Kombinace s opakováním
|
|
- Arnošt Matějka
- před 8 lety
- Počet zobrazení:
Transkript
1 9..3 Kombinace s opaováním Předpolady: , 9, 92 Pedagogicá poznáma: Časová náročnost této hodiny je podobná hodině předchozí. Netradiční začáte. Nemáme žádné přílady, ale rovnou definici. Definice ombinace bez opaování -členná ombinace z n prvů je neuspořádaná -tice sestavená z těchto prvů ta, že aždý se v ní vysytuje nejvýše jednou. Př. : Sestav definici -členné ombinace s opaováním z n prvů. -členná ombinace s opaováním z n prvů je neuspořádaná -tice sestavená z těchto prvů ta, že aždý se v ní vysytuje nejvýše -rát. Příladem vytváření taových ombinací je napřílad známý přílad na výpočet počtu částe, teré je možné zaplatit pomocí tří jedno, dvou a pětiorunových mincí. Př. 2: Vypiš všechny částy, teré je možné zaplatit třemi mincemi, poud máš dispozici tři jednoorunové, tři dvojorunové a tři pětiorunové mince. Budeme vypisovat jednotlivé trojice mincí a jejich celovou hodnotu:,, 3,, 2 4,,5 7,2,2 5, 2,5 8,5,5 2,2,2 6 2, 2,5 9 2,5,5,5, 5 5 celem 0 možných částe { 3;4;5;6;7;8;9;;2;5 }. V předchozím příladu jsme vytvářeli supiny, ve terých nezáleželo na pořadí (šlo pouze o to, že ve supině máme dvě oruny a jednu dvouorunu, ne o to, terou minci jsme vybrali jao první), jednotlivé prvy se mohly opaovat vytvářeli jsme tříčlenné ombinace ze tří prvů s opaováním. Náš přístup nebyl příliš ombinatoricý. Všechny možnosti jsme nejdříve vypsali a pa je spočítali (dosud jsme to vždycy dělali obráceně). Taový postup nepůjde apliovat u vícečlenných ombinací z většího počtu prvů. Musíme vymyslet postup, terý umožňuje určit počet ombinací s opaováním podobně, jao jsme to udělali v jiných případech. Tri: Kombinace s opaováním nahradíme permutacemi s opaováním. Tři mince, ze terých sestavujeme naše ombinace, budeme brát ze tří přihráde, podle toho, ze teré přihrády minci vezmeme, víme, zda to je, 2 nebo 5 oruna. Rozdělení můžeme znázorňovat pomocí oleče tří oleče (mince) a dvou přepáže, teré rozdělí mince to tří přihráde, onrétně napřílad tato:,,5.
2 Př. 3: Namodeluj pomocí tří oleče a dvou přepáže zbývající ombinace vytvořené v příladu 2.,,,,2,,5,2,2,2,5,5,5 2,2,2 5,5,5 2,2,5 2,5,5 Každé ombinaci z příladu 2 odpovídá jeden obráze s mincemi a přihrádami a naopa obrázů i ombinací je stejně. Koli obrázů můžeme sestavit? Jde o uspořádané pětice ze tří oleče a dvou přepáže 5! permutace s opaováním: P ( 3;2) = = = 5 2 = 0. 3! 2! Výslede odpovídá počtu ombinací, teré jsme vytvořili v příladu 2. Př. 4: Urči počet pětičlenných ombinací s opaováním ze tří prvů, pomocí předchozího modelu s olečy a přepážami. Pětičlenné ombinace pět oleče, ze tří prvů tři přihrády dvě přepážy, vytváříme permutace s opaováním z pěti oleče a dvou přepáže 7! 2! 5! = 2 Poznáma: Je dobré si uvědomit, že pětičlenné ombinace ze tří prvů bez opaování není možné sestavit. Pedagogicá poznáma: Občas se objeví nědo, do si neuvědomí, že sestavujeme ombinace s opaováním a právě vůli fatu z předchozí poznámy považuje předchozí přílad za nesmyslný. Nejčastější chyby: prohození významu a n, nerozlišování mezi přihrádami a přepážami a tudíž dosazování větší hodnoty do výsledného zlomu. Př. 5: Urči počet tříčlenných ombinací s opaováním z pěti prvů, pomocí modelu s olečy a přepážami. Tříčlenné ombinace tři oleča, z pěti prvů pět přihráde čtyři přepážy, vytváříme permutace s opaováním ze tří oleče a čtyř přepáže 7! 3! 4! = 35 2
3 Postřeh: Je nutné dávat pozor na čísla n a, protože při jejich záměně můžeme zísat špatný výslede. ). Př. 6: Urči počet -členných ombinací s opaováním z n prvů (číslo K ( n) Postupujeme stejně jao s onrétními čísly: -členné ombinace oleče, z n prvů n přihráde n přepáže, vytváříme permutace s opaováním z oleče a Platí: K ( n) P ( ; n ) = = ( n + ) ( n )!!! n přepáže ( + n ) ( n )!!! Všechny výsledy připomínají ombinační čísla. Bylo by hezé mít počet ombinací s opaováním napsaný ve formě ombinačního čísla: ( n + )! ( n + )! n + K ( n) = P ( ; n ) = = =! ( n )!! ( n ) +! Počet K ( n) všech -členných ombinací s opaováním z n prvů je n + K ( n). Pedagogicá poznáma: Existuje značné procento studentů, terým přijde přechod na ombinační číslo zbytečný. Nenutím je. Př. 7: Kolia způsoby je možné naoupit 5 oplatů, poud mají v obchodě dispozici pět druhů oplatů, všechny v dostatečném množství (alespoň 5 usů). Kupujeme 5 oplatů, nehraje roli, terý jsme vybrali jao první, zajímá nás pouze to, oli oplatů terého druhu budeme mít sestavujeme neuspořádanou 5-tici z pěti prvů s opaováním jde o ombinaci s opaováním Vybíráme 5 prvů z 5 K 5 ( 5) = Př. 8: Urči olia způsoby je možné rozdat mariášové arty z plného balíču: a) pro hráče na prší (při hře rozlišujeme ja barvu, ta hodnotu), b) pro hráče na sedmu (při hře rozlišujeme pouze hodnoty aret, jejich barva nehraje roli). a) pro hráče na prší (při hře rozlišujeme ja barvu, ta hodnotu) Vybíráme 4 arty ze 32 (žádné dvě arty nejsou stejné při výběru se nemůžeme opaovat), nezáleží na pořadí sestavujeme čtyřčlenné ombinace ze 32 bez opaování 32 K4 ( 32) =
4 b) pro hráče na sedmu (při hře rozlišujeme pouze hodnoty aret, jejich barva nehraje roli) Vybíráme z osmi různých aret (osm různých hodnot) a aždou hodnotu máme dispozici čtyřirát (při výběru se můžeme opaovat), nezáleží na pořadí sestavujeme čtyřčlenné ombinace z 8 s opaováním K 4 ( 8) = Pedagogicá poznáma: Většina studentů se nachytá a neuvědomí si, že v bodě a) se jedná o ombinace bez opaování, protože není možné rozdat napřílad dvě zelená esa. Př. 9: Koli čtveřic mohou dát počty o na čtyřech nerozlišitelných, naráz hozených hracích ostách na člověče nezlob se? Kosty jsou nerozlišitelné a házíme je naráz nemůžeme říct, terá z oste je první, nerozlišujeme, oli na teré ostce padlo, pouze olirát máme, olirát 2 vytváříme neuspořádané čtveřice ze šesti čísel, terá se mohou opaovat sestavujeme 9 čtyřčlenné ombinace z 6 s opaováním K 4 ( 6) = 26 4 Př. 0: V sáču jsou červené, modré a zelené uličy. Kuličy téže barvy jsou nerozlišitelné. Urči, olia způsoby je možné vybrat pět uliče (bez rozlišení pořadí, ve terém byly vytaženy) jestliže v sáču je: a) alespoň pět uliče od aždé barvy, b) pět červených, čtyři modré a čtyři zelené uličy, c) pět červených, pět modrých a tři zelené uličy. a) alespoň pět uliče od aždé barvy Nerozlišujeme v jaém pořadí jsme táhli, pouze oli máme červených, modrých a zelených uliče vytváříme neuspořádané pětice ze tří barev sestavujeme pětičlenné ombinace 7 ze tří s opaováním K 5 ( 3) = 2 b) pět červených, čtyři modré a čtyři zelené Nemůžeme vytáhnout všechny ombinace jao v předchozím bodě (pět modrých a pět zelených nemáme dispozici) musíme tyto dvě ombinace odečíst 7 K 5 ( 3) 2 2 = 9 c) pět červených, pět modrých a tři zelené Opět nemůžeme vytáhnout všechny ombinace spočteme všechny možnosti a pa odečteme počty těch, teré nejdou vytáhnout: pět zelených možnost, čtyři zelené a jednu další barvu 2 možnosti (ja si vybrat zbývající barvu), 7 celem K 5 ( 3) 3 3 = 8 Př. : Urči olia způsoby je možné rozdat mariášové arty z plného balíču: a) pro 4 hráče na prší (při hře rozlišujeme ja barvu, ta hodnotu), 4
5 b) pro 4 hráče na sedmu (při hře rozlišujeme pouze hodnoty aret, jejich barva nehraje roli). a) pro 4 hráče na prší (při hře rozlišujeme ja barvu, ta hodnotu) Vybíráme postupně podobně jao v příladu 7 a): 32. hráč: 4 arty ze 32 K4 ( 32) možností, hráč: 4 arty ze 28 K4 ( 28) možností, hráč: 4 arty ze 24 K4 ( 24) možností, hráč: 4 arty ze 20 K4 ( 20) možností, možnosti mezi sebou násobíme celem 3,79 0 b) pro 4 hráče na sedmu (při hře rozlišujeme pouze hodnoty aret, jejich barva nehraje roli) Řešení tohoto příladu autor učebnice nezná. Na rozdíl od bodu a) nemůžeme při vybírání aret pro druhé hráče postupovat podobně jao v bodě a), protože nevíme, ja dopadlo rozdávání pro prvního hráče (všechny čtyři rozdané arty mohly mít stejnou hodnotu pa už vybíráme pouze ze sedmi hodnot atd.). Př. 2: Petáová: strana 48/cvičení 74 strana 48/cvičení 75 Shrnutí: Počty ombinací s opaováním můžeme určovat pomocí permutací s opaováním ze dvou prvů (počet vybíraných předmětů a počet přihráde na rozlišení jejich druhů). 5
Kombinace s opakováním
9..3 Kombinace s opaováním Předpolady: 907. 908, 9, 92 Pedagogicá poznáma: Tato hodina zabere opět minimálně 70 minut. Asi ji čeá rozšíření na dvě hodiny. Netradiční začáte. Nemáme žádné přílady, ale rovnou
VíceZákladním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.
přednáša KOMBINATORIKA Při řešení mnoha praticých problémů se setáváme s úlohami, ve terých utváříme supiny z prvů nějaé onečné množiny Napřílad máme sestavit rozvrh hodin z daných předmětů, potřebujeme
VíceZákladním pojmem v kombinatorice je pojem (k-prvková) skupina, nebo také k-tice prvků, kde k je přirozené číslo.
přednáša KOMBINATORIKA Kombinatoria je obor matematiy, terý se zabývá uspořádáním daných prvů podle určitých pravidel do určitých supin Záladním pojmem v ombinatorice je pojem (-prvová) supina, nebo taé
Více1. KOMBINATORIKA. Příklad 1.1: Mějme množinu A a. f) uspořádaných pětic množiny B a. Řešení: a)
1. KOMBINATORIKA Kombinatoria je obor matematiy, terý zoumá supiny prvů vybíraných z jisté záladní množiny. Tyto supiny dělíme jedna podle toho, zda u nich záleží nebo nezáleží na pořadí zastoupených prvů
VíceBinomická věta
97 Binomicá věta Předpolady: 96 Kdysi dávno v prvním ročníu jsme se učili vzorce na umocňování dvojčlenu Př : V tabulce jsou vypsány vzorce pro umocňování dvojčlenu Najdi podobnost s jinou dosud probíranou
Více(iv) D - vybíráme 2 koule a ty mají různou barvu.
2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P
Více6 5 = 0, = 0, = 0, = 0, 0032
III. Opaované pousy, Bernoulliho nerovnost. Házíme pětrát hrací ostou a sledujeme výsyt šesty. Spočtěte pravděpodobnosti možných výsledů a určete, terý má největší pravděpodobnost. Řešení: Jedná se o serii
VíceMETODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání
METODICKÉ LISTY Z MATEMATIKY pro gymnázia a záladní vzdělávání Jaroslav Švrče a oletiv Rámcový vzdělávací program pro gymnázia Vzdělávací oblast: Matematia a její apliace Tematicý oruh: Práce s daty ombinatoria
Více9.1.8 Kombinace I. Předpoklady: 9107
9.1.8 Kombinace I Předpoklady: 9107 Př. 1: Urči, kolika způsoby je možné ze třídy s 1 studenty vybrat dva zástupce do studentské rady (bez rozlišení funkce). Vybíráme dvojici z 1 studentů: 1. student 1
Více1.5.7 Prvočísla a složená čísla
17 Prvočísla a složená čísla Předpolady: 103, 106 Dnes bez alulačy Číslo 1 je dělitelné čísly 1,, 3,, 6 a 1 Množinu, terou tvoří právě tato čísla, nazýváme D 1 množina dělitelů čísla 1, značíme ( ) Platí:
Více7.3.9 Směrnicový tvar rovnice přímky
7.3.9 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme. Vrátíme se obecné rovnici přímy:
VíceKolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení
2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou
Více7.3.9 Směrnicový tvar rovnice přímky
739 Směrnicový tvar rovnice přímy Předpolady: 7306 Pedagogicá poznáma: Stává se, že v hodině nestihneme poslední část s určováním vztahu mezi směrnicemi olmých příme Vrátíme se obecné rovnici přímy: Obecná
VíceKonstrukce trojúhelníků II
.7.0 Konstruce trojúhelníů II Předpolady: 00709 Minulá hodina: Tři věty o shodnosti (odpovídají jednoznačným postupům pro onstruci trojúhelníu): Věta sss: Shodují-li se dva trojúhelníy ve všech třech stranách,
Více( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109
9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které
VíceNázev školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace
Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost
VíceMocnost bodu ke kružnici
3..0 ocnost bodu e ružnici Předpolady: 309 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p,. Průsečíy sečny p,. Změř potřebné vzdálenosti a spočti
VíceP. Rozhodni, zda bod P leží uvnitř, vně nebo na kružnici k. Pokud existují, najdi tečny kružnice procházející bodem P.
756 Tečny ružnic II Předpolady: 45, 454 Pedagogicá poznáma: Tato hodina patří na gymnázium mezi početně nejnáročnější Ačoliv jsou přílady optimalizované na co nejmenší početní obtížnost, všichni studenti
VíceMocnost bodu ke kružnici
3.. ocnost bodu e ružnici Předpolady: 03009 Př. : Je dána ružnice a bod, ležící vně ružnice. Veď bodem dvě různé sečny ružnice p a p. Průsečíy sečny p s ružnicí označ A, B. Průsečíy sečny p s ružnicí označ
Více8.1.2 Vzorec pro n-tý člen
8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají
Více8.1.2 Vzorec pro n-tý člen
8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým
Více9 Stupně vrcholů, Věta Havla-Hakimiho
Typicé přílady pro zápočtové písemy DiM 470-301 (Kovář, Kovářová, Kubesa) (verze: November 5, 018) 1 9 Stupně vrcholů, Věta Havla-Haimiho 9.1. Doážete nareslit graf na 9 vrcholech, ve terém mají aždé dva
VíceSPOTŘEBITELSKÝ ÚVĚR. Na začátku provedeme inicializaci proměnných jejich vynulováním příkazem "restart". To oceníme při opakovaném použití dokumentu.
Úloha 1 - Koupě nového televizoru SPOTŘEBITELSKÝ ÚVĚR Chceme si oupit nový televizor v hodnotě 000,-Kč. Bana nám půjčí, přičemž její úroová sazba činí 11%. Předpoládejme, že si půjčujeme na jeden ro a
Více3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
Více9.1.6 Permutace I. Předpoklady: 9101, 9102, 9104
9.1.6 Permutace I Předpoklady: 9101, 9102, 9104 Pedagogická poznámka: První tři příklady jsou opakování, je možné je přeskočit, nebo použít na zkoušení. Př. 1: Vyřeš slovní úlohy. a) Na plese se losuje
Více( ) Příklady na otočení. Předpoklady: Př. 1: Je dána kružnice k ( S ;5cm)
3.5.9 Přílady na otočení Předpolady: 3508 Př. 1: Je dána ružnice ( ;5cm), na teré leží body, '. Vně ružnice leží bod L, uvnitř ružnice bod M. Naresli obrazy bodů L, M v zobrazení řeš bez úhloměru. R (
Více5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy
Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,
VíceObsah přednášky. 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacking 5. Boosting 6. Shrnutí
1 Obsah přednášy 1. Principy Meta-learningu 2. Bumping 3. Bagging 4. Stacing 5. Boosting 6. Shrnutí 2 Meta learning = Ensemble methods Cíl použít predici ombinaci více různých modelů Meta learning (meta
VíceNUMP403 (Pravděpodobnost a Matematická statistika I)
NUMP0 (Pravděpodobnost a Matematicá statistia I Střední hodnota disrétního rozdělení. V apce máte jednu desetiorunu, dvě dvacetioruny a jednu padesátiorunu. Zloděj Vám z apsy náhodně vybere tři mince.
Více3.2.9 Věta o středovém a obvodovém úhlu
3..9 ěta o středovém a obvodovém úhlu Předpolady: ody, rozdělují ružnici na dva oblouy. Polopřímy a pa rozdělují rovinu na dva úhly. rcholy obou úhlů leží ve středu ružnice říáme, že jde o středové úhly
Více( ) ( ) 9.2.10 Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů; b) dá alespoň jeden koš; c) dá nejdříve
Více1. Úvod do základních pojmů teorie pravděpodobnosti
1. Úvod do záladních pojmů teore pravděpodobnost 1.1 Úvodní pojmy Většna exatních věd zobrazuje své výsledy rgorózně tj. výsledy jsou zísávány na záladě přesných formulí a jsou jejch nterpretací. em je
VíceJevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého
8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění
Více6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.
Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh
Více( ) ( ) Binomické rozdělení. Předpoklady: 9209
9..1 Binomické rozdělení Předpoklady: 99 Př. 1: Basketbalista hází trestný hod (šestku) s pravděpodobností úspěchu,9. Urči pravděpodobnosti, že z pěti hodů: a) dá košů b) dá alespoň jeden koš c) dá nejdříve
Více!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.
Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím
VíceÚlohy krajského kola kategorie A
63. roční matematicé olympiády Úlohy rajsého ola ategorie A 1. Najděte všechna celá ladná čísla, terá nejsou mocninou čísla 2 a terá se rovnají součtu trojnásobu svého největšího lichého dělitele a pětinásobu
Více( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204
9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými
Více0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - 0.1 Kombinatoria
Více3.3.4 Thaletova věta. Předpoklady:
3.3.4 Thaletova věta Předpolady: 030303 Př. : Narýsuj ružnici ( ;5cm) a její průměr. Na ružnici narýsuj libovolný bod různý od bodů, (bod zvol jina než soused v lavici). Narýsuj trojúhelní. Má nějaou speciální
VíceMATEMATIKA II V PŘÍKLADECH
VYSOKÁ ŠKOL BÁŇSKÁ TECHICKÁ UIVERZIT OSTRV FKULT STROJÍ MTEMTIK II V PŘÍKLDECH CVIČEÍ Č 0 Ing Petra Schreiberová, PhD Ostrava 0 Ing Petra Schreiberová, PhD Vysoá šola báňsá Technicá univerzita Ostrava
Více( ) ( 1) Permutace II. Předpoklady: c) ( n ) Př. 1: Rozepiš faktoriály. a) 6! b)! ( n + ) a) 6! = = 720
9..7 Permutace II Předpoklady: 906 Př. : Rozepiš faktoriály. a) 6! b)! n c) ( n + )! d) ( n ) a) 6! = 6 5 4 3 = 70 b) n n ( n )( n ) c) ( n + )! = ( n + ) n ( n )( n )... d) ( n ) ( n )( n )! =...! = 3...
VíceGeometrická zobrazení
Pomocný text Geometricá zobrazení hodná zobrazení hodná zobrazení patří nejjednodušším zobrazením na rovině. Je jich vša hrozně málo a často se stává, že musíme sáhnout i po jiných, nědy výrazně složitějších
VíceČásti kruhu. Předpoklady:
2.10.3 Části uhu Předpolady: 0201002 Př. 1: Na užnici ( ;5cm) leží body,, = 8cm. Uči početně vzdálenost tětivy od středu užnice. pávnost výpočtu zontoluj ýsováním. Naeslíme si obáze a využijeme speciální
Vícef (k) (x 0 ) (x x 0 ) k, x (x 0 r, x 0 + r). k! f(x) = k=1 Řada se nazývá Taylorovou řadou funkce f v bodě x 0. Přehled některých Taylorových řad.
8. Taylorova řada. V urzu matematiy jsme uázali, že je možné funci f, terá má v oolí bodu x derivace aproximovat polynomem, jehož derivace se shodují s derivacemi aproximované funce v bodě x. Poud má funce
VíceA 2.C. Datum: 13.5.2010
Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou
Vícea) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika
Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin
VícePříklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka
Náhodná veličina Náhodnou veličinou nazýváme veličinu, terá s určitými p-stmi nabývá reálných hodnot jednoznačně přiřazených výsledům příslušných náhodných pousů Náhodné veličiny obvyle dělíme na dva záladní
VíceIB112 Základy matematiky
IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez
VícePRVOČÍSLA 1 Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah
PRVOČÍSLA Jan Malý UK v Praze a UJEP v Ústí n. L. Obsah. Elementární úlohy o prvočíslech 2. Kongruence 2 3. Algebraicé rovnice a polynomy 3 4. Binomicá a trinomicá věta 5 5. Malá Fermatova věta 7 6. Diferenční
VíceAlternativní rozdělení. Alternativní rozdělení. Binomické rozdělení. Binomické rozdělení
Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Alternativní rozdělení Náhodná veličina X má alternativní rozdělení s parametrem p, jestliže nabývá hodnot 0 a 1 s pravděpodobnostmi
VíceNapsali: Mgr. Michaela Jedličková; RNDr. Peter Krupka, Ph.D.; RNDr. Jana Nechvátalová Recenzenti:
Použité symboly: Motivace k probíranému učivu na praktickém příkladu Úvahové úlohy nebo otázky poukazující na další souvislosti probírané látky s běžným životem Připomenutí učiva, na které nová látka navazuje
VíceDalší vlastnosti kombinačních čísel
9.. Další vlastnosti kombinačních čísel Předpoklady: 97, 98 Kombinační čísla udávají počet kombinací bez opakování = neuspořádaných k-tic sestavených z n prvků bez opakování. n! Platí: = - počet možností
Více1 Gaussova kvadratura
Cvičení - zadání a řešení úloh Zálady numericé matematiy - NMNM0 Verze z 7. prosince 08 Gaussova vadratura Fat, že pro něterá rovnoměrná rozložení uzlů dostáváme přesnost o stupeň vyšší napovídá, že pro
VíceHodnocení přesnosti výsledků z metody FMECA
Hodnocení přesnosti výsledů z metody FMECA Josef Chudoba 1. Úvod Metoda FMECA je semivantitativní metoda, pomocí teré se identifiují poruchy s významnými důsledy ovlivňující funci systému. Závažnost následů
Více1.3.5 Kružnice, kruh. Předpoklady: Narýsuj bod S. Kružítkem narýsuj kružnici se středem v bodu S a poloměrem 3 cm.
1.3.5 Kružnice, ruh Předpolady: 010304 Př. 1: Narýsuj bod. Kružítem narýsuj ružnici se středem v bodu a poloměrem 3 cm. tejně jao přímy označujeme ružnice malým písmenem (většinou začínáme písmenem ;3cm,
VíceTeorie. Kombinatorika
Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou
Více{ 3;4;5;6 } pravděpodobnost je zřejmě 4 = 2.
9..3 Pravděpodobnosti jevů I Předpoklady: 90 Opět se vrátíme k hodu kostkou. Pokus má šest stejně pravděpodobných náhodných výsledků pravděpodobnost každého z nich je 6. Do domečku nám chybí tři políčka.
Více0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ. as ke studiu kapitoly: 30 minut. Cíl: Po prostudování této kapitoly budete umt použít
0 KOMBINATORIKA OPAKOVÁNÍ UIVA ZE SŠ as e studiu apitoly: 30 minut Cíl: Po prostudování této apitoly budete umt použít záladní pojmy ombinatoriy vztahy pro výpoet ombinatoricých úloh - 6 - Výlad: 0.1 Kombinatoria
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VícePříklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 3
Příklad 1 a) Určete počet všech přirozených trojciferných čísel, v jejichž desítkovém zápisu se vyskytuje každá číslice nejvýše jednou s tím, že na prvním místě nesmí stát nula, jak je obvyklé při chápání
VíceBuckinghamův Π-teorém (viz Barenblatt, Scaling, 2003)
Bucinghamův Π-teorém (viz Barenblatt, Scaling, 2003) Formalizace rozměrové analýzy ( výsledné jednoty na obou stranách musí souhlasit ). Rozměr fyziální veličiny Mějme nějaou třídu jednote, napřílad [(g,
VíceReprezentace přirozených čísel ve Fibonacciho soustavě František Maňák, FJFI ČVUT, 2005
Reprezentace přirozených čísel ve ibonacciho soustavě rantiše Maňá, JI ČVUT, 2005 Úvod Ja víme, přirozená čísla lze vyádřit různými způsoby Nečastěi zápisu čísel používáme soustavu desítovou, ale umíme
Více3.4.7 Můžeme ušetřit práci?
3.4.7 Můžeme ušetřit práci? Předpolady: 030404 Pomůcy: Pedaoicá pozáma: Hodia je oraizováa jao supiová práce. Třída je rozdělea a čtyřčleé supiy, aždý ze čleů má jedu možost ozultovat se mou ebo mě předat
VíceMetoda konjugovaných gradientů
0 Metoda onjugovaných gradientů Ludě Kučera MFF UK 11. ledna 2017 V tomto textu je popsáno, ja metodou onjugovaných gradientů řešit soustavu lineárních rovnic Ax = b, de b je daný vetor a A je symetricá
VíceÚvod do informatiky. Miroslav Kolařík
Úvod do informatiky přednáška osmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Kombinatorika: pravidla součtu a součinu 2 Kombinatorika:
Více9 Skonto, porovnání různých forem financování
9 Sonto, porovnání různých forem financování Sonto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše sonta je
VíceŠkola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM
Škola: Střední škola obchodní, České Budějovice, Husova 9 Projekt MŠMT ČR: EU PENÍZE ŠKOLÁM Číslo projektu: Název projektu školy: Šablona III/2: CZ.1.07/1.5.00/34.0536 Výuka s ICT na SŠ obchodní České
VíceKOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace
KOMBINATORIKA - SLOVNÍ ÚLOHY (BEZ OPAKOVÁNÍ) Variace 1. Určete počet všech čtyřciferných přirozených čísel sestavených z číslic 1, 3, 5, 8, 9 tak, že se v něm každá číslice vyskytuje nejvýše jednou. (120)
VíceVARIACE BEZ OPAKOVÁNÍ
VARIACE BEZ OPAKOVÁNÍ (1) Trezor má 6 otočných zámků s číslicemi 0 9. O kódu víme pouze to, že v něm žádná z číslic není dvakrát. O kolik možných nastavení se může jednat? Analogicky odvoďte obecné řešení.
