@vse.cz Web: jana.seknicka.eu/vyuka
Návrh Designu: Radek Mařík
1. 7. Najděte nejdelší rostoucí podposloupnost dané posloupnosti. Použijte metodu dynamického programování, napište tabulku průběžných délek částečných výsledků a tabulku předchůdců. a) 5 8 11 13 9 4 1
Dynamické programování
ALG 11 Dynamické programování Úloha batohu neomezená Úloha batohu /1 Úloha batohu / Knapsack problem Máme N předmětů, každý s váhou Vi a cenou Ci (i = 1, 2,..., N) a batoh s kapacitou váhy K. Máme naložit
ň Ý Á Ú ú ň Ó š š š ú ó ú ů ů ů š ů ů ů š ů ů ú ů ů ů ú ů ů ů ů ů ů ó ú ú ó ů ů ň ů ň ů ů ú ú ú ó š ó ú ú ó š ú š š š ú ú ů ň ú ů ú ú ú ů ú ú ň ů ú š ň ú š š š š ú ň ů ň ú š ů ů ň ů ů ů ů ú ů ú ú ň ú ú
Ě Ý Í Č ě ř ŠÍ Á Ú Ř Ž ú Ž Ž Ú ž ě ů ž ý ř ď ř ů ů ž ý ě ř ř ě ě ý ú ď ž ý ě ě ř Í ž ý ý ě ý ú ď ž ý ý ů ě ý ž Ž Í ř ž ě ž ě ý ú ď ž é ř ý ž ď ž ř ů ý ř ý é ú ž ř é ž ů ř é é ů é ř ě é ž ě ý ř é é ř Ž
CVIČNÝ TEST 22. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15
CVIČNÝ TEST 22 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15 I. CVIČNÝ TEST VÝCHOZÍ TEXT K ÚLOZE 1 Kontroloři Státní zemědělské a potravinářské inspekce
Vypracovat přehled paralelních kinematických struktur. Vytvořit model a provést analýzu zvolené PKS
Autor BP: Vedoucí práce: Tomáš Kozák Ing. Jan Zavřel, Ph.D. Vypracovat přehled paralelních kinematických struktur Vytvořit model a provést analýzu zvolené PKS Provést simulaci zvolené PKS Provést optimalizaci
Úvodní studie (pokraov
Úvodní studie (pokraov ování) Model jednání a kontext Model jednání (use case model) slouží pro evidenci aktér a služeb systému. Kontextový diagram slouží pro evidenci aktér a datových tok. Oba modely
š š ř š ř š ží ř ý úř ř š ř š ř ř š ř Ž Ž ý ý ú ú š ř ř Ž š ý ř ř ý ř š ř ř ž ý ý ř ř ú ý ř Ó ř ý ř š ř ý ží ř ř š ž ř ý ý ř Ž Ž ř ří ý ý ž ř ý ř Ž ý Ž ř š ú ř ř ý ř ú ř Ž š ř Ž ý ž ř ú Ž ř ř ř ž ř š Ž
Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely
Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní
Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel
Metodické pokyny pro práci s modulem Řešitel v tabulkovém procesoru Excel Modul Řešitel (v anglické verzi Solver) je určen pro řešení lineárních i nelineárních úloh matematického programování. Pro ilustraci
Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř
ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň
É Á ř ř ř ř Ú ř ň ř ř ř Á Á Á Á Ú Ú ří ř ří ř ří ř ř ť ř ř ř ř ř ř ř Í Ú ř ř ř ř ř ř ř ř ř ř Ř ř ť ř ř ř ř ř ť ň ř Ř ř ť ř Ý ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř ř Ý ř ř ť Í Á Á Á Á ř ř ř ř ř ř ř Í ř
Á Ý Á Í Š š ů Š ž ú ř ž ú ř ř š ů ř ř ů Ů ř ů ň ů ř š é ů ž ř š ž é ř é ř š š ž ř ž ř ů ž ř ů ž ů é ř ž é ž ž ř ř ň ž ř ř ů š é ř ž ů ŠÍ é ř ň ů ř š é ř é ř š é ů ž š é ů é ú š é ž š š é é ř é é š ř ň
ú Í Š Š Ť Í Š Š ň Ó Š Í Í Š Í ž Í Í Í ú Š Ů Č Š Š Á Í Š ú Í Ť Ů Í ž ž Ť Š Í ž ú ž Č ž Ú ž ť Í Í ú Ú ž ú ú Í ž Í Í Í ú ú Ú Í Ó ú Í Ů ú ú Ú Ó Í Í Í ú ú ž ú Í ú ž Č Ú Í ň É Í ú Í ú Í Č ň ň Č Ú ň ň ž Í Í ž
Základy algoritmizace
Základy algoritmizace Matematické algoritmy (11MAG) Jan Přikryl 1. přednáška 11MAG pondělí 5. října 2014 verze: 2014-11-10 10:35 Obsah 1 Algoritmy a algoritmizace 1 1.1 Vlastnosti algoritmů..................................
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí