VARIACE BEZ OPAKOVÁNÍ

Rozměr: px
Začít zobrazení ze stránky:

Download "VARIACE BEZ OPAKOVÁNÍ"

Transkript

1 VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení. (2) Trezor má k otočných zámků s n znaky. O kódu víme pouze to, že se v něm žádný znak neopakuje dvakrát. O kolik možných nastavení se může jednat? Z řešení předchozího příkladu vyplývá: k- členná variace z n prvků je uspořádaná k-tice sestavená z těchto prvků tak, že se v ní každý prvek vyskytuje nejvýše jednou. Označujeme ji V(k;n). Počet V(k;n) všech k-členných variací z n prvků je: V(k;n) = (3) K sestavení vlajky, která má být složena ze tří různobarevných vodorovných pruhů, jsou k dispozici látky barvy bílé, červené, modré, zelené a žluté. a) Určete počet vlajek, které lze z látek těchto barev sestavit. b) Kolik z těchto vlajek bude mít žlutý pruh nahoře? c) Kolik z těchto vlajek bude mít žlutý pruh? d) Kolik z těchto vlajek nebude mít dole modrý pruh? (4) Určete počet všech šesticiferných čísel, jejichž dekadickém zápisu se každá z číslic vyskytuje nejvýše jednou. Kolik z těchto číslic je menších než ?

2 (5) O telefonním čísle spolužáka jste ji zapamatovali pouze, že je devítimístné, začíná trojkou, neobsahuje žádné dvě stejné číslice a je dělitelné pětadvaceti. Určete, kolik telefonních čísel připadá v úvahu. (6) každému maximálně jednu hodinu denně, má-li se skládat z osmi vyučovacích hodin a jedné hodiny volna. která může nastat až po prvních čtyřech vyučovacích hodinách. která může nastat až po prvních čtyřech vyučovacích hodinách, a první hodinu má být matematika. která může nastat až po prvních čtyřech vyučovacích hodinách, a matematika nemá být po čtvrté vyučovací hodině.

3 (7) Turnaje ve skoku do dálky se účastní 30 sportovců. Kolik možných variant může nastat při závěrečném ceremoniálu na stupních vítězů? (8) Pětadvaceti členná třída, v níž je 10 dívek a 15 chlapců si mezi sebou volí: mluvčího třídy, službu na třídnici, pokladníka a nástěnkáře. a) Kolika způsoby lze vybrat mluvčího třídy, službu na třídnici, pokladníka a nástěnkáře? b) Kolika způsoby je lze vybrat, aby jednu funkci měla dívka? c) Kolika způsoby je lze vybrat, aby alespoň jednu funkci měla dívka? d) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch? e) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch a pokladník dívka? f) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch a pokladník dívka či obráceně? (9) Určete počet prvků, z nichž lze utvořit 240 dvoučlenných variací?

4 (10) Určete počet prvků, z nichž lze utvořit dvakrát více čtyřčlenných variací než tříčlenných variací. (11) Určete počet všech pěticiferných čísel s různými číslicemi, která lze sestavit z cifer 0, 1, 3, 4, 5, 7, 9. Určete počet všech sudých pěticiferných čísel s různými číslicemi, která lze sestavit z cifer 0, 1, 3, 4, 5, 7, 9. (12) Určete počet všech přirozených nejvýše pěticiferných čísel s různými číslicemi, která lze sestavit z cifer: 1, 3, 4, 5, 7, 9. Určete počet všech přirozených nejvýše pěticiferných čísel s různými číslicemi, která lze sestavit z cifer: 0, 1, 3, 4, 5, 7, 9.

5 VARIACE BEZ OPAKOVÁNÍ (řešení) (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? počty možností na každém zámku Celkem = 10 x 9 x 8 x 7 x 6 x 5 = Analogicky odvoďte obecné řešení. (2) Trezor má k otočných zámků s n znaky. O kódu víme pouze to, že se v něm žádný znak neopakuje dvakrát. O kolik možných nastavení se může jednat? n n-1 n-2 n-3 n-4 n-5 n-k+1 k zámků celkem = n(n-1)(n-2)(n-3)(n-4).(n-k+1) součin k čísel Z řešení předchozího příkladu vyplývá: k- členná variace z n prvků je uspořádaná k-tice sestavená z těchto prvků tak, že se v ní každý prvek vyskytuje nejvýše jednou. Označujeme ji V(k;n). Počet V(k;n) všech k-členných variací z n prvků je: V(k;n) = n(n-1)(n-2)(n-3) (n-k+1) (3) K sestavení vlajky, která má být složena ze tří různobarevných vodorovných pruhů, jsou k dispozici látky barvy bílé, červené, modré, zelené a žluté. a) Určete počet vlajek, které lze z látek těchto barev sestavit. celkem = V(3;5) =5 x 4 x 3 = 60 b) Kolik z těchto vlajek bude mít žlutý pruh nahoře? celkem = V(2;4) = 4 x 3 = 12 c) Kolik z těchto vlajek bude mít žlutý pruh? celkem = 3 x (2;4) = 36 d) Kolik z těchto vlajek nebude mít dole modrý pruh? celkem = V(3;5) V(2;4) = = 48 (4) Určete počet všech šesticiferných čísel, jejichž dekadickém zápisu se každá z číslic vyskytuje nejvýše jednou. 1 9 kamkoliv, 0 kamkoliv kromě prvního místa 9 x 9 x 8 x 7 x 6 x 5 = neboli 9 x V(5;9) = Kolik z těchto číslic je menších než ? 2 x V(5;9) = 2 x 9 x 8 x 7 x 6 x 5 =

6 (5) O telefonním čísle spolužáka jste ji zapamatovali pouze, že je devítimístné, začíná trojkou, neobsahuje žádné dvě stejné číslice a je dělitelné pětadvaceti. Určete, kolik telefonních čísel připadá v úvahu V(6;7) = 7 x 6 x 5 x 4 x 3 x 2 = V(6;7) = 7 x 6 x 5 x 4 x 3 x 2 = V(6;7) = 7 x 6 x 5 x 4 x 3 x 2 = celkem = 3 x V(6;7) = (6) každému maximálně jednu hodinu denně, má-li se skládat z osmi vyučovacích hodin a jedné hodiny volna. volné hodiny nebývají na začátku (první) ani na konci (poslední) V(9;14) 2 x V(8;13) = 14 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 2 x 13 x 12 x 11 x 10 x 9 x 8 x 7 x 6 = x = která může nastat až po prvních čtyřech vyučovacích hodinách. volné hodiny (VH) nebývají na začátku (první) ani na konci (poslední) 13 x 12 x 11 x 10 x 1(VH) x 9 x 8 x 7 x 6 = V(8;13) = x 12 x 11 x 10 x 9 x 1(VH) x 8 x 7 x 6 = V(8;13) 13 x 12 x 11 x 10 x 9 x 8 x 1(VH) x 7 x 6 = V(8;13) 13 x 12 x 11 x 10 x 9 x 8 x 7 x 1(VH) x 6 = V(8;13) celkem = 4 x V(8;13) = která může nastat až po prvních čtyřech vyučovacích hodinách, a první hodinu má být matematika. volné hodiny (VH) nebývají na začátku (první) ani na konci (poslední) 1(MA) x 12 x 11 x 10 x 1(VH) x 9 x 8 x 7 x 6 = V(7;12) = (MA) x 12 x 11 x 10 x 9 x 1(VH) x 8 x 7 x 6 1(MA) x 12 x 11 x 10 x 9 x 8 x 1(VH) x 7 x 6 1(MA) x 12 x 11 x 10 x 9 x 8 x 7 x 1(VH) x 6 celkem: 4 x V(7;12) = která může nastat až po prvních čtyřech vyučovacích hodinách, a matematika nemá být po čtvrté vyučovací hodině. 1(MA) x 12 x 11 x 10 x 1(VH) x 9 x 8 x 7 x 6 = V(7;12) = a totéž pro volné hodiny po 5., 6., 7. hodině 12 x 1(MA) x 11 x 10 x 1(VH) x 9 x 8 x 7 x 6 = V(7;12) = a totéž pro volné hodiny po 5., 6., 7. hodině 12 x 11 x 1(MA) x 10 x 1(VH) x 9 x 8 x 7 x 6 = V(7;12) = a totéž pro volné hodiny po 5., 6., 7. hodině 12 x 11 x 10 x 1(MA) x 1(VH) x 9 x 8 x 7 x 6 = V(7;12) = a totéž pro volné hodiny po 5., 6., 7. hodině celkem = 4 x 4 x V(7;12) =