VíceTestování hypotéz. December 10, 2008
Testování hypotéz December, 2008 (Testování hypotéz o neznámé pravděpodobnosti) Jan a Františe mají pytlíy s uličami. Jan má 80 bílých a 20 červených, Františe má 30 bílých a 70 červených. Vybereme náhodně
VíceKombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.
Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační
VíceMATEMATIKA. O paradoxech spojených s losováním koulí
MATEMATIKA O paradoxeh spojenýh s losováním oulí PAVEL TLUSTÝ IRENEUSZ KRECH Eonomiá faulta JU, Česé Budějovie Uniwersytet Pedagogizny, Kraów Matematia popisuje a zoumá různé situae reálného světa. Je
VíceMULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE
OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 PŘEDNÁŠKA 5 MULTIKRITERIÁLNÍ ROZHODOVÁNÍ VEKTOROVÁ OPTIMALIZACE OPTIMALIZACE A ROZHODOVÁNÍ V DOPRAVĚ část druhá Přednáša 5 Multiriteriální rozhodování
VíceLineární funkce IV
.. Lineární funkce IV Předpoklady 0 Pedagogická poznámka Říkám studentům, že cílem hodiny není naučit se něco nového, ale použít to, co už známe (a možná se také přesvědčit o tom, jak se nemůžeme obejít
Vícepravděpodobnosti a Bayesova věta
NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,
Více( ) ( ) ( ) 2.9.24 Logaritmické nerovnice I. Předpoklady: 2908, 2917, 2919
.. Logaritmické nerovnice I Předpoklady: 08, 7, Pedagogická poznámka: Pokud mají studenti pracovat samostatně budou potřebovat na všechny příklady minimálně jeden a půl vyučovací hodiny. Pokud není čas,
VíceNáhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy
Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale
Více7. TRANSFORMÁTORY. 7.1 Štítkové údaje. 7.2 Měření odporů vinutí. 7.3 Měření naprázdno
7. TRANSFORMÁTORY Pro zjednodušení budeme měření provádět na jednofázovém transformátoru. Na trojfázovém transformátoru provedeme pouze ontrolu jeho zapojení měřením hodinových úhlů. 7.1 Štítové údaje
VíceProjekt OPVK - CZ.1.07/1.1.00/ Matematika pro všechny. Univerzita Palackého v Olomouci
Projekt OPVK - CZ.1.07/1.1.00/26.0047 Matematika pro všechny Univerzita Palackého v Olomouci Tematický okruh: Práce s daty, kombinatorika a pravděpodobnost Gradovaný řetězec úloh Téma: Pravděpodobnost
Více55. ročník Matematické olympiády 2005/2006
55. roční Matematicé olympiády 005/006 Úlohy ústředního ola ategorie P 1. soutěžní den Na řešení úloh máte,5 hodiny čistého času. Řešení aždého příladu musí obsahovat: Popis řešení, to znamená slovní popis
VícePříklad 1. Řešení 1a ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 4
ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST Příklad 1 a) Jev spočívá v tom, že náhodně vybrané přirozené číslo je dělitelné pěti a jev v tom, že toto číslo náhodně vybrané přirozené číslo zapsané v desítkové soustavě má
VíceMěření indukčností cívek
7..00 Ṫeorie eletromagneticého pole Měření indučností cíve.......... Petr Česá, studijní supina 05 Letní semestr 000/00 . Měření indučností cíve Měření vlastní a vzájemné indučnosti válcových cíve ZAÁNÍ
Více2. Elementární kombinatorika
2.1. Kombinace, variace, permutace bez opakování 2. Elementární kombinatorika Definice 2.1. Kombinace je neuspořádaná k-tice prvků z dané n-prvkové množiny. Variace je uspořádaná k-tice prvků z dané n-prvkové
VíceMotivační úloha: Určete počet přirozených dvojciferných čísel, v jejichž dekadickém zápisu se každá, vyskytuje nejvýše jednou.
