1 Síla, energie, hybnost

Rozměr: px
Začít zobrazení ze stránky:

Download "1 Síla, energie, hybnost"

Transkript

1 1 Síla, energie, hybnost 1. Těleso o hmotnosti 5 kg visí uprostřed lana, jehož koncové body jsou upevněny v téže vodorovné rovině ve vzdálenosti 4 m od sebe. Střed lana je o 0,6 m níže než koncové body lana (obrázek 1a). Určete, jak velkou silou je napínáno lano. Hmotnost lana zanedbejte. 2. Těleso o hmotnosti 3 kg je zavěšeno podle obrázku 1b. Vodorovný trám má délku 2,2 m a drát je upevněn ve výšce 1,2 m nad bodem, v němž je trám upevněn ke stěně. Určete síly, které působí na trám a na drát. Hmotnost trámu i drátu zanedbejte. 3. Bruslař o hmotnosti 70 kg stojí na hladkém ledu. Do pohybu se uvede tím, že ve vodorovném směru odhodí před sebe kouli o hmotnosti 3 kg rychlostí 8 m/s. Do jaké vzdálenosti bruslař po odhození koule odjede? Součinitel tření mezi ledem a bruslemi je 0, Střela o hmotnosti 20 g zasáhla strom a pronikla do hloubky 10 cm. Jak velkou rychlostí se pohybovala před zásahem, když průměrná odporová síla dřeva stromu je 4 kn? 5. Na silnici se srazí vozík dokonale pružnou srážkou s druhým vozíkem, který byl do srážky v klidu. Po srážce se oba vozíky pohybují stejně velkými rychlostmi opačným směrem. Určete poměr hmotností obou vozíků. 6. Střela o hmotnosti m zasáhne balistické kyvadlo délky L a hmotnosti M a uvízne v něm. Kyvadlo se vychýlí z rovnovážné polohy o úhel α. Určete velikost rychlosti střely. 7. Máme homogenní desku ve tvaru čtverce o straně a, ze které odstraníme trojúhelník podle obrázku 2a. Určete polohu těžiště výsledného tělesa. 8. Máme homogenní desku ve tvaru kruhu o poloměru R, ze ve které vyřízneme kruhový otvor o poloměru R 2 podle obrázku 2b. Určete polohu těžiště výsledného tělesa. (a) (b) Obrázek 1

2 (a) (b) Obrázek 2 2 Mechanika tekutin 1. Vyjádřete práci 100 J v jednotkách SI. 2. Vyjádřete tlak 10 5 Pa v jednotkách SI. 3. Skleněný válec vysoký 20 cm o obsahu průřezu 30 cm 2 naplníme vodou. Na horní okraj válce přiložíme list papíru a válec obrátíme. Proč voda nevyteče? Jak velkou silou je papír přitlačován k válci při atmosférickém tlaku 10 5 Pa? 4. Jak velká část objemu ledovce zůstává skryta pod mořskou hladinou? (Hustota ledu je 920 kg m 3, hustota mořské vody 1030 kg m 3.) 5. Dva trosečníci vypluli na voru, který si zhotovili z trámů. Délka voru je 4 m, šířka 3 m a tloušt ka 30 cm. Hustota dřeva, ze kterého je vor vyroben, je 600 kg m 3. a) Potopí se vor s trosečníky, kteří i se zásobami váží 210 kg? b) Mohou trosečníci přibrat ještě jednoho trosečníka, který váží 75 kg, aniž by se potopili? c) Jakou maximální hmotnost mohou mít další trosečníci, kteří přistoupili na vor, aby se vor ještě nepotopil? 6. Jaký nejmenší poloměr musí mít balon ve tvaru koule naplněný heliem, aby unesl náklad o hmotnosti 300 kg? 7. Zlatý prsten je na vzduchu vyvážen závažím o hmotnosti 1 g a ve vodě závažím o hmotnosti 0,92 g. Je zhotoven z čistého zlata? 8. Obsahy průřezů válců hydraulického lisu jsou 20 cm 2 a 800 cm 2. Na menší píst působí síla o velikosti 100 N. Určete: a) Tlak, který tato síla vyvolá v kapalině. b) Velikost tlakové síly působící na větší píst. c) Dráhu, o kterou se posune větší píst, jestliže se menší píst posune o 8 cm.

3 (a) (b) Obrázek 3 d) Práci, kterou při tomto posunutí vykoná tlaková síla. 9. Vodojem vytváří ve vodovodním potrubí v přízemí panelového domu tlak 0,8 MPa. Výška jednoho patra je asi 2,5 m. V prvním patře si Lucka myje ruce a ve třetím patře Pavel napouští vodu do konvice. a) V jaké výšce nad zemí je hladina vody ve vodojemu? b) Jak velký tlak vody je v kohoutku u Lucky a jak velký je v kohoutku u Pavla? 10. Dvě kapaliny o hustotách 1000 kg m 3 a 1800 kg m 3 jsou v rovnováze v uzavřených válcových nádobách o průřezech 0,5 m 2 a 0,3 m 2, které jsou spojeny krátkou trubicí o průřezu m 2 (obr. 3a). Nad hladinou kapalin je vzduch, který má v první nádobě tlak Pa a ve druhé nádobě tlak 1, Pa. Výška hladiny v první nádobě je 2 m. Ve spojovací trubici je volně pohyblivá zátka, která zabraňuje promísení kapalin. Určete velikost tlakové síly, která působí na zátku zleva a objem kapaliny ve druhé nádobě. 11. Do vodorovné trubky jsou vloženy dvě manometrické trubice. Jedna z nich je rovná, druhá je ohnutá do pravého úhlu a obrácená otvorem proti směru proudění kapaliny (obr. 3b). V rovné trubici vystoupila voda do výšky 10 cm a v ohnuté trubici do výšky 30 cm. Jakou rychlostí proudí voda v trubce? 12. Poloměr vodorovné trubky se zužuje z 5 cm na 2 cm (obr. 4a). Trubkou proudí voda a manometrické trubice umístěné v širší a v užší části trubky ukazují rozdíl hladin 40 cm. Jakou rychlostí proudí voda v užší a v širší části trubky? 13. Z otvoru ve stěně nádoby tryská voda. Otvor se nachází 80 cm pod vodní hladinou a 20 cm nad dnem nádoby (obr. 4b). Určete a) rychlost v vody, která tryská otvorem, b) vzdálenost, do které voda na podlaze dostříkne. 14. Výsadkář o hmotnosti 80 kg vyskakuje s padákem o průměru 9 m. Na jaké hodnotě se ustálí rychlost jeho pohybu? (Součinitel odporu vzduchu je 1,2.)