7 (7) Turnaje ve skoku do dálky se účastní 30 sportovců. Kolik možných variant může nastat při závěrečném ceremoniálu na stupních vítězů? V(3;30) = 30 x 29 x 28 = (8) Pětadvaceti členná třída, v níž je 10 dívek a 15 chlapců si mezi sebou volí: mluvčího třídy, službu na třídnici, pokladníka a nástěnkáře. a) Kolika způsoby lze vybrat mluvčího třídy, službu na třídnici, pokladníka a nástěnkáře? V(4;25) = 25 x 24 x 23 x 22 = b) Kolika způsoby je lze vybrat, aby jednu funkci měla dívka? dívka - mluvčí: V(3;15) = 15 x 14 x 13 = totéž pro jinou funkci každá dívka může mít funkci celkem = 10 x 4 x V(3;15) = c) Kolika způsoby je lze vybrat, aby alespoň jednu funkci měla dívka? V(4;25) V(4;15) = = (odečítáme možnosti, kdy mají funkce pouze hoši) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch? 15 x V(3,24) = 15 x 24 x 23 x 22 = (15 možností na mluvčího) d) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch a pokladník dívka? 15 x 10 x V(2,23) = 150 x 23 x 22 = (15 možností na mluvčího, 10 na pokladnici) e) Kolika způsoby je lze vybrat, aby mluvčí třídy byl hoch a pokladník dívka či obráceně? 2 x 15 x 10 x V(2,23) = (9) Určete počet prvků, z nichž lze utvořit 240 dvoučlenných variací? V(2;n) = 240 n(n-1) = 240 n 2 n 240 = 0 n = 16 a (-15) počet prvků je 16

8 (10) Určete počet prvků, z nichž lze utvořit dvakrát více čtyřčlenných variací než tříčlenných variací. V(4;n) = 2 x V(3;n) n(n-1)(n-2)(n-3) = 2n(n-1)(n-2) n 3 = 2 n = 5 počet prvků je 5 (11) Určete počet všech pěticiferných čísel s různými číslicemi, která lze sestavit z cifer 0, 1, 3, 4, 5, 7, 9. V(5;7) V(4;6) = Určete počet všech sudých pěticiferných čísel s různými číslicemi, která lze sestavit z cifer 0, 1, 3, 4, 5, 7, 9. na konci 0 V(4;6) = 360 na konci 4 V(4;6) V(3;5) = = 300 celkem = 660 (12) Určete počet všech přirozených nejvýše pěticiferných čísel s různými číslicemi, která lze sestavit z cifer: 1, 3, 4, 5, 7, 9. V(1;6) = 6 V(2;6) = 6 x 5 = 30 V(3;6) = 6 x 5 x 4 = 120 V(4;6) = 6 x 5 x 4 x 3 = 360 V(5;6) = 6 x 5 x 4 x 3 x 2 = 720 celkem = Určete počet všech přirozených nejvýše pěticiferných čísel s různými číslicemi, která lze sestavit z cifer: 0, 1, 3, 4, 5, 7, 9. V(1,6) = 6 V(2;7) V(1;6) = 7 x 6 6 = 36 V(3;7) V(2;6) = 7 x 6 x 5 6 x 5 = 180 V(4;7) V(3;6) = 7 x 6 x 5 x 4 6 x 5 x 4 = 720 V(5;7) V(4;6) = 7 x 6 x 5 x 4 x 3 6 x 5 x 4 x 3 = celkem = 3 102

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace

KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace 1. Určete počet všech čtyřciferných přirozených čísel sestavených z číslic 1, 3, 5, 8, 9 tak, že se v něm každá číslice vyskytuje nejvýše jednou. (120)

Více

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:

Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: 8 4 8 4 + 4 8 4 4. Zjednodušte: [ 1680 ] 5 6 7 4 3 [ 840 ] [ 70 ] 5 1 8 + 9 1 30 9 3. Upravte na společného jmenovatele: 1 7 0

Více

Kód trezoru 1 je liché číslo.

Kód trezoru 1 je liché číslo. 1 Kód trezoru 1 je liché číslo. Kód trezoru 1 není prvočíslo. Každá číslice kódu trezoru 1 je prvočíslo. Ciferný součet kódu trezoru 1 je 12. Druhá cifra kódu trezoru 1 je sudá, ostatní jsou liché. Jeden

Více

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál.

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál. Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

9) Určete počet všech čtyřciferných přirozených čísel,

9) Určete počet všech čtyřciferných přirozených čísel, Kombinatorika konzultační příklady 1) Z města A do města B vedou 2 cesty. Z města B do města C vedou 3 cesty. Kolika způsoby lze dojít z města A do města C? 2) Určete počet všech přirozených trojciferných

Více

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3

Příklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3 Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání

Více

A 2.C. Datum: 13.5.2010

A 2.C. Datum: 13.5.2010 Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu

Kombinatorika, základní kombinatorická pravidla, pravidlo součtu, pravidlo součinu Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou.

Motivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou. KOMBINATORIKA Cíle: 1. Ovládat pojmy faktoriál, kombinační číslo, umět aktivně využít vlastností kombinačních čísel, Pascalův trojúhelník včetně příslušné terminologie a symboliky. 2. Chápat správně pojmy

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

U2 Určete, kolika způsoby lze na šachovnici 8 8 vybrat dvě různobarevná pole tak, aby obě neležela v téže řadě ani v témže sloupci.

U2 Určete, kolika způsoby lze na šachovnici 8 8 vybrat dvě různobarevná pole tak, aby obě neležela v téže řadě ani v témže sloupci. Kapitola 5. SOUBOR ÚLOH Z KOMBINATORIKY Základní kombinatorická pravidla U1 Určete počet všech trojciferných přirozených čísel, a) v jejichž dekadickém zápisu se každá číslice vyskytuje nejvýše jednou;

Více

2. Elementární kombinatorika

2. Elementární kombinatorika 2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

1. KOMBINATORIKA - PŘÍKLADY

1. KOMBINATORIKA - PŘÍKLADY 1. KOMBINATORIKA - PŘÍKLADY Úlohy k samostatnému řešení 1.1. Zjednodušte a vypočtěte: 1.2. Kolik třítónových akordů je možné zahrát z 8 tónů? 1.3. Kolik různých optických signálů je možno dát vytahováním

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_17 ŠVP Podnikání RVP 64-41-L/51

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

Kombinatorika. November 12, 2008

Kombinatorika. November 12, 2008 Kombinatorika November 12, 2008 Příklad Do školní jídelny přišla skupina 35 žáků. Určete kolika způsoby se mohli seřadit do fronty u výdeje obědů. Řešení: Počet možností je 1 2... 35 = 35! (Permutace bez

Více

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS)

KOMBINATORIKA (4.ročník I.pololetí DE, 2.ročník I.pololetí NS) KOMBINATORIKA (4.ročník I.pololetí DE,.ročník I.pololetí NS) Kombinatorika je část matematiky, zabývající se uspořádáváním daných prvků podle jistých pravidel do určitých skupin a výpočtem množství těchto

Více

Kombinatorika možnosti využití v učivu matematiky na základní škole

Kombinatorika možnosti využití v učivu matematiky na základní škole Kombinatorika možnosti využití v učivu matematiky na základní škole Růžena Blažková, Irena Budínová Kombinatorika je matematická disciplína, která se zabývá rozdělováním, uspořádáváním, výběrem prvků z

Více

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24)

Kombinatorika. 1. Variace. 2. Permutace. 3. Kombinace. Název: I 1 9:11 (1 z 24) Kombinatorika 1. Variace 2. Permutace 3. Kombinace Název: I 1 9:11 (1 z 24) Název: I 1 10:02 (2 z 24) Variace Jsou to skupiny prvků, ve kterých: záleží na pořadí prvků značíme je Název: I 1 10:02 (3 z

Více

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Kombinatoria je obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé

Více

Opakovací test. Kombinatorika A, B

Opakovací test. Kombinatorika A, B VY_32_INOVACE_MAT_193 Opakovací test Kombinatorika A, B Mgr. Radka Mlázovská Období vytvoření: listopad 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Klíčová slova: maturita, přijímací zkoušky,

Více

Pracovní list č. 4 Počítáme s pravděpodobností

Pracovní list č. 4 Počítáme s pravděpodobností racovní list č. 4 očítáme s pravděpodobností Cíl cvičení: Tento pracovní list je určen pro cvičení předmětu Kvantitativní metody II (přednáška 3.1). Je zaměřen především pro práci s kalkulačkou, program

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika 1. KOMBINATORIKA Průvodce studiem Na střední škole se někteří z vás seznámili se základními pojmy z kombinatoriky. V této kapitole tyto pojmy zopakujeme a prohloubíme vaše znalosti. Předpokládané znalosti

Více

9.1.1 Základní kombinatorická pravidla I

9.1.1 Základní kombinatorická pravidla I 9.. Základní kombinatorická pravidla I Předpoklady: Př. : Ve třídě je 7 děvčat a 3 kluků. Kolik máme možností jak vybrat dvojici klukholka, která bude mít projev na maturitním plese? Vybíráme ze 7 holek

