Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III"

Transkript

1 Vysoká škola báňská - Technická univerzita Ostrava 27. září 2018

2 Teorie pravděpodobnosti Teorie pravděpodobnosti je odvětvím matematiky, které studuje matematické modely náhodných pokusu, tedy zabývá se jevy, které nastávají při hromadných dějích náhodné povahy.

3 Základní pojmy Pokus - je to realizace určitého komplexu podmínek. Deterministický pokus Za určitých počátečních podmínek se dostaví vždy stejný výsledek. Náhodný pokus (stochastický) Je to takový pokus, jehož výsledek není jednoznačně určen podmínkami pokusu, za kterých probíhá.

4 Náhodný pokus Náhodný pokus - existuje množina možných výsledků, přičemž jeden z nich nastane. Příklady: Hod kostkou Hod mincí Sejmutí karty z balíčku Losování sportky Stanovení množství cholesterolu v krvi Pokusy, které nemůžeme považovat za náhodné: zfialovění fenolftaleinu v zásaditém prostředí zapálení sirky vhozené do ohně zničení auta, které narazí v plné rychlosti do stěny

5 Co potřebujeme na prozkoumání náhodného pokusu? = musíme znát všechny možné výsledky, kterými pokus může dopadnout a které splňují dvě podmínky: navzájem se vylučují (nemohou nastat dva současně), jeden z nich nastane vždy. Základní prostor (Ω) - je to neprázdná množina všech možných výsledku náhodného pokusu. Prvek základního prostoru se nazývá elementární jev (ω) (nelze jej vyjádřit jako sjednocení dvou různých jevů) Odtud Základní prostor = Prostor elementárních jevů. Příklady: Hod mincí: Ω = {L, R} Hod mincí než padne poprvé líc: Ω = {L, RL, RRL, RRRL,... } Vyberte libovolné reálné číslo: Hod kostkou: Ω = {1, 2, 3, 4, 5, 6} Ω = R

6 Úkol: Sestavte množinu všech možných výsledků náhodného pokusu hod třemi mincemi. První přístup: mince jsou stejné a nerozlišujeme je: Ω = {(3R), (2R, L), (R, 2L), (3L)} Druhý přístup: všímáme si, na které z mincí, co padlo, tj. rozlišujeme mince mezi sebou: Ω = {(R, R, R), (R, R, L), (R, L, R), (L, R, R), (R, L, L), (L, R, L), (L, L, R), (L, L, L)} Ačkoliv se zdá, že první přístup je bližší skutečnosti, v počtu pravděpodobnosti je daleko výhodnější druhý postup, protože všechny možnosti jsou v něm rovnocenné ( stejně pravděpodobné ). Možnosti (2R, 1L) a (1R, 2L) jsou praděpodobnější mohou nastat třemi způsoby. Jevy, které nejsou elementární, označujeme jako jevy složené. Příklady: Hod kostkou: padne sudé číslo (skládá se z elementárních jevů padne číslo 2, padne číslo 4 a padne číslo 6 ).

7 Základní pojmy Náhodný jev (A) tvrzení o výsledku náhodného pokusu. O pravdivosti tohoto tvrzení lze po ukončení pokusu rozhodnout. Matematicky: je to libovolný prvek potenční množiny základního prostoru. Příklady: Hod mincí:, {L}, {R}, {R, L}. Hod mincí než padne poprvé líc:, {L}, {RL}, {L, RL},... Klasifikace náhodných jevu: 1 jev nemožný ( ) - jev, který za daných podmínek nikdy nenastane, nebo neobsahuje žádný možný výsledek náhodného pokusu. 2 jev možný - jev, který při realizaci určitého pokusu nastat muže, ale nemusí. 3 jev jistý (I) - jev, který nastane při každém provedení určitého pokusu (souhrn všech možných výsledku náhodného pokusu).

8 Pravidla pro práci s jevy Budeme říkat, že při realizaci náhodného pokusu nastal (nastoupil) jev A, jestliže nastal elementární jev ω Ω, takový, že ω A. Elementární jev ω potom nazýváme také výsledek příznivý jevu A. Jednotlivé jevy mezi sebou vstupují do vzájemných vztahů. Vzhledem k tomu, že jev je jen jiné označení pro podmnožinu množiny, můžeme zavést relace mezi jevy, které odpovídají množinovým relacím. Vztahy (relace) mezi jevy vyjadřujeme pomocí množinových inkluzí.

9 Jev A je podjevem jevu B, Jev A je podjevem jevu B, značíme A B Znamená to, že jev A má za následek jev B (tj. nastane-li jev A, nastane taktéž jev B). A B (ω A ω B) B A Ω Příklad: Hod kostkou: Jev A: padne číslo 2, Jev B: padne sudé číslo. Potom jev A je podjevem jevu B.

10 Rovnost jevů Rovnost jevů, značíme A = B. Znamená to, že jev A má za následek jev B a naopak jev B má za následek jev A, tedy A B B A. Příklad: Hod kostkou: Jev A: padne sudé číslo, Jev B: padne číslo dělitelné dvěma. Jev A je pak roven jevu B.

11 Disjunktní jevy A, B Dva jevy A, B nemohou nastat současně, nemají-li společný žádný elementární jev (společný výsledek). Takovéto jevy budeme nazývat jevy disjunktní (neslučitelné). A B Příklad: Hod kostkou: Jev A: padne sudé číslo, Jev B: padne číslo jedna nebo pět. Tyto jevy nemají žádný možný společný výsledek. Jestliže nastane jev A, nemůže zároveň nastat i jev B a naopak. Obdobně lze říci, že náhodné jevy A i, i = 1, 2,... jsou vzájemně ( po dvou ) disjunktní, jestliže jsou disjunktní všechny dvojice náhodných jevu A i, A j pro i j. Ω

12 Doplněk jevu A v Ω Opačným jevem (doplňkovým) k jevu A v Ω budeme rozumět jev A, který nastane právě tehdy, když nenastane jev A. A A Ω Příklad: Hod kostkou: Jev A: padne sudé číslo = Jev A: padne liché číslo.

13 Průnik jevů Průnik jevu, značíme A B. Průnik jevů je jev, který nastane, když nastanou jevy A a B současně (čteme A průnik B nebo A a zároveň B nastává totiž jak jev A tak i jev B současně). A A B B Příklad: Hod kostkou: Jev A: padne číslo 2 nebo 3 nebo 4, Jev B: padne sudé číslo. Potom jev A B = {2, 4}. Obdobně lze říci, že náhodné jevy n i=1 A i a i=1 A i nastanou, jestliže nastanou všechny jevy A i. Ω

14 Sjednocení jevů Sjednocení jevů značíme A B. O sjednocení jevů A a B mluvíme tehdy, jestliže nastává jev A nebo jev B. Slovo nebo znamená, že muže nastat pouze jeden z těchto jevů, že mohou nastat oba jevy zároveň. Tedy nastane alespoň jeden z těchto jevů. A B A B Příklad: Hod kostkou: Jev A = {1, 3, 4}, Jev B: padne sudé číslo. Potom jev A B = {1, 2, 3, 4, 6}. Obdobně lze říci, že náhodné jevy n i=1 A i a i=1 A i nastanou, jestliže nastane alespoň jeden jev A i. Ω

15 Rozdíl jevů Rozdíl jevů značíme A\B nebo A B. Rozdílem jevů A a B budeme chápat jev, který nastává právě tehdy, nastane-li jev A a současně nenastane jev B. A\B = A B A\B = {ω ω A ω B} A B A\B Příklad: Hod kostkou: Jev A: padne číslo větší než dvě, Jev B: padne sudé číslo. Rozdíl jevů A a B je pak jev A\B = {3, 5}. Ω

16 Vlastnosti operací s náhodnými jevy Nechť A, B, C Ω, potom 1 A B = B A, A B = B A, 2 A (B C) = (A B) C, A (B C) = (A B) C, 3 A (B C) = (A B) (A C), A (B C) = (A B) (A C), 4 A A = A, A A = A, 5 A = A, A = 6 A Ω = Ω, A Ω = A, 7 (A) = A,

17 1. de Morganův zákon A B = A B A B A B Ω

18 2. de Morganův zákon A B = A B A B A B Ω

19 Množiny náhodných jevů V teorii pravděpodobnosti se setkáváme se dvěma význačnými množinami náhodných jevů: úplná množina vzájemně disjunktních jevů, jevové pole.

20 Úplná množina vzájemně disjunktních jevů úplná množina vzájemně disjunktních jevů - je to množina po dvou disjunktních jevů {A 1, A 2,... A n } s nenulovou pravděpodobností výskytu (P(A i ) > 0), jejichž sjednocení tvoří množinu Ω. Zapsáno symbolicky Ω = n A i, i=1 kde P(A i ) > 0, A i A j =, pro i j, i, j = 1, 2,..., n. Říkáme, že základní prostor je složen z úplné množiny vzájemně disjunktních jevu. A1 A2 A5 A4 A3 A6 Ω

21 Jevové pole Často se setkáváme s případy, kdy ne všechny podmnožiny mohou nastávat, hovoříme pak o jevovém poli Jevové pole A (σ-algebra na Ω) je systém podmnožin základního prostoru obsahující Ω a uzavřený vůči doplňku a vůči sjednocení. Vzhledem k definici jevového pole A platí: 1 Ω A, tj. základní prostor, je jevem. 2 A A : A A, 3 {A i } i=1 A i=1 A i A, (uzavřenost jevového pole vůči sjednocení, tzv. σ aditivita).

22 Příklad 1 Náhodný pokus spočívá v jednom hodu klasickou hrací kostkou se stěnami očíslovanými od 1 do 6. Náhodný jev A nastane, jestliže padne liché číslo a náhodný jev B nastane, jestliže padne číslo menší než 4. Určete Ω, A, A, A, B, A B, A B, A\B, B\A. Řešení: Ω = {1, 2, 3, 4, 5, 6}. Příslušné jevové pole A je množinou všech podmnožin základního prostoru: A = {, {1}, {2}, {3}, {4}, {5}, {6}, {1, 2}, {1, 5},..., {5, 6},..., {2, 3, 4, 5, 6}, Ω}. Jevy A a B jsou jevy složené A = {1, 3, 5}... padne liché číslo, B = {1, 2, 3}... padne číslo menší než 4. A = Ω A = {2, 4, 6}... padne sudé číslo, B = Ω B = {4, 5, 6}... padne číslo vetší než 3, A B = {1, 2, 3, 5}... padne liché číslo nebo 2, A B = {1, 3}... padne 1 nebo 3, A\B = {5}... padne číslo 5, B\A = {2}... padne číslo 2.

23 Příklad 2 Necht základní prostor Ω = {a, b, c, d}. Máme náhodné jevy A = {a} a B = {c, d}. Doplňte náhodné jevy A a B tak, abyste dostali co nejmenší jevové pole. Řešení: Jevové pole musí obsahovat: a Ω. S každým jevem obsahuje také jeho doplněk, tj. opačný jev: A = {b, c, d}, B = {a, b}. S každými náhodnými jevy obsahuje jejich prunik a sjednocení: A B = C = {a, c, d}. S náhodným jevem C obsahuje i opačný jev: C = {b}. Pomocí opačného jevu, sjednocení a pruniku již nedostaneme žádný další náhodný jev. Tedy A = {, {a}, {b}, {a, b}, {c, d}, {b, c, d}, {a, c, d}, Ω}

24 Pravděpodobnost Co je to pravděpodobnost? Číselné vyjádření šance, že při náhodném pokusu daný jev nastane. Jak pravděpodobnost definovat?

25 Klasická (Laplaceova) definice pravděpodobnosti Pierre Simon de Laplace Předpokládejme, že pokus má n možných výsledků (množina Ω má n prvku) a že všechny výsledky jsou stejně pravděpodobné ( 1 n ). Dále předpokládejme, že A je náhodný jev a z n výsledku je jich m příznivých jevu A (neboli množina A má m prvku). Potom pravděpodobnost, že při realizaci náhodného pokusu jev A nastane se definuje jako podíl počtu výsledku (elementárních jevů) příznivých jevu A ku počtu všech možných výsledku, tj. Příklad: Hod kostku: P(A) = m n. Jaká je pravděpodobnost, že padne číslo 4? Řešení: Označme: A... jako jev, že padne číslo 4, potom P(A) = 1 6.

26 Klasická (Laplaceova) definice pravděpodobnosti - příklad Příklad: Ve třídě 20-ti chlapců a 12-ti dívek jsou losem určeni dva mluvčí. Jaká je pravděpodobnost, že oba mluvčí budou různého pohlaví? Protože výběr mluvčích je prováděn losem, má každý z žáků třídy stejnou šanci stát se mluvčím. klasická definice pravděpodobnosti. počet všech možných pokusů C 2 (32) = ( ) 32 2 počet příznivých pokusů C 1 (20) C 1 (12) = = 240 P(A) = 240 C 2 (32) = 240 ) = 240 ( ! (32 2)! 2!. = 0.484

27 Geometrická definice pravděpodobnosti Zobecnění klasické pravděpodobnosti pro případ, kdy počet všech možných výsledku náhodného pokusu je nespočetný. Definice je založena na porovnání objemu, obsahu nebo délek geometrických útvaru. V rovině (případně na přímce nebo v prostoru) je dána určitá oblast Ω a v ní další uzavřená oblast A. Pravděpodobnost jevu A, který spočívá v tom, že náhodně zvolený bod v oblasti Ω leží i v oblasti A je P(A) = A Ω. Příklad: Jaká je pravděpodobnost, že meteorit dopadl na pevninu?

28 Geometrická pravděpodobnost - příklad Příklad: Hodiny, které nebyly včas nataženy, se po určité době zastaví. Jaká je pravděpodobnost, že se velká ručička zastaví mezi trojkou a šestkou? y ϕ x ω Pravděpodobnost jevu A, který spočívá v tom, že se velká ručička zastaví uvnitř daného oblouku na obvodu číselníku je úměrná délce oblouku ω π π 3 2 π 2π P(A) = 1 2 πr 2πr = 1 4 ω

29 Další příklady: Tramvaj jezdí v 10 minutových intervalech. Jaká je pravděpodobnost, že Petr, který nezná jízdní řád, bude na tramvaj čekat déle než 3 minuty? Dva známí se domluví, že se sejdou na určitém místě mezi 15. a 16. hodinou, přičemž doba čekání je 20 minut. Jaká je pravděpodobnost, že se při této dohodě setkají? Jaká je pravděpodobnost, že součet dvou kladných čísel menších než 1 bude nejvýše 1 a zároveň jejich součin bude menší než 2 9?

30 Statistická definice pravděpodobnosti publikuje své první práce z teorie pravděpodobnosti Richard von Mises. Jeho přístup k pravděpodobnosti je založen na empirickém zkoumání, které vede k pozorování stability relativních četností. Provedeme-li n realizací náhodného pokusu, přičemž n(a) realizací je příznivých jevu A, pak pravděpodobnost jevu A můžeme odhadnout poměrem n(a) P(A) = lim x n. Tento odhad je tím přesnější, čím je počet realizací náhodného pokusu vyšší. Příklad: Jaká je pravděpodobnost padnutí 6 na hrací kostce, nevíme-li, zda je tato kostka férová?

31 Relativní četnost jevu padne číslo 6.

32 Relativní četnost jevu padne 6 na nepoctivé kostce.

33 Kolmogorovova definice pravděpodobnosti popisuje přiřazení pravděpodobnosti náhodnému jevu a využívá k tomu abstraktní množinu Ω vybavenou σ-algebrou A, spolu s konečnou mírou P definovanou na A. Je-li A jevové pole, pak pravděpodobnost na jevovém poli A je reálná funkce, pro kterou platí tzv. Kolmogorovovy axiomy pravděpodobnosti: 1 Pravděpodobnost každého jevu A A je nezáporné reálné číslo (P(A) 0). 2 Pravděpodobnost jistého jevu je rovna jedné (P(Ω) = 1). 3 Pravděpodobnost sjednocení spočetného počtu vzájemně disjunktních (neslučitelných) jevů je rovna součtu jejich pravděpodobností. A i A, i 1, i j : A i A j = P ( ) A i = P(A i ) i=1 i=1

34 Vlastnosti pravděpodobnosti Nechť jevy A, B A, potom 1 0 P(A) 1, 2 P( ) = 0, 3 P(A) = 1 P(A), 4 A B P(A) P(B), 5 P(B A) = P(B) P(A B), speciálně A B P(B A) = P(B) P(A), 6 P(A B) = P(A) + P(B) P(A B) speciálně A B = P(A B) = P(A) + P(B), 7 P(A B) = 1 P(A B) = 1 P(A B), 8 P(A B) = 1 P(A B) = 1 P(A B).

35 Děkuji za pozornost!!!

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava Pravděpodobnost je Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava ŠKOMAM, 24. 1. 2017 Čím se zabývá teorie pravděpodobnosti? Pokus děj, který probíhá, resp. nastává opakovaně

Více

2. přednáška - PRAVDĚPODOBNOST

2. přednáška - PRAVDĚPODOBNOST 2. přednáška - PRAVDĚPODOBNOST NÁHODNÝ POKUS A JEV Každá opakovatelná činnost prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě, se nazývá náhodný pokus.

Více

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení TEORIE RAVDĚODONOSTI 2. cvičení Základní pojmy Klasická def. Statistická def. Geometrická def. odmíněná prav. ayesův teorém Test Základní pojmy Náhodný pokus - je každý konečný děj, jehož výsledek není

Více

Pravděpodobnost a její vlastnosti

Pravděpodobnost a její vlastnosti Pravděpodobnost a její vlastnosti 1 Pravděpodobnost a její vlastnosti Náhodné jevy Náhodný jev je výsledek pokusu (tj. realizace určitého systému podmínek) a jeho charakteristickým rysem je, že může, ale

Více

Základy teorie pravděpodobnosti

Základy teorie pravděpodobnosti Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi ;-) roman.biskup(at)email.cz 15. srpna 2012 Statistika

Více

Intuitivní pojem pravděpodobnosti

Intuitivní pojem pravděpodobnosti Pravděpodobnost Intuitivní pojem pravděpodobnosti Intuitivní pojem pravděpodobnosti Pravděpodobnost zkoumaného jevu vyjadřuje míru naděje, že tento jev nastane. Řekneme-li, že má nějaký jev pravděpodobnost

Více

Teorie pravěpodobnosti 1

Teorie pravěpodobnosti 1 Teorie pravěpodobnosti 1 1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodný jev a pravděpodobnost Každou zákonitost sledovanou v přírodě lze zjednodušeně charakterizovat jako

Více

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy Teorie pravděpodobnosti Náhodný pokus skončí jedním z řady možných výsledků předem nevíme, jak skončí (náhoda) příklad: hod kostkou, zítřejší počasí,... Pravděpodobnost zkoumá náhodné jevy (mohou, ale

Více

Úvod do teorie pravděpodobnosti

Úvod do teorie pravděpodobnosti Úvod do teorie pravděpodobnosti Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 9. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 33 Obsah 1 Náhodné jevy 2 Pravděpodobnost 3 Podmíněná

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika Teorie pravděpodobnosti popisuje vznik náhodných dat, zatímco matematická statistika usuzuje z dat na charakter procesů, jimiž data vznikla. NÁHODNOST - forma existence látky,

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika Pravděpodobnost a statistika 1 Náhodné pokusy a náhodné jevy Činnostem, jejichž výsledek není jednoznačně určen podmínkami, za kterých probíhají, a které jsou (alespoň teoreticky) neomezeně opakovatelné,

Více

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev

PRAVDĚPODOBNOST Náhodné pokusy. Náhodný jev RAVDĚODOBNOST Náhodné pokusy okusy ve fyzice, chemii při splnění stanov. podmínek vždy stejný výsledek ř. Změna skupenství vody při 00 C a tlaku 00 ka okusy v praxi, vědě, výzkumu při dodržení stejných

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor012 Vypracoval(a),

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 1. KAPITOLA - PRAVDĚPODOBNOST 2.10.2017 Kontakt Mgr. Jana Sekničková, Ph.D. jana.seknickova@vse.cz Katedra softwarového inženýrství Fakulta

Více

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Základy teorie pravděpodobnosti Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel. Poznámka: Výsledek pokusu není předem znám (výsledek

Více

Matematika I 2a Konečná pravděpodobnost

Matematika I 2a Konečná pravděpodobnost Matematika I 2a Konečná pravděpodobnost Jan Slovák Masarykova univerzita Fakulta informatiky 24. 9. 2012 Obsah přednášky 1 Pravděpodobnost 2 Nezávislé jevy 3 Geometrická pravděpodobnost Viděli jsme už

Více

5.1. Klasická pravděpodobnst

5.1. Klasická pravděpodobnst 5. Pravděpodobnost Uvažujme množinu Ω všech možných výsledků náhodného pokusu, například hodu mincí, hodu kostkou, výběru karty z balíčku a podobně. Tato množina se nazývá základní prostor a její prvky

Více

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti.

Inženýrská statistika pak představuje soubor postupů a aplikací teoretických principů v oblasti inženýrské činnosti. Přednáška č. 1 Úvod do statistiky a počtu pravděpodobnosti Statistika Statistika je věda a postup jak rozvíjet lidské znalosti použitím empirických dat. Je založena na matematické statistice, která je

Více

2. Definice pravděpodobnosti

2. Definice pravděpodobnosti 2. Definice pravděpodobnosti 2.1. Úvod: V přírodě se setkáváme a v přírodních vědách studujeme pomocí matematických struktur a algoritmů procesy dvojího druhu. Jednodušší jsou deterministické procesy,

Více

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

NAIVNÍ TEORIE MNOŽIN, okruh č. 5 NAIVNÍ TEORIE MNOŽIN, okruh č. 5 Definování množiny a jejích prvků Množina je souhrn nějakých věcí. Patří-li věc do množiny X, říkáme, že v ní leží, že je jejím prvkem nebo že množina X tuto věc obsahuje.

Více

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev

Obsah. Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Pravděpodobnost. Pravděpodobnost. Děj pokus jev Obsah Základy teorie pravděpodobnosti Náhodný jev Pravděpodobnost náhodného jevu Definice pojmů Náhodný jev Pravděpodobnost Roman Biskup (zapálený) statistik ve výslužbě, aktuálně analytik v praxi;-) roman.biskup(at)email.cz

Více

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Diskrétní matematika. DiM /01, zimní semestr 2016/2017 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2016/2017 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN

Škola: Gymnázium, Brno, Slovanské náměstí 7 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN Škola: Gymnázium, Brno, Slovanské náměstí 7 Šablona: III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název projektu: Inovace výuky na GSN prostřednictvím ICT Číslo projektu: CZ.1.07/1.5.00/34.0940

Více

IB112 Základy matematiky

IB112 Základy matematiky IB112 Základy matematiky Základy kombinatoriky a kombinatorická pravděpodobnost Jan Strejček Obsah IB112 Základy matematiky: Základy kombinatoriky a kombinatorická pravděpodobnost 2/57 Výběry prvků bez

Více

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. 3.1 Základy teorie pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti. Co se dozvíte Náhodný pokus a náhodný jev. Pravděpodobnost, počítání s pravděpodobnostmi.

Více

1. Statistická analýza dat Jak vznikají informace Rozložení dat

1. Statistická analýza dat Jak vznikají informace Rozložení dat 1. Statistická analýza dat Jak vznikají informace Rozložení dat J. Jarkovský, L. Dušek, S. Littnerová, J. Kalina Význam statistické analýzy dat Sběr a vyhodnocování dat je způsobem k uchopení a pochopení

Více

PRAVDĚPODOBNOST JE. Martina Litschmannová

PRAVDĚPODOBNOST JE. Martina Litschmannová RAVDĚODOBNOST JE Martina Litschmannová Čím se zabývá teorie pravděpodobnosti? Teorie pravděpodobnosti je matematická disciplína popisující zákonitosti týkající se náhodných jevů, tj. používá se k modelování

Více

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Diskrétní matematika. DiM /01, zimní semestr 2018/2019 Diskrétní matematika Petr Kovář petr.kovar@vsb.cz Vysoká škola báňská Technická univerzita Ostrava DiM 470-2301/01, zimní semestr 2018/2019 O tomto souboru Tento soubor je zamýšlen především jako pomůcka

Více

Informační a znalostní systémy

Informační a znalostní systémy Informační a znalostní systémy Teorie pravděpodobnosti není v podstatě nic jiného než vyjádření obecného povědomí počítáním. P. S. de Laplace Pravděpodobnost a relativní četnost Pokusy, výsledky nejsou

Více

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}. 5. Náhodná veličina Poznámka: Pro popis náhodného pokusu jsme zavedli pojem jevového pole S jako množiny všech možných výsledků a pravděpodobnost náhodných jevů P jako míru výskytů jednotlivých výsledků.

Více

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015)

Pravděpodobnost Podmíněná p. Úplná p. III. Pravděpodobnost. III. Pravděpodobnost Statistika A (ZS 2015) III Pravděpodobnost Pravděpodobnost Podmíněná p. Úplná p. Odkud se bere pravděpodobnost? 1. Pravděpodobnost, že z balíčku zamíchaných karet vytáhmene dvě esa je přibližně 0:012. Modely a teorie. 2. Pravděpodobnost,

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení Co to je kombinatorika Kombinatorika je vstupní branou do teorie pravděpodobnosti. Zabývá se různými způsoby výběru prvků z daného souboru. 2011 Ing. Janurová Kateřina, FEI VŠB-TU

Více

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1 1 Založeno na materiálech doc. Michala Kulicha Organizační pokyny k přednášce přednáškové

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

Tomáš Karel LS 2012/2013

Tomáš Karel LS 2012/2013 Tomáš Karel LS 2012/2013 Doplňkový materiál ke cvičení z předmětu 4ST201. Na případné faktické chyby v této presentaci mě prosím upozorněte. Děkuji. Tyto slidy berte pouze jako doplňkový materiál není

Více

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík Pravděpodobnost a statistika, Biostatistika pro kombinované studium Letní semestr 2016/2017 Tutoriál č. 1: Kombinatorika, úvod do teorie pravděpodobnosti Jan Kracík jan.kracik@vsb.cz Kombinatorika Kombinatorika

Více

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III Vysoká škola báňská - Technická univerzita Ostrava 4. října 2018 Podmíněná pravděpodobnost Při počítání pravděpodobnosti můžeme k náhodnému pokusu přidat i nějakou dodatečnou podmínku. Podmíněná pravděpodobnost

Více

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.) Lékařská biofyzika, výpočetní technika I Biostatistika Josef Tvrdík (doc. Ing. CSc.) Přírodovědecká fakulta, katedra informatiky josef.tvrdik@osu.cz konzultace úterý 14.10 až 15.40 hod. http://www1.osu.cz/~tvrdik

Více

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1

Populace vs. data. popisná (deskriptivní) popis konkrétních dat. letní semestr 2012 1 ? Šárka Hudecová Katedra i a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy letní semestr 2012 1? Statistika = věda o získávání, zpracování a interpretaci informace obsažené v

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika

a) 7! 5! b) 12! b) 6! 2! d) 3! Kombinatorika Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

Pravděpodobnost a statistika (BI-PST) Cvičení č. 2

Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 Pravděpodobnost a statistika (BI-PST) Cvičení č. 2 J. Hrabáková, I. Petr, F. Štampach, D. Vašata Katedra aplikované matematiky Fakulta informačních technologií České vysoké učení technické v Praze ZS 2014/2015

Více

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě.

Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Základy teorie pravděpodobnosti Náhodný pokus každá opakovatelná činnost, prováděná za stejných nebo přibližně stejných podmínek, jejíž výsledek je nejistý a závisí na náhodě. Náhodný jev jakékoli tvrzení

Více

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. 1.2. Cíle Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin. Průvodce studiem Množina je jedním ze základních pojmů moderní matematiky. Teorii množin je možno budovat

Více

3. Podmíněná pravděpodobnost a Bayesův vzorec

3. Podmíněná pravděpodobnost a Bayesův vzorec 3. Podmíněná pravděpodobnost a Bayesův vzorec Poznámka: V některých úlohách řešíme situaci, kdy zkoumáme pravděpodobnost náhodného jevu za dalších omezujících podmínek. Nejčastěji má omezující podmínka

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce Náhodná veličina motivace Náhodná veličina Často lze výsledek náhodného pokusu vyjádřit číslem: číslo, které padlo na kostce, výška náhodně vybraného studenta, čas strávený čekáním na metro, délka života

Více

Pravděpodobnost je Martina Litschmannová MODAM 2014

Pravděpodobnost je Martina Litschmannová MODAM 2014 ravděpodobnost je Martina Litschmannová MODAM 2014 Jak osedlat náhodu? Řecká mytologie: Bratři Zeus, oseidon, Hádes hráli v kostky astragalis. Zeus vyhrál nebesa, oseidon moře a Hádes peklo. Jak osedlat

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Náhodný jev a definice pravděpodobnosti

Náhodný jev a definice pravděpodobnosti Náhodný jev a definice pravděpodobnosti Obsah kapitoly Náhodný jev. Vztahy mezi náhodnými jevy. Pravidla pro počítání s pravděpodobnostmi. Formule úplné pravděpodobnosti a Bayesův vzorec. Studijní cíle

Více

NMAI059 Pravděpodobnost a statistika

NMAI059 Pravděpodobnost a statistika NMAI059 Pravděpodobnost a statistika podle přednášky Daniela Hlubinky (hlubinka@karlin.mff.cuni.cz) zapsal Pavel Obdržálek (pobdr@matfyz.cz) 205/20 poslední změna: 4. prosince 205 . přednáška. 0. 205 )

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

náhodný jev je podmnožinou

náhodný jev je podmnožinou Pravděpodobnost Dovednosti a cíle - Chápat jev A jako podmnožinu množiny, která značí množinu všech výsledků náhodného děje. - Umět zapsat jevy pomocí množinových operací a obráceně umět z množinového

Více

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno Tomáš Foltýnek foltynek@pef.mendelu.cz Teorie čísel Nekonečno strana 2 Opakování z minulé přednášky Jak je definována podmnožina, průnik, sjednocení, rozdíl? Jak je definována uspořádaná dvojice a kartézský

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí primitivních pojmů; považuje se totiž rovněž za pojem primitivní. Představa o pojmu množina

Více

Poznámky k předmětu Aplikovaná statistika, 1. téma

Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/07.0018 2. Množiny, funkce MNOŽIN, ZÁKLDNÍ POJMY Pojem množiny patří v matematice ke stěžejním. Nelze jej zavést ve formě definice pomocí

Více

Pravděpodobnost a aplikovaná statistika

Pravděpodobnost a aplikovaná statistika Pravděpodobnost a aplikovaná statistika MGR. JANA SEKNIČKOVÁ, PH.D. 2. KAPITOLA PODMÍNĚNÁ PRAVDĚPODOBNOST 3. KAPITOLA NÁHODNÁ VELIČINA 9.11.2017 Opakování Uveďte příklad aplikace geometrické definice pravděpodobnosti

Více

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti

Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti PRAVDĚPODOBNOST anotace Určeno studentům středního vzdělávání s maturitní zkouškou, 4. ročník, okruh Základy počtu pravděpodobnosti VM vytvořil: Mgr. Marie Zapadlová Období vytvoření VM: září 2013 Klíčová

Více

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma

Motivace. 1. Náhodné jevy. Poznámky k předmětu Aplikovaná statistika, 1. téma Poznámky k předmětu Aplikovaná statistika, 1. téma Motivace Na otázku, při jaké teplotě vře voda, nejspíš neodpovíte. Budete chtít znát podmínky, které máte uvažovat. Víme, že za normálního tlaku, tj.

Více

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008.

Úvod do informatiky. Miroslav Kolařík. Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Úvod do informatiky přednáška třetí Miroslav Kolařík Zpracováno dle učebního textu prof. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Množiny, relace a funkce úvod Množiny, relace a funkce

Více

pravděpodobnosti a Bayesova věta

pravděpodobnosti a Bayesova věta NMUMP0 (Pravděpodobnost a matematická statistika I) Nezávislost, podmíněná pravděpodobnost, věta o úplné pravděpodobnosti a Bayesova věta. Házíme dvěma pravidelnými kostkami. (a) Jaká je pravděpodobnost,

Více

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204

( ) ( ) 9.2.7 Nezávislé jevy I. Předpoklady: 9204 9.2.7 Nezávislé jevy I Předpoklady: 9204 Př. : Předpokládej, že pravděpodobnost narození chlapce je stejná jako pravděpodobnost narození dívky (a tedy v obou případech rovna 0,5) a není ovlivněna genetickými

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Teorie pravděpodobnosti

Teorie pravděpodobnosti Teorie pravděpodobnosti Petra Schreiberová, Viktor Dubovský Katedra matematiky a deskriptivní geometrie Vysoká škola báňská Technická Univerzita Ostrava Ostrava 2018 OBSAH 1 Jevy 3 1.1 Základní pojmy...................................

Více

Úvod do informatiky. Miroslav Kolařík

Úvod do informatiky. Miroslav Kolařík Úvod do informatiky přednáška sedmá Miroslav Kolařík Zpracováno dle učebního textu R. Bělohlávka: Úvod do informatiky, KMI UPOL, Olomouc 2008. Obsah 1 Čísla a číselné obory 2 Princip indukce 3 Vybrané

Více

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457.

10. cvičení z PST. 5. prosince T = (n 1) S2 X. (n 1) s2 x σ 2 q χ 2 (n 1) (1 α 2 ). q χ 2 (n 1) 2. 2 x. (n 1) s. x = 1 6. x i = 457. 0 cvičení z PST 5 prosince 208 0 (intervalový odhad pro rozptyl) Soubor (70, 84, 89, 70, 74, 70) je náhodným výběrem z normálního rozdělení N(µ, σ 2 ) Určete oboustranný symetrický 95% interval spolehlivosti

Více

TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose.

TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose. TEORIE MÍRY V některých předchozích kapitolách jste se setkali s měřením velikostí množin a víte, jaké byly těžkosti s měřením množin i na reálné ose. Kvůli těmto těžkostem se měření zúžilo jen na délku

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Hor016 Vypracoval(a),

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA PRAVDĚPODOBNOST A STATISTIKA Náhodná proměnná Náhodná veličina slouží k popisu výsledku pokusu. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáme. Přesto bychom chtěli tento pokus

Více

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D.

Základní pojmy a úvod do teorie pravděpodobnosti. Ing. Michael Rost, Ph.D. Základní pojmy a úvod do teorie pravděpodobnosti Ing. Michael Rost, Ph.D. Co je to Statistika? Statistiku lze definovat jako vědní obor, zabývající se hromadnými jevy a procesy. Statistika zahrnuje jak

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2014 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Řešené příklady z pravděpodobnosti:

Řešené příklady z pravděpodobnosti: Řešené příklady z pravděpodobnosti: 1. Honza se ze šedesáti maturitních otázek 10 nenaučil. Při zkoušce si losuje dvě otázky. a. Určete pravděpodobnost jevu A, že si vylosuje pouze otázky, které se naučil.

Více

S1P Příklady 01. Náhodné jevy

S1P Příklady 01. Náhodné jevy S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

3.1.2 Polorovina, úhel

3.1.2 Polorovina, úhel 3.1.2 Polorovina, úhel Předpoklady: 3101 Přímka dělí rovinu na dvě navzájem opačné poloroviny a je jejich společnou hranicí (hraniční přímkou). p Hraniční přímka patří do obou polorovin. ody, které neleží

Více

Množiny, základní číselné množiny, množinové operace

Množiny, základní číselné množiny, množinové operace 2 Množiny, základní číselné množiny, množinové operace Pokud kliknete na některý odkaz uvnitř textu kromě prezentace, zobrazí se odpovídající příklad nebo tabulka. Levý Alt+šipka doleva nebo ikona Vás

Více

Marie Duží

Marie Duží Marie Duží marie.duzi@vsb.cz Co je to množina? Množina je soubor prvků a je svými prvky plně určena; množinu s prvky a, b, c značíme: {a, b, c}. Prvkem množiny může být opět množina, množina nemusí mít

Více

Pravděpodobnost (pracovní verze)

Pravděpodobnost (pracovní verze) Pravděpodobnost (pracovní verze) 1. Definice pojmů Jednoduchý/náhodný pokus (simple experiment) Akt vedoucí k jednomu výsledku - např. hod kostkou, zatočení ruletou, vytažení karty z balíčku, výběr osoby

Více

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy Typické příklady pro zápočtové písemky DiM 70-30 (Kovář, Kovářová, Kubesa) (verze: November 5, 08) 5 Pravděpodobnost 5.. Jiří má v šuplíku rozházených osm párů ponožek, dva páry jsou černé, dva páry modré,

Více

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky. Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při

Více

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy.

Náhodný jev. Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Náhodný jev Mějme určitý soubor podmínek. Provedeme pokus, který budeme chtít zopakovat. Pokud opakování pokusu při zachování nám známých podmínek nevede k jednoznačnému výsledku, můžeme se domnívat, že

Více

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Definice P(A/B) pravděpodobnost nastoupení jevu A za předpokladu, že nastal jev B (P(B) > 0) definujeme vztahem

Více

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2015 Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 05 Zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia

Více

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení. 2. ZOBRAZENÍ A FUNKCE 2.1 Zobrazení 2. 1. 1 Definice: Nechť A a B jsou množiny. Řekneme že f je zobrazení množiny A do množiny B jestliže (i) f A B (ii) ke každému z množiny A eistuje právě jedno y z množiny

Více

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka;

1. Házíme hrací kostkou. Určete pravděpodobností těchto jevů: a) A při jednom hodu padne šestka; I Elementární pravděpodonost 1 Házíme hrací kostkou Určete pravděpodoností těchto jevů: a) A při jednom hodu padne šestka; Řešení: P A) = 1 = 01; Je celkem šest možností {1,,, 4,, } a jedna {} je příznivá

Více

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010

prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. BI-ZMA ZS 2009/2010 Základní pojmy prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy

Více

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce Marie Duží marie.duzi@vsb.cz 1 Úvod do teoretické informatiky (logika) Naivní teorie množin Co je to množina? Množina je soubor prvků

Více

7. Funkce jedné reálné proměnné, základní pojmy

7. Funkce jedné reálné proměnné, základní pojmy , základní pojmy POJEM FUNKCE JEDNÉ PROMĚNNÉ Reálná funkce f jedné reálné proměnné je funkce (zobrazení) f: X Y, kde X, Y R. Jde o zvláštní případ obecného pojmu funkce definovaného v přednášce. Poznámka:

Více

(iv) D - vybíráme 2 koule a ty mají různou barvu.

(iv) D - vybíráme 2 koule a ty mají různou barvu. 2 cvičení - pravděpodobnost 2102018 18cv2tex Definice pojmů a záladní vzorce Vlastnosti pravděpodobnosti Pravděpodobnost P splňuje pro libovolné jevy A a B následující vlastnosti: 1 0, 1 2 P (0) = 0, P

Více

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška: Přednášky: Mgr. Radek Výrut, Matematika I katedra matematiky, UL-605, rvyrut@kma.zcu.cz tel.: 377 63 2658 Zkouška: Písemná část zkoušky - příklady v rozsahu zápočtových prací Ústní část zkoušky - základní

Více