4 (a) (b) Obrázek 4 3 Teplotní roztažnost Parametry oceli: σ p = Pa mez pevnosti, E = Pa Youngův modul pružnosti, α = 1, K 1 součinitel délkové teplotní roztažnosti. 1. Vypočítejte maximální možnou hmotnost tělesa, které můžeme zavěsit na ocelové lano o průměru 1 mm tak, aby se nepřetrhlo. Předpokládejte, že těleso a) je v klidu, b) je lanem taženo svisle vzhůru se zrychlením 1 m s 2. Koeficient bezpečnosti volíme Důlní výtah visí na ocelovém laně o průměru 2,5 cm. Celková hmotnost kabiny a přepravovaných lidí je 650 kg. Jaké bude prodloužení lana, a) jestliže je výtah na povrchu 12 m pod motorem výtahu, b) jestliže je výtah u dna šachty hluboké 350 m? Vlastní hmotnost lana vzhledem k hmotnosti kabiny zanedbejte. 3. Ocelová tyč se při dané teplotě oběma svými konci právě dotýká pevných stěn. Určete, o kolik může vzrůst teplota, aby tlak na stykové ploše nepřesáhl bezpečnou hodnotu 5 MPa. Předpokládejte, že změna teploty je tak malá, že chování oceli bude v tahu i v tlaku stejné. 4. Ocelový drát byl při teplotě 100 C upevněn mezi pevné svorky. Teplota prostředí je 20 C. a) Přetrhne se drát dříve, než vychladne na teplotu prostředí? b) Při jaké nejvyšší teplotě můžeme drát napnout mezi svorky, aby se při chladnutí na teplotu okolí nepřetrhl? Předpokládejte, že deformace je až do meze pevnosti pružná.

5 5. Délka závodní dráhy pro běh na 100 m byla naměřena ocelovým pásmem při teplotě 32 C. Na jak dlouhou vzdálenost běžci ve skutečnosti poběží? (Pásmo bylo kalibrováno při teplotě 20 C). 6. Benzen má při teplotě 0 C hustotu 900 kg m 3 a teplotní součinitel objemové roztažnosti K 1. Při této teplotě plave na jeho hladině dřevěné těleso o hustotě 880 kg m 3. Při jaké teplotě začne dřevěné těleso klesat ke dnu, je-li teplotní součinitel objemové roztažnosti tohoto dřeva 2, K 1? 7. Při jaké délce se vlastní tíhou přetrhne olověný drát, který má všude stejný průřez? (Olovo má mez pevnosti Pa a hustotu kg m 3.) 8. Doba kyvu mosazného kyvadla je při teplotě 10 C rovna 1 s. O kolik se změní doba kyvu, pokud se okolní teplota zvýší na 25 C? O kolik sekund denně se budou opožd ovat hodiny s takovým kyvadlem?

6 4 Termika Některé parametry: měrná tepelná kapacita vody je 4,18 kj kg 1 K 1, měrná tepelná kapacita ledu 2,10 kj kg 1 K 1, měrná tepelná kapacita olova 0,129 kj kg 1 K 1, měrné skupenské teplo tání ledu 332 kj kg 1, měrné skupenské teplo tání olova 22,6 kj kg 1, měrné skupenské teplo vypařování vody 2256 kj kg Kolik vody o teplotě 90 C musíme přilít do nádoby s 3 kg vody o teplotě 10 C, aby výsledná teplota byla 35 C? Teplotní kapacitu nádoby zanedbejte. 2. Do nádoby, která obsahuje 0,30 kg vody o teplotě 18 C, jsme nalili 0,20 kg vody o teplotě 60 C. Výsledná teplota vody v nádobě je 34 C. Vypočítejte tepelnou kapacitu nádoby. 3. Nádoba o tepelné kapacitě 0,10 kj k 1 obsahuje 0,47 kg vody o teplotě 14 C. Když do nádoby vložíme mosazné těleso o hmotnosti 0,40 kg, které je ohřáté na teplotu 100 C, ustálí se teplota nádoby na 20 C. Určete měrnou tepelnou kapacitu mosazi. 4. Vodu o hmotnosti 5,5 kg a o teplotě 70 C chceme ochladit na teplotu 30 C tím, že do ní hodíme led o teplotě 0 C. Kolik kilogramů ledu potřebujeme? 5. Kolik tepla musíme dodat 80 kg ledu o teplotě -20 C, aby se přeměnil v páru o teplotě 100 C? 6. Jakou nejmenší rychlost musí mít olověná střela, aby se při nárazu do ocelové desky roztavila? Teplota střely při dopadu je 27 C a teplota tání olova je 327 C. Předpokládáme, že ocelová deska neodebírá žádné teplo. 7. Ke koupání dítěte si chceme připravit 80 litrů vody o teplotě 36 C. Studená voda z vodovodu má teplotu 10 C a teplá 50 C. Kolik které vody potřebujeme? Tepelné ztráty neuvažujeme. 8. Spočítejte teplo, které projde za jednu hodinu plochou o obsahu 1 m 2 cihlové stěny o tloušt ce 0,5 m, jestliže vnitřní povrch stěny má teplotu 18 C a vnější povrch -2 C. Součinitel tepelné vodivosti stěny má hodnotu 0,84 W m 1 K a) Jaké teplo projde za jeden zimní den bočními stěnami dřevěného srubu (= domu)? Délka srubu je 10 m, šířka 7 m, výška stěn 3,5 m a jejich tloušt ka 50 cm. Průměrná venkovní teplota je -10 C a teplotu uvnitř udržujeme na hodnotě 18 C. Součinitel měrné tepelné vodivosti dřeva je 0,15 W m 1 K 1. b) Kolik dřeva je třeba na udržení dané vnitřní teploty spálit v kamnech s tepelnou účinností 30% za jeden den? Měrná výhřevnost dřeva je 15 MJ kg 1. c) Kolik stojí elektrické vytápění tohoto srubu za jeden den? Účinnost elektrického vytápění je 100% a průměrná cena elektrické energie je 4,30 Kč/kWh. 10. Obvodové zdi domu, které mají tloušt ku 20 cm, obložíme z vnější strany izolační vrstvou polystyrenu o tloušt ce 10 cm. Předpokládejme, že je zimní den, během kterého venkovní teplota je -10 C a teplota uvnitř