Více

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Diplomová práce BRNO 2015 MONIKA STANČÍKOVÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Vytvoření

Více

9.1.8 Kombinace I. Předpoklady: 9107

9.1.8 Kombinace I. Předpoklady: 9107 9.1.8 Kombinace I Předpoklady: 9107 Př. 1: Urči, kolika způsoby je možné ze třídy s 1 studenty vybrat dva zástupce do studentské rady (bez rozlišení funkce). Vybíráme dvojici z 1 studentů: 1. student 1

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání Jaroslav Švrček a kolektiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematika a její aplikace Tematický okruh: Práce s

Více

Přirozená čísla. Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů

Přirozená čísla. Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů Přirozená čísla Přirozená čísla jsou množinou čísel, která udává počet počítaných objektů ( osob, zvířat, věcí). Číslo 0 mezi přirozená čísla nepatří. Množinu přirozených čísel označujeme N N = {1, 2,

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.

Základním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo. přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme

Více

Fakulta informacnch technologi CVUT v Praze Prijmac zkouska z matematiky 2018

Fakulta informacnch technologi CVUT v Praze Prijmac zkouska z matematiky 2018 Fakulta informacnch technologi CVUT v Praze Prijmac zkouska z matematiky 208 Kod uchazece ID:.................. Varianta: 4 Prklad. (3b) Mezi csly a, b, c, d, e plat nasledujc vztahy. Cslo a nen vets nez

Více

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)

1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a) 1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů

Více

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116.

Cykly a pole 103. 104. 105. 106. 107. 108. 109. 110. 111. 112. 113. 114. 115. 116. Cykly a pole Tato část sbírky je tvořena dalšími úlohami na práci s cykly. Na rozdíl od předchozího oddílu se zde již v řešeních úloh objevuje více cyklů, ať už prováděných po sobě nebo vnořených do sebe.

Více

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104

9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104 9.1.6 Permutace I Předpoklady: 9101, 9102, 9104 Pedagogická poznámka: První tři příklady jsou opakování, je možné je přeskočit, nebo použít na zkoušení. Př. 1: Vyřeš slovní úlohy. a) Na plese se losuje

Více

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM

Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České

Více

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít

0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ. Čas ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umět použít 0 KOMBINATORIKA OPAKOVÁNÍ UČIVA ZE SŠ Čas ke studiu kapitoly: 30 minut Cíl: Po prostudování této kapitoly budete umět použít základní pojmy kombinatoriky vztahy pro výpočet kombinatorických úloh - 6 -

Více

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě

N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě N á z e v š k o l y : Z Š A M Š Ú D O L Í D E S N É, D R U Ž S T E V N Í 125 N á z e v p r o j e k t u : V e s v a z k o v é š k o l e a k t i v n ě - i n t e r a k t i v n ě Č í s l o p r o j e k t u

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

MASARYKOVA UNIVERZITA V BRNĚ. Sbírka úloh z kombinatoriky

MASARYKOVA UNIVERZITA V BRNĚ. Sbírka úloh z kombinatoriky MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fakulta Bakalářská práce z matematiky Sbírka úloh z kombinatoriky pro středoškoláky Brno 2007 Petr Šurek Prohlášení: Prohlašuji, že jsem tuto bakalářskou práci

Více

Kód uchazeče ID:... Varianta:

Kód uchazeče ID:... Varianta: Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 01 Kód uchazeče ID:.................. Varianta: 1. Mějme dvě čísla zapsaná v sedmičkové soustavě 3456 7 a 3310 7. Vyjádřete

Více

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově

METODICKÉ LISTY. výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově METODICKÉ LISTY výstup projektu Vzdělávací středisko pro další vzdělávání pedagogických pracovníků v Sokolově reg. č. projektu: CZ.1.07/1.3.11/02.0005 Sada metodických listů: KABINET MATEMATIKY Název metodického

Více

pravděpodobnost, náhodný jev, počet všech výsledků

pravděpodobnost, náhodný jev, počet všech výsledků Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: Název projektu: Číslo projektu: Autor: Tematická oblast: Název DUMu: Kód: III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Inovace výuky na GSN

Více

Doplňkové materiály k učebnici matematiky pro gymnázia

Doplňkové materiály k učebnici matematiky pro gymnázia Masarykova univerzita Přírodovědecká fakulta Bc. Lenka Balounová Doplňkové materiály k učebnici matematiky pro gymnázia Diplomová práce Vedoucí diplomové práce: RNDr. Jiří Herman, PhD. Brno 010 Na tomto

Více

1. Opakování učiva 6. ročníku

1. Opakování učiva 6. ročníku . Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel

Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Variace 1 Dělitelnost čísel, nejmenší společný násobek, největší společný dělitel Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků dělitelnosti METODICKÝ LIST DA8 Název tématu: Autor: Předmět: Dělitelnost dělitelnost čtyřmi, šesti, osmi a devíti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky: Formy výuky: Cíl výuky:

Více

Moravské gymnázium Brno s.r.o.