KOMBINATORIKA Cíle: 1. Ovládat pojmy faktoriál, kombinační číslo, umět aktivně využít vlastností kombinačních čísel, Pascalův trojúhelník včetně příslušné terminologie a symboliky. 2. Chápat správně pojmy
VíceKružnice, kruh
2101 Kružnice, ruh Předpoady: 010405 Př 1: Je dán bod Narýsuj černou tužou ( ;4cm) Na sestroj bod T Narýsuj a vytáhni modrou pasteou K ( T ;3cm) L T Maé písmeno: ružnice (pouze čára) Veé písmeno: ruh (pocha)
VíceFRP 5. cvičení Skonto, porovnání různých forem financování
FRP 5. cvičení onto, porovnání různých forem financování onto je sráža (sleva) z ceny, terou posytuje prodávající upujícímu v případě, že upující zaplatí oamžitě (resp. během dohodnuté ráté lhůty). Výše
Vícekombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková
Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla
VíceMotivace. Náhodný pokus, náhodný n jev. pravděpodobnost. podobnostní charakteristiky diagnostických testů, Bayesův vzorec. Prof.RND. RND.
Pravděpodobnostn podobnostní charateristiy diagnosticých testů, Bayesův vzorec Prof.RND RND.Jana Zvárov rová,, DrSc. Náhodný pous, náhodný n jev Náhodný pous: výslede není jednoznačně určen podmínami,
Více4 všechny koeficienty jsou záporné, nedochází k žádné změně. Rovnice tedy záporné reálné kořeny nemá.
Přílad 1. Řešte v R rovnici x 4x + x 4 0. Výslede vypočtěte s přesností alespoň 0,07. 1) Reálné ořeny rovnice budou ležet v intervalu ( 5,5), protože největší z oeficientů polynomu bez ohledu na znaméno
VíceSoustavy více rovnic o více neznámých I
313 Soustavy více rovnic o více neznámých I Předpoklady: 31 Př 1: Co při řešení soustav rovnic o více neznámých představují rovnice? Co představují neznámé? Čím je určen počet řešení? Kdy je řešení právě
VíceMATEMATIKA 1 4 A B C D. didaktický test. Zadání neotvírejte, počkejte na pokyn! MA1ACZMZ07DT. Pokyny pro vyplňování záznamového archu
MAACZMZ07DT MATURITA NANEČISTO 007 MATEMATIKA didaticý test Testový sešit obsahuje 0 úloh. Na řešení úloh máte 90 minut. Úlohy řešte v testovém sešitu. Odpovědi pište do záznamového archu. Používejte rýsovací
VíceVariace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte:
Variace, permutace, kombinace, faktoriál, kombinační čísla 1. Vypočítejte: 8 4 8 4 + 4 8 4 4. Zjednodušte: [ 1680 ] 5 6 7 4 3 [ 840 ] [ 70 ] 5 1 8 + 9 1 30 9 3. Upravte na společného jmenovatele: 1 7 0
VíceProjekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE
VícePravděpodobnost a statistika (BI-PST) Cvičení č. 2
Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015
VíceNáhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č.
Náhoda při i hřeh Martigale: Vsadíšřeěme dolar a barvu, terou si vybereš (červeáči čerá) a budeš stále sázet je a i. Roztočíš ruletu a čeáš Poud prohraješ, zdvojásobíš sázu, taže vsadíš příště dolary.
Více7.2.1 Vektory. Předpoklady: 7104
7..1 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost, směr. Jak je znázornit? Jedno číslo (jako například pro hmotnost m = 55kg ) nestačí.
VíceZákladní pojmy DEFINICE INTERPRETACE PŘÍKLAD
Pojmy a interpretace Záladní pojmy Cílová supina Indexová cílová supina Rating v tisících ATS (average time spent) Rating (sledovanost) Share (podíl na trhu) Reach (zásah) ATS relative Loajalita Profil
VíceAndrew Kozlík KA MFF UK
Operační režimy (módy) bloových šifer Andrew Kozlí KA MFF UK Operační režimy (módy) bloových šifer Říáme, že šifra (P, C, K,, D) je bloová, jestliže P = C = {0, 1} b pro nějaé b. Napřílad DS (b = 64 bitů)
Více2.3.7 Lineární rovnice s více neznámými I
..7 Lineární rovnice s více neznámými I Předpoklady: 01 Pedagogická poznámka: Následující hodinu považuji za velmi důležitou hlavně kvůli pochopení soustav rovnic, které mají více než jedno řešení. Proto
Více