7 domu je topením udržována na 20 C. Určete teplotu mezi zdí a izolační vrstvou polystyrenu. Kolikrát tato izolační vrstva zmenší únik tepla zdmi? Součinitel měrné tepelné vodivosti dřeva zdi je 1,3 W m 1 K 1 a polystyrenu 0,1 W m 1 K 1.

8 5 Molekulová fyzika Relativní atomová hmotnost železa (Fe) je 55,85, vodíku (H) 1,01, kyslíku (O) 16,00, sodíku (Na) 22,99, chloru (Cl) 35,45, uhlíku (C) 12,01, helia (He) 4,00. Hmotností jednotka má hodnotu 1, kg. Avogadrova konstanta má hodnotu 6, mol 1. Hustota vody je 1000 kg m 3. Plynová konstanta má hodnotu 8, Kolik atomů je přibližně obsaženo v železném závaží o hmotnosti 2 kg? 2. Kolik atomů je přibližně obsaženo v jednom litru vody? 3. Vejde se 10 mol vody do hrníčku, který má tvar válce o poloměru podstavy 3 cm a výšce 14 cm? 4. Dva prvky X a Y vytvářejí dvě sloučeniny XY a XY 2. Určete tyto prvky a sloučeniny, když víte, že 1 kg první sloučeniny odpovídá látkovému množství 35,71 mol a 1 kg druhé sloučeniny odpovídá 22,73 mol. 5. Určete hmotnost atomů vodíku. 6. Odvod te, jaký je vztah mezi relativní molekulovou hmotností a molární hmotností. 7. Do jezera, které má průměrnou hloubku 10 m a plochu 10 km 2, jsme nasypali lžičku soli NaCl (cca 2 g). Předpokládejte, že se sůl v jezeře rozpustila rovnoměrně. Určete, kolik iontů sodíku je obsaženo v jedné lžičce jezerní vody (5 ml). 8. Jaký je molární objem oxidu uhličitého (CO 2 ) při teplotě 0 C a tlaku Pa, když jeho hustota je za těchto podmínek 1,951 kg m 3? 9. Jakou hustotu má 100 mol oxidu uhličitého (CO 2 ) uzavřeného v nádobě o objemu 100 l? 10. Balon naplněný heliem vystoupil z místa, kde byla teplota 290 K a tlak 98,5 kpa do výšky, kde byla teplota 260 K a tlak 86,5 kpa. Jak velký byl objem balonu ve výšce, jestliže na počátku byl jeho objem 950 m 3? Helium považujte za ideální plyn. 11. V nádobě je 300 g oxidu uhličitého (CO 2 ) při teplotě 77 C a tlaku 1,35 MPa. Jaký je objem nádoby? Oxid uhličitý považujte za ideální plyn. 12. Spočítejte hustotu vodíku (H 2 ) při tlaku Pa a teplotě 20 C. Vodík považujte za ideální plyn.

9 6 Děje s plyny Relativní atomová hmotnost kyslíku (O) je 16,00, vodíku (H) 1,00, měrná tepelná kapacita kyslíku při konstantním tlaku je 0,919 kj/kg K a při konstantním objemu 0,659 kj/kg K, měrná tepelná kapacita vodíku při konstantním tlaku je 14,32 KJ/kg K. 1. Kyslík O 2 o hmotnosti 4 kg má teplotu 0 C. Jak se změní jeho teplota, jestliže při izobarické expanzi vykoná práci 10,4 kj? Kyslík považujte za ideální plyn. 2. Neznámý plyn má při teplotě 293 K a tlaku 100 kpa hustotu 1,27 kg m 3 a jeho Poissonova konstanta je rovna 1,4. Určete jeho měrnou tepelnou kapacitu při stálém tlaku a při stálém objemu. 3. Kyslík má počáteční objem V 0 a tlak p 0. Jeho molární tepelné kapacity při konstantním tlaku a objemu jsou c p a c V. Nejdříve jej izobaricky zahřejeme na dvojnásobný objem a následně izochoricky zvýšíme jeho tlak na čtyřnásobek původního tlaku. Určete, jakou práci kyslík vykonal, jaké teplo jsme mu dodali a jak se změnila jeho vnitřní energie. 4. Láhev obsahuje ideální plyn o teplotě 27 C a tlaku 4 MPa. Jaký bude tlak v láhvi, jestliže polovinu plynu vypustíme a jeho teplota přitom klesne na 12 C? 5. Vypočítejte hustotu kyslíku O 2 při tlaku 10 MPa a teplotě 27 C. 6. Kyslík O 2 o hmotnosti 0,32 kg jsme zahřáli za stálého tlaku z počáteční teploty -23 C tak, že jeho objem se zvětšil na trojnásobek počáteční hodnoty. Kolik tepla jsme kyslíku dodali? Kyslík považujeme za ideální plyn. 7. Vodík H 2 o hmotnosti 70 g jsme zahřáli z počáteční teploty 27 C při stálém tlaku 0,2 MPa tak, že se jeho objem zdvojnásobil. Určete počáteční objem vodíku, teplo dodané vodíku při zahřívání a práci, kterou při zahřívání vodík vykonal. 8. Jak se změní vnitřní energie kyslíku O 2 o hmotnosti 0,1 kg při zahřátí z teploty 10 C na teplotu 60 C, když teplo dodáváme a) při konstantním objemu, b) při konstantním tlaku?

10 7 Mechanické kmitání Pro všechna čísla α, β R platí sin α + sin β = 2 sin ( ) ( ) α+β 2 cos α β Hmotný bod harmonicky kmitá a za jednu minutu vykoná 150 kmitů s amplitudou výchylky 5 cm. Počáteční fáze kmitání je 45. Napište rovnici pro závislost okamžité výchylky tohoto kmitání na čase. 2. Hmotný bod harmonicky kmitá s frekvencí 400 Hz a s amplitudou výchylky 2 mm. Počáteční fáze kmitání je 30. a) Napište rovnici pro závislost okamžité výchylky tohoto kmitání na čase. b) Určete dobu, za kterou hmotný bod dorazí do rovnovážné polohy. c) Určete rychlost hmotného bodu v rovnovážné poloze. 3. Určete apmlitudu výchylky hmotného bodu, který kmitá s počáteční fází π 3, je-li jeho výchylka v počátečním okamžiku 2,6 cm. 4. Hmotný bod harmonicky kmitá s amplitudou výchylky 5 cm a s periodou 2 s. Počáteční fáze kmitání je nulová. Určete velikost rychlosti hmotného bodu v okamžiku, kde okamžitá výchylka je 2,5 cm. 5. Napište rovnici výsledného kmitání, které vznikne složením dvou kmitání o frekvenci 8 Hz a o amplitudě výchylky 2 cm. Fázový rozdíl kmitání je π 4 a počáteční fáze jedné složky je nulová. 6. Napište rovnici výsledného kmitání, které vznikne složením dvou kmitání o zadané úhlové frekvenci a o amplitudě výchylky 4 cm. Počáteční fáze prvního kmitání je π 4 a druhého kmitání π Pružina se po zavěšení tělesa prodlouží o 2,5 cm. Určete frekvenci vlastního kmitání takto vzniklého oscilátoru. 8. Těleso zavěšené na pružině kmitá s periodou 0,5 s. O kolik se pružina zkrátí, jestliže těleso z pružiny odstraníme? 9. Kyvadlo je tvořeno provazem, na jehož konci je zavěšena kulička. Jak musíme změnit délku provazu, aby frekvence kyvadla vzrostla na dvojnásobek? 10. V kabině výtahu visí kyvadlo, které kmitá s periodou 1 s. Když se kabina pohybuje se stálým zrychlením, kyvadlo kmitá s periodou 1,2 s. Určete velikost a směr zrychlení výtahu.

11 Zdroje Některé příklady jsem si vymyslel a některé pocházejí z následujících sbírek (u některých jsem ale zadání upravil): 1. Sbírka řešených úloh, 2. O. Lepil, M. Bednařík, M. Široká, Fyzika Sbírka úloh pro střední školy, Prometheus, 2. vydání, 2000.

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W)

6. Jaký je výkon vařiče, který ohřeje 1 l vody o 40 C během 5 minut? Měrná tepelná kapacita vody je W) TEPLO 1. Na udržení stále teploty v místnosti se za hodinu spotřebuje 4,2 10 6 J tepla. olik vody proteče radiátorem ústředního topení za hodinu, jestliže má voda při vstupu do radiátoru teplotu 80 ºC

Více

Příklady k zápočtu molekulová fyzika a termodynamika

Příklady k zápočtu molekulová fyzika a termodynamika Příklady k zápočtu molekulová fyzika a termodynamika 1. Do vody o teplotě t 1 70 C a hmotnosti m 1 1 kg vhodíme kostku ledu o teplotě t 2 10 C a hmotnosti m 2 2 kg. Do soustavy vzápětí přilijeme další

Více

FYZIKA I cvičení, FMT 2. POHYB LÁTKY

FYZIKA I cvičení, FMT 2. POHYB LÁTKY FYZIKA I cvičení, FMT 2.1 Kinematika hmotných částic 2. POHYB LÁTKY 2.1.1 2.1.2 2.1.3 2.1.4 2.1.5 2.1.6 Těleso při volném pádu urazí v poslední sekundě dvě třetiny své dráhy. Určete celkovou dráhu volného

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA TERMODYNAMICKÁ TEPLOTNÍ STUPNICE, TEPLOTA 1) Převeďte hodnoty v

Více

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory

Ideální plyn. Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, Tepelné motory Struktura a vlastnosti plynů Ideální plyn Vlastnosti ideálního plynu: Ideální plyn Stavová rovnice Děje v ideálním plynu Práce plynu, Kruhový děj, epelné motory rozměry molekul jsou ve srovnání se střední

Více

Termodynamika 2. UJOP Hostivař 2014

Termodynamika 2. UJOP Hostivař 2014 Termodynamika 2 UJOP Hostivař 2014 Skupenské teplo tání/tuhnutí je (celkové) teplo, které přijme pevná látka při přechodu na kapalinu během tání nebo naopak Značka Veličina Lt J Nedochází při něm ke změně

Více

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m

5. Duté zrcadlo má ohniskovou vzdálenost 25 cm. Jaký je jeho poloměr křivosti? 1) 0,5 m 2) 0,75 m 3) Žádná odpověď není správná 4) 0,25 m 1. Vypočítejte šířku jezera, když zvuk šířící se ve vodě se dostane k druhému břehu o 1 s dříve než ve vzduchu. Rychlost zvuku ve vodě je 1 400 m s -1. Rychlost zvuku ve vzduchu je 340 m s -1. 1) 449 m

Více

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické

Termodynamika. T [K ]=t [ 0 C] 273,15 T [ K ]= t [ 0 C] termodynamická teplota: Stavy hmoty. jednotka: 1 K (kelvin) = 1/273,16 část termodynamické Termodynamika termodynamická teplota: Stavy hmoty jednotka: 1 K (kelvin) = 1/273,16 část termodynamické teploty trojného bodu vody (273,16 K = 0,01 o C). 0 o C = 273,15 K T [K ]=t [ 0 C] 273,15 T [ K ]=

Více

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o

[381 m/s] 12. Ocelovou součást o hmotnosti m z = 4 kg, měrném teple c z = 420 J/kgK, zahřátou na teplotu t z = 900 C ponoříme do olejové lázně o 3 - Termomechanika 1. Hustota vzduchu při tlaku p l = 0,2 MPa a teplotě t 1 = 27 C je ρ l = 2,354 kg/m 3. Jaká je jeho hustota ρ 0 při tlaku p 0 = 0,1MPa a teplotě t 0 = 0 C [1,29 kg/m 3 ] 2. Určete objem

Více

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium

Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium Úlohy pro samostatnou práci k Úvodu do fyziky pro kombinované studium V řešení číslujte úlohy tak, jak jsou číslovány v zadání. U všech úloh uveďte stručné zdůvodnění. Vyřešené úlohy zašlete elektronicky

Více

Testovací příklady MEC2

Testovací příklady MEC2 Testovací příklady MEC2 1. Určete, jak velká práce se vykoná při stlačení pružiny nárazníku železničního vagónu o w = 5 mm, když na její stlačení o w =15 mm 1 je zapotřebí síla F = 3 kn. 2. Jaké musí být

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 2006 2007 TEST Z FYZIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-F-2006-01 1. Převeďte 37 mm 3 na m 3. a) 37 10-9 m 3 b) 37 10-6 m 3 c) 37 10 9 m 3 d) 37 10 3 m 3 e) 37 10-3 m 3 2. Voda v řece proudí rychlostí 4 m/s. Kolmo

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Vlastnosti molekul kapalin V neustálém pohybu Ve stejných vzdálenostech, nejsou ale vázány Působí na sebe silami: odpudivé x přitažlivé Vlastnosti kapalin

Více

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul

4. V jednom krychlovém metru (1 m 3 ) plynu je 2, molekul. Ve dvou krychlových milimetrech (2 mm 3 ) plynu je molekul Fyzika 20 Otázky za 2 body. Celsiova teplota t a termodynamická teplota T spolu souvisejí známým vztahem. Vyberte dvojici, která tento vztah vyjadřuje (zaokrouhleno na celá čísla) a) T = 253 K ; t = 20

Více

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO

II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO II. VNITŘNÍ ENERGIE, PRÁCE A TEPLO 2.1 Vnitřní energie tělesa a) celková energie (termodynamické) soustavy E tvořena kinetickou energií E k jejího makroskopického pohybu jako celku potenciální energií

Více

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

STRUKTURA A VLASTNOSTI PLYNŮ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D09_Z_OPAK_T_Plyny_T Člověk a příroda Fyzika Struktura a vlastnosti plynů Opakování

Více

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady

FYZIKA 2. ROČNÍK. ρ = 8,0 kg m, M m 29 10 3 kg mol 1 p =? Příklady Příklady 1. Jaký je tlak vzduchu v pneuatice nákladního autoobilu při teplotě C a hustotě 8, kg 3? Molární hotnost vzduchu M 9 1 3 kg ol 1. t C T 93 K -3 ρ 8, kg, M 9 1 3 kg ol 1 p? p R T R T ρ M V M 8,31

Více

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok

58. ročník fyzikální olympiády kategorie G okresní kolo školní rok 58. ročník fyzikální olympiády kategorie G Zadání 1. části K řešení můžeš použít kalkulačku i tabulky. 1. Neutrální atom sodíku má ve svém jádru a) 10 protonů b) 11 protonů c) 10 elektronů d) 12 protonů

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu

1/6. 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu 1/6 2. Stavová rovnice, plynová konstanta, Avogadrův zákon, kilomol plynu Příklad: 2.1, 2.2, 2.3, 2.4, 2.5, 2.6, 2.7, 2.8, 2.9, 2.10, 2.11, 2.12, 2.13, 2.14, 2.15, 2.16, 2.17, 2.18, 2.19, 2.20, 2.21, 2.22,

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy

měření teploty Molekulová fyzika a termika Teplotní délková roztažnost V praxi úlohy měření teploty Molekulová fyzika a termika rozdíl mezi stupnicí celsiovskou a termodynamickou př. str. 173 (nové vydání s. 172) teplo(to)měry roztažnost látek rtuťový, lihový, bimetalový vodivost polovodičů

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Sbírka příkladů z fyziky. 2.ročník

Sbírka příkladů z fyziky. 2.ročník 22.Postupné mechanické vlnění 22.)Jakou rovnici má vlna, jejíž frekvence je 30Hz a amplituda 2cm, jestliže postupuje v kladném směru osy x rychlostí 3 m/s? 22.2)Harmonická sinusová vlna se šíří od zdroje

Více

Příklady z hydrostatiky

Příklady z hydrostatiky Příklady z hydrostatiky Poznámka: Při řešení příkladů jsou zaokrouhlovány pouze dílčí a celkové výsledky úloh. Celý vlastní výpočet všech úloh je řešen bez zaokrouhlování dílčích výsledků. Za gravitační

Více

Přípravný kurz - příklady

Přípravný kurz - příklady Přípravný kurz - příklady 1. Cyklista ujel první čtvrtinu cesty rychlostí v 1, další tři čtvrtiny pak rychlostí 20 km/hod, průměrná rychlost na celé dráze byla16 km/hod, jaká byla průměrná rychlost v první

Více

Fyzika - Sexta, 2. ročník

Fyzika - Sexta, 2. ročník - Sexta, 2. ročník Fyzika Výchovné a vzdělávací strategie Kompetence komunikativní Kompetence k řešení problémů Kompetence sociální a personální Kompetence občanská Kompetence k podnikavosti Kompetence

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

Vlastnosti kapalin. Povrchová vrstva kapaliny

Vlastnosti kapalin. Povrchová vrstva kapaliny Struktura a vlastnosti kapalin Vlastnosti kapalin, Povrchová vrstva kapaliny Jevy na rozhraní pevného tělesa a kapaliny Kapilární jevy, Teplotní objemová roztažnost Vlastnosti kapalin Kapalina - tvoří

Více

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako

4. Kolmou tlakovou sílu působící v kapalině na libovolně orientovanou plochu S vyjádříme jako 1. Pojem tekutiny je A) synonymem pojmu kapaliny B) pojmem označujícím souhrnně kapaliny a plyny C) synonymem pojmu plyny D) označením kapalin se zanedbatelnou viskozitou 2. Příčinou rozdílné tekutosti

Více

Vnitřní energie, práce a teplo

Vnitřní energie, práce a teplo Vnitřní energie, práce a teplo Zákon zachování mechanické energie V izolované soustavě těles je v každém okamžiku úhrnná mechanická energie stálá. Mění se navzájem jen potenciální energie E p a kinetická

Více

Základní poznatky. Teplota Vnitřní energie soustavy Teplo

Základní poznatky. Teplota Vnitřní energie soustavy Teplo Molekulová fyzika a termika Základní poznatky Základní poznatky Teplota Vnitřní energie soustavy Teplo Termika = část fyziky zabývající se studiem vlastností látek a jejich změn souvisejících s teplotou

Více

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie

TEPELNÉ JEVY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie TEPELNÉ JEVY Mgr. Jan Ptáčník - GJVJ - Fyzika - Tercie Vnitřní energie tělesa Každé těleso se skládá z látek. Látky se skládají z částic. neustálý neuspořádaný pohyb kinetická energie vzájemné působení

Více

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

MECHANICKÉ KMITÁNÍ POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D19_Z_OPAK_KV_Mechanicke_kmitani_T Člověk a příroda Fyzika Mechanické kmitání Opakování

Více

Molekulová fyzika a termika:

Molekulová fyzika a termika: Molekulová fyzika a termika: 1. Měření teploty: 2. Délková roztažnost a Objemová roztažnost látek 3. Bimetal 4. Anomálie vody 5. Částicová stavba látek, vlastnosti látek 6. Atomová hmotnostní konstanta

Více

Mol. fyz. a termodynamika

Mol. fyz. a termodynamika Molekulová fyzika pracuje na základě kinetické teorie látek a statistiky Termodynamika zkoumání tepelných jevů a strojů nezajímají nás jednotlivé částice Molekulová fyzika základem jsou: Látka kteréhokoli

Více

13 otázek za 1 bod = 13 bodů Jméno a příjmení:

13 otázek za 1 bod = 13 bodů Jméno a příjmení: 13 otázek za 1 bod = 13 bodů Jméno a příjmení: 4 otázky za 2 body = 8 bodů Datum: 1 příklad za 3 body = 3 body Body: 1 příklad za 6 bodů = 6 bodů Celkem: 30 bodů příklady: 1) Sportovní vůz je schopný zrychlit

Více

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i.

7. Na těleso o hmotnosti 10 kg působí v jednom bodě dvě navzájem kolmé síly o velikostech 3 N a 4 N. Určete zrychlení tělesa. i. Newtonovy pohybové zákony 1. Síla 60 N uděluje tělesu zrychlení 0,8 m s-2. Jak velká síla udělí témuž tělesu zrychlení 2 m s-2? BI5147 150 N 2. Těleso o hmotnosti 200 g, které bylo na začátku v klidu,

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn!

2.1 2.2. Testový sešit neotvírejte, počkejte na pokyn! FYZIKA DIDAKTICKÝ TEST FYM0D11C0T01 Maximální bodové hodnocení: 45 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 20 úloh. Časový limit pro řešení didaktického

Více

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník

KAPALINY. Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník KAPALINY Mgr. Jan Ptáčník - GJVJ - Fyzika - Termika - 2. ročník Kapaliny Krátkodosahové uspořádání molekul. Molekuly kmitají okolo rovnovážných poloh. Při zvýšení teploty se zmenšuje doba setrvání v rovnovážné

Více

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj

3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj 3.5 Tepelné děje s ideálním plynem stálé hmotnosti, izotermický děj a) tepelný děj přechod plynu ze stavu 1 do stavu tepelnou výměnou nebo konáním práce dále uvaž., že hmotnost plynu m = konst. a navíc

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = =

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í. = (pascal) tlak je skalár!!! F p = = MECHANIKA TEKUTIN I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í Tekutiny zahrnují kapaliny a plyny. Společnou vlastností tekutin je, že částice mohou být snadno od sebe odděleny (nemají vlastní

Více

Digitální učební materiál

Digitální učební materiál Číslo projektu Název projektu Číslo a název šablony klíčové aktivity Digitální učební materiál CZ.1.07/1.5.00/34.0802 Zkvalitnění výuky prostřednictvím ICT III/2 Inovace a zkvalitnění výuky prostřednictvím

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Příklad 5.3. v 1. u 1 u 2. v 2

Příklad 5.3. v 1. u 1 u 2. v 2 Příklad 5.3 Zadání: Elektron o kinetické energii E se srazí s valenčním elektronem argonu a ionizuje jej. Při ionizaci se část energie nalétávajícího elektronu spotřebuje na uvolnění valenčního elektronu

Více

Příklady z teoretické mechaniky pro domácí počítání

Příklady z teoretické mechaniky pro domácí počítání Příklady z teoretické mechaniky pro domácí počítání Doporučujeme spočítat příklady za nejméně 30 bodů. http://www.physics.muni.cz/~tomtyc/mech-prik.ps http://www.physics.muni.cz/~tomtyc/mech-prik.pdf 1.

Více

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N?

1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? MECHANICKÁ PRÁCE 1) Jakou práci vykonáme při vytahování hřebíku délky 6 cm, působíme-li na něj průměrnou silou 120 N? l = s = 6 cm = 6 10 2 m F = 120 N W =? (J) W = F. s W = 6 10 2 120 = 7,2 W = 7,2 J

Více

m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice.

m.s se souřadnými osami x, y, z? =(0, 6, 12) N. Určete, jak velký úhel spolu svírají a jakou velikost má jejich výslednice. Obsah VYBRANÉ PŘÍKLADY DO CVIČENÍ 2007-08 Vybrané příklady [1] Koktavý, Úvod do studia fyziky... 1 Vybrané příklady [2] Koktavý, Mechanika hmotného bodu... 1 Vybrané příklady [3] Navarová, Čermáková, Sbírka

Více

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika

VNITŘNÍ ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika VNITŘNÍ ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 2. ročník - Termika Zákon zachování energie Ze zákona zachování mechanické energie platí: Ek + Ep = konst. Ale: Vnitřní energie tělesa Každé těleso má

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

Mechanické kmitání a vlnění

Mechanické kmitání a vlnění Mechanické kmitání a vlnění Pohyb tělesa, který se v určitém časovém intervalu pravidelně opakuje periodický pohyb S kmitavým pohybem se setkáváme např.: Zařízení, které volně kmitá, nazýváme mechanický

Více

Molekulová fyzika a termika. Přehled základních pojmů

Molekulová fyzika a termika. Přehled základních pojmů Molekulová fyzika a termika Přehled základních pojmů Kinetická teorie látek Vychází ze tří experimentálně ověřených poznatků: 1) Látky se skládají z částic - molekul, atomů nebo iontů, mezi nimiž jsou

Více

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole...

FYZIKA 6. ročník 1_Látka a těleso _Vlastnosti látek _Vzájemné působení těles _Gravitační síla... 4 Gravitační pole... FYZIKA 6. ročník 1_Látka a těleso... 2 2_Vlastnosti látek... 3 3_Vzájemné působení těles... 4 4_Gravitační síla... 4 Gravitační pole... 5 5_Měření síly... 5 6_Látky jsou složeny z částic... 6 7_Uspořádání

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

FYZIKA DIDAKTICKÝ TEST

FYZIKA DIDAKTICKÝ TEST NOVÁ MATURITNÍ ZKOUŠKA Ilustrační test 2008 FY2VCZMZ08DT FYZIKA DIDAKTICKÝ TEST Testový sešit obsahuje 20 úloh. Na řešení úloh máte 90 minut. Odpovědi pište do záznamového archu. Poznámky si můžete dělat

Více

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK

STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 21. 4. 2013 Název zpracovaného celku: STRUKTURA PEVNÝCH LÁTEK STRUKTURA PEVNÝCH LÁTEK Pevné látky dělíme na látky: a) krystalické b) amorfní

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon)

BIOMECHANIKA. 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) BIOMECHANIKA 9, Energetický aspekt pohybu člověka. (Práce, energie pohybu člověka, práce pohybu člověka, zákon zachování mechanické energie, výkon) Studijní program, obor: Tělesná výchovy a sport Vyučující:

Více

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ÚVODNÍ POJMY, VNITŘNÍ ENERGIE, PRÁCE A TEPLO POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D08_Z_OPAK_T_Uvodni_pojmy_vnitrni_energie _prace_teplo_t Člověk a příroda Fyzika

Více

Mechanické vlastnosti kapalin a plynů. opakování

Mechanické vlastnosti kapalin a plynů. opakování Mechanické vlastnosti kapalin a plynů opakování 1 Jakým směrem se šíří tlak? 2 Chlapci si zhotovili model hydraulického lisu podle obrázku. Na písty ručních stříkaček působí stejnou silou. Který chlapec

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_FYZ_33 Jméno autora: Třída/ročník: Mgr. Alena

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í DYNAMIKA SÍLA 1. Úvod dynamos (dynamis) = síla; dynamika vysvětluje, proč se objekty pohybují, vysvětluje změny pohybu. Nepopisuje pohyb, jak to dělá... síly mohou měnit pohybový stav těles nebo mohou

Více

MECHANIKA TUHÉHO TĚLESA

MECHANIKA TUHÉHO TĚLESA MECHANIKA TUHÉHO TĚLESA. Základní teze tuhé těleso ideální těleso, které nemůže být deformováno působením žádné (libovolně velké) vnější síly druhy pohybu tuhého tělesa a) translace (posuvný pohyb) všechny

Více

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A

MECHANICKÉ KMITÁNÍ. Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A MECHANICKÉ KMITÁNÍ Mgr. Jan Ptáčník - GJVJ - Fyzika - 3.A Kinematika kmitavého pohybu Mechanický oscilátor - volně kmitající zařízení Rovnovážná poloha Výchylka Kinematika kmitavého pohybu Veličiny charakterizující

Více

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18

F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 F MATURITNÍ ZKOUŠKA Z FYZIKY PROFILOVÁ ČÁST 2017/18 Podpis: Třída: Verze testu: A Čas na vypracování: 120 min. Datum: Učitel: INSTRUKCE PRO VYPRACOVÁNÍ PÍSEMNÉ PRÁCE: Na vypracování zkoušky máte 120 minut.

Více

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ

B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ B. MECHANICKÉ KMITÁNÍ A VLNĚNÍ I. MECHANICKÉ KMITÁNÍ 8.1 Kmitavý pohyb a) mechanické kmitání (kmitavý pohyb) pohyb, při kterém kmitající těleso zůstává stále v okolí určitého bodu tzv. rovnovážné polohy

Více

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia

DUM č. 12 v sadě. 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia projekt GML Brno Docens DUM č. 12 v sadě 10. Fy-1 Učební materiály do fyziky pro 2. ročník gymnázia Autor: Vojtěch Beneš Datum: 03.05.2014 Ročník: 1. ročník Anotace DUMu: Kapaliny, změny skupenství Materiály

Více

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE

Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE Opakování PRÁCE, VÝKON, ÚČINNOST, ENERGIE 1 Rozhodni a zdůvodni, zda koná práci člověk, který a) vynese tašku do prvního patra, b) drží činku nad hlavou, c) drží tašku s nákupem na zastávce autobusu, d)

Více

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m

Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,2 m. Graf závislosti dráhy s na počtu kyvů n 2 pro h = 0,3 m Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1,, 3, 4, 7), J. Jírů (5), P. Šedivý (6) 1.a) Je-li pohyb kuličky rovnoměrně zrychlený, bude pro uraženou dráhu

Více

R 2 R 4 R 1 R

R 2 R 4 R 1 R TEST:Bc-1314-FYZ Varianta:0 Tisknuto:18/06/2013 1. Jak daleko od Země je Měsíc, jestliže světlo urazí tuto vzdálenost za 1,28 sekundy? Rychlost světla je 300 000 km/s. 1) 384 000 km 2) 425 000 km 4) 256

Více

Hydrochemie koncentrace látek (výpočty)

Hydrochemie koncentrace látek (výpočty) 1 Atomová hmotnostní konstanta/jednotka m u Relativní atomová hmotnost Relativní molekulová hmotnost Látkové množství (mol) 1 mol je takové množství látky, které obsahuje tolik částic, kolik je atomů ve

Více

Mechanické kmitání (oscilace)

Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

Mechanické kmitání - určení tíhového zrychlení kyvadlem

Mechanické kmitání - určení tíhového zrychlení kyvadlem I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Laboratorní práce č. 9 Mechanické kmitání - určení

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

3. TEKUTINY A TERMIKA 3.1 TEKUTINY

3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3. TEKUTINY A TERMIKA 3.1 TEKUTINY 3.1.1 TEKUTINY, TLAK, HYDROSTATICKÝ A ATMOSFÉRICKÝ TLAK, VZTLAKOVÁ SÍLA Tekutiny: kapaliny a plyny Statika kapalin a plynů = Hydrostatika a Aerostatika Tlak v tekutině

Více

III. STRUKTURA A VLASTNOSTI PLYNŮ

III. STRUKTURA A VLASTNOSTI PLYNŮ III. STRUKTURA A VLASTNOSTI PLYNŮ 3.1 Ideální plyn a) ideální plyn model, předpoklady: 1. rozměry molekul malé (ve srovnání se střední vzdáleností molekul). molekuly na sebe navzálem silově nepůsobí (mimo

Více

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie

UČIVO. Termodynamická teplota. První termodynamický zákon Přenos vnitřní energie PŘEDMĚT: FYZIKA ROČNÍK: SEXTA VÝSTUP UČIVO MEZIPŘEDM. VZTAHY, PRŮŘEZOVÁ TÉMATA, PROJEKTY, KURZY POZNÁMKY Zná 3 základní poznatky kinetické teorie látek a vysvětlí jejich praktický význam Vysvětlí pojmy

Více

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014

3 pokusy z termiky. Vojtěch Jelen Fyzikální seminář LS 2014 3 pokusy z termiky Vojtěch Jelen Fyzikální seminář LS 2014 Obsah 1. Pokus online 2. Měření teploty cihly 3. Vypařování střely 1. Kalorimetrie Zabývá se měřením tepla a studuje vlastnosti látek a jejich

Více

Příklady kmitavých pohybů. Mechanické kmitání (oscilace)

Příklady kmitavých pohybů. Mechanické kmitání (oscilace) Mechanické kmitání (oscilace) pohyb, při kterém se těleso střídavě vychyluje v různých směrech od rovnovážné polohy př. kyvadlo Příklady kmitavých pohybů kyvadlo v pendlovkách struna hudebního nástroje

Více

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N?

17. Střela hmotnosti 20 g zasáhne rychlostí 400 ms -1 strom. Do jaké hloubky pronikne, je-li průměrný odpor dřeva R = 10 4 N? 1. Za jaký čas a jakou konečnou rychlostí (v km/hod.) dorazí automobil na dolní konec svahu dlouhého