Moravské gymnázium Brno s.r.o. Číslo projektu CZ.1.07/1.5.00/34.0743 Název školy Autor Tematická oblast Moravské gymnázium Brno s.r.o. Mgr. Marie Chadimová Mgr. Věra Jeřábková Matematika1.ročník Elementární teorie čísel. Ročník 1. Datum

Více

( ) ( ) Binomické rozdělení. Předpoklady: 9209

( ) ( ) Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. pochopení znaků vztahů mezi čísly METODICKÝ LIST DA6 Název tématu: Autor: Předmět: Dělitelnost dělitel a násobek, sudá a lichá čísla, prvočísla a čísla složená Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody výuky:

Více

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2

POSLOUPNOSTI. 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 POSLOUPNOSTI 1. Najděte prvních pět členů posloupnosti (a n ) n=1, je-li a) a n = 1 2 (1 + ( 1)n ), b) a n = n + ( 1) n, c) a n = ( 1) n cos πn2 n+1n, d) a n = n! n n 2. 2. Najděte předpis pro n-tý člen

Více

20 b. 45 b. 25 b. 20 b. Kolo J Klasické S. 9. Klasické R. 8. Klasické Č. 7. Klasické M. 5 b. 10 b. 5 b. 5 b. 3. Klasické

20 b. 45 b. 25 b. 20 b. Kolo J Klasické S. 9. Klasické R. 8. Klasické Č. 7. Klasické M. 5 b. 10 b. 5 b. 5 b. 3. Klasické body: Soutěž jednotlivců b. Nepravidelné b b 0 b 0 b b 0 b b. Klasické Č. Klasické R 0. Klasické S. Klasické. Klasické 0. Klasické. Klasické Brno,. a. září 0 www.sudokualogika.cz logických her a sudoku

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti

Svobodná chebská škola, základní škola a gymnázium s.r.o. Dušan Astaloš. samostatná práce, případně skupinová práce. znaky dělitelnosti METODICKÝ LIST DA7 Název tématu: Autor: Předmět: Dělitelnost znaky dělitelnosti, dělitelnost dvěma, třemi, pěti, deseti a dvaceti pěti Dušan Astaloš Matematika Ročník: 6. Učebnice: Kapitola, oddíl: Metody

Více

Prvočísla a čísla složená

Prvočísla a čísla složená Prvočísla a čísla složená Prvočíslo je každé přirozené číslo, které má právě dva různé dělitele, číslo 1 a samo sebe. Nejmenším a jediným sudým je prvočíslo 2. Další prvočísla: 2, 3, 5, 7, 11, 13, 17,

Více

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Jana Farská

Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE. Jana Farská Univerzita Karlova v Praze Matematicko-fyzikální fakulta DIPLOMOVÁ PRÁCE Jana Farská Výuka kombinatoriky na střední škole s využitím webových stránek Katedra didaktiky matematiky Vedoucí diplomové práce:

Více

JIHOČESKÁ UNIVERZITA V ČESKÝCH UDĚJOVICÍCH. Pedagogická fakulta. Katedra matematiky. Kombinatorika pro studenty učitelství 1.

JIHOČESKÁ UNIVERZITA V ČESKÝCH UDĚJOVICÍCH. Pedagogická fakulta. Katedra matematiky. Kombinatorika pro studenty učitelství 1. JIHOČESKÁ UNIVERZITA V ČESKÝCH UDĚJOVICÍCH Pedagogická fakulta Katedra matematiky Kombinatorika pro studenty učitelství 1. stupně ZŠ Diplomová práce Vedoucí diplomové práce RNDr. Vladimíra Petrášková,

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor004 Vypracoval(a),

Více

Hrací systémy pro sezónu

Hrací systémy pro sezónu Hrací systémy pro sezónu 2018 2019 Muži 6 družstev Tigers České Budějovice Legends České Budějovice Sokol Písek C Tábor A BK Pelhřimov Spartak Kaplice 1) Základní část - Dvoukolově každý s každým 2) Předkolo

Více

Počítání s neúplnými čísly 1

Počítání s neúplnými čísly 1 Aproximace čísla A: Počítání s neúplnými čísly 1 A = a ± nebo A a, a + Aproximace čísla B: B = b ± β nebo B b β, b + β nebo a A a+ nebo b β B b + β Součet neúplných čísel odvození: a + b β A + B a+ + (b

Více

Úvodní část: Představení se a úloha na zjištění kolik nám je let.

Úvodní část: Představení se a úloha na zjištění kolik nám je let. Anežka Pekárková, Romana Bredová Výuka 12.10.2011, sudý týden Cíl: Procvičit sčítání a odčítání v různých prostředích Úvodní část: Představení se a úloha na zjištění kolik nám je let. ÚLOHA: Od čísla 100

Více

Mgr. Marcela Sandnerová

Mgr. Marcela Sandnerová Mgr. Marcela Sandnerová Základní kombinatorická pravidla Kombinatorické pravidlo součinu Kombinatorické pravidlo součtu Kombinatorické pravidlo součinu Příklad 1 Kolika způsoby si může Pavel připravit

Více

Matematický KLOKAN kategorie Kadet

Matematický KLOKAN kategorie Kadet Matematický KLOKAN 2009 www.matematickyklokan.net kategorie Kadet Úlohy za body. Hodnota kterého z výrazů je sudé číslo? (A) 2009 (B) 2 + 0 + 0 + 9 (C) 200 9 (D) 200 9 (E) 200 + 9 2. Hvězda na obrázku

Více

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina: KMA/MAT1 Matematika 1 Přednáška č. 2 Jiří Fišer 26. září 2016 Jiří Fišer (KMA, PřF UP Olomouc) KMA MAT1 26. září 2016 1 / 24 Součin, podíl a mocniny komplexních čísel v goniometrickém tvaru Dvě nenulová

Více

jsou všechna reálná čísla, pro která platí: D: x ( ; 2) ( 2; 2) E: x ( 2; 2)

jsou všechna reálná čísla, pro která platí: D: x ( ; 2) ( 2; 2) E: x ( 2; 2) Příklad 1. Kolik přirozených čísel lze vytvořit z číslic 0, 3, 6, 9, jestliže se žádná číslice neopakuje? A: 48 B: 42 C: 60 D: 63 E: 65 Příklad 2. Definičním oborem funkce y = x 2 4 x+2 jsou všechna reálná

Více

Dělitelnost přirozených čísel - opakování

Dělitelnost přirozených čísel - opakování Dělitelnost přirozených čísel - opakování Do kolika různých obdélníků můžeme sestavit 60 čtvercových dlaždic tak, abychom vždycky spotřebovali všechny dlaždice a nerozbíjeli je? Závěr: Všichni tito dělitelé

Více

Variace. Mocniny a odmocniny

Variace. Mocniny a odmocniny Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených

Více

jsou všechna reálná čísla, pro která platí: E: x ( ; 2) (2; )

jsou všechna reálná čísla, pro která platí: E: x ( ; 2) (2; ) Příklad 1. Kolik sudých přirozených čísel lze vytvořit z číslic 0, 3, 6, 9, jestliže se žádná číslice neopakuje? A: 14 B: 18 C: 26 D: 30 E: 22 Příklad 2. Definičním oborem funkce y = 1 x x 2 4 jsou všechna

Více

1. Základní poznatky z matematiky

1. Základní poznatky z matematiky . Základní poznatky z matematiky. Určete opačné číslo k číslu (3 5). a) 8 b) 8 c) 8 d) 8. Čísla,, 0, 3,, 8 9, seřaďte od největšího k nejmenšímu. a), 3,, 8 9,, 0, b), 3,, 8 9,, 0, c) 3,,, 8 9,, 0, d),,

Více

. Určete hodnotu neznámé x tak, aby

. Určete hodnotu neznámé x tak, aby Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 015 Kód uchazeče ID:.................. Varianta: 1 1. Původní cena knihy byla 50 Kč. Pak byla zdražena o 15 %. Jelikož nešla

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Číslo projektu Označení materiálu Název školy Autor Tematická oblast Ročník Anotace Metodický pokyn Zhotoveno CZ.1.07/1.5.00/34.0061 VY_42_INOVACE_M.2.01 Integrovaná střední škola

Více

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!

MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn! MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací

Více

I. kolo kategorie Z7

I. kolo kategorie Z7 68. ročník Matematické olympiády I. kolo kategorie Z7 Z7 I 1 Na každé ze tří kartiček je napsána jedna číslice různá od nuly (na různých kartičkách nejsou nutně různé číslice). Víme, že jakékoli trojmístné

Více

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209

( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209 9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve

Více

Kombinace s opakováním

Kombinace s opakováním 9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Časová náročnost této hodiny je podobná hodině předchozí. Netradiční začáte. Nemáme žádné přílady, ale rovnou definici. Definice

Více

II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých

II. kolo kategorie Z5. Z čísel a vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých II. kolo kategorie Z5 Z5 II 1 Z čísel 959 362 a 192 075 vyškrtneme celkem 5 číslic. Pak od většího z takto vzniklých čísel odečteme číslo menší. Jaký nejmenší rozdíl můžeme dostat? Řešení. Z jednoho čísla

Více

1.5.7 Znaky dělitelnosti

1.5.7 Znaky dělitelnosti 1.5.7 Znaky dělitelnosti Předpoklady: 010506 Pedagogická poznámka: Příklad 1 je dořešení zadání z minulé hodiny. Je třeba se u něj nezdržovat. Př. 1: Na základní škole ses učil pravidla, podle kterých

Více

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se

Více

Kód uchazeče ID:... Varianta: b. 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.

Kód uchazeče ID:... Varianta: b. 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny. Fakulta informačních technologií ČVUT v Praze Přijímací zkouška z matematiky 014 Kód uchazeče ID:.................. Varianta: 35 1. Z původní ceny byl výrobek zlevněn o 10 % a potom ještě o 8 % nové ceny.

Více

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web:

Pravd podobnost a statistika - cvi ení. Simona Domesová místnost: RA310 (budova CPIT) web: Pravd podobnost a statistika - cvi ení Simona Domesová simona.domesova@vsb.cz místnost: RA310 (budova CPIT) web: http://homel.vsb.cz/~dom0015 Cíle p edm tu vyhodnocování dat pomocí statistických metod

Více

(1) Nové cvičení využívající aplikační SW NIS Z.Szabó, 2007/08. Evidence pacienta od vstupu do nemocnice po propuštění

(1) Nové cvičení využívající aplikační SW NIS Z.Szabó, 2007/08. Evidence pacienta od vstupu do nemocnice po propuštění Evidence pacienta od vstupu do nemocnice po propuštění Příjem pacienta Po přihlášení uživatele je CareCenter nastaveno pro práci s daty pacienta s aktuální epizodou. Zavřete tabulku pro výběr dat pacienta

Více

Kombinatorika, pravděpodobnost a statistika

Kombinatorika, pravděpodobnost a statistika Kombinatorika, pravděpodobnost a statistika Kombinatorika 90003930 (level ): Na talíři je pět kusů ovoce (jablko, hruška, kiwi, banán a pomeranč). Kolika způsoby je možné ovoce rozdělit mezi pět dětí tak,

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

Závěrečná zkouška z informatiky 2011

Závěrečná zkouška z informatiky 2011 Závěrečná zkouška z informatiky 2011 1) Číslo A je v dvojkové soustavě a má hodnotu 1101011. Číslo B je v šestnáctkové soustavě a má hodnotu FF3. Vypočítejte : A * B a výsledek napište v desítkové soustavě.

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 TEORIE ČÍSEL 000/001 Cifrik, M-ZT Příklad ze zadávacích listů 10 101 Dokažte, že číslo 101 +10 je dělitelné číslem 51 Důkaz:

Více

FVL UO, Brno 2016 str. 1

FVL UO, Brno 2016 str. 1 Příklad 1. Z uvedených možností vyerte tu, která odpovídá dané větě (je s danou větou ekvivalentní): Nesložím zkoušku neo půjdu na ples. A: Nesložím zkoušku neo nepůjdu na ples. B: Nesložím zkoušku a nepůjdu

Více

Matematický KLOKAN kategorie Benjamín

Matematický KLOKAN kategorie Benjamín Matematický KLOKAN 2011 www.matematickyklokan.net kategorie Benjamín Úlohy za 3 body 1. Motocyklista ujel vzdálenost 28 km za 30 minut. Jakou průměrnou rychlostí jel? (A) 28 km/h (B) 36 km/h (C) 56 km/h

Více

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13

CVIČNÝ TEST 39. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 13 CVIČNÝ TEST 9 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 5 III. Klíč 11 IV. Záznamový list 1 I. CVIČNÝ TEST 1 bod 1 Do kruhu je vepsán rovnostranný trojúhelník. Jakou část obsahu kruhu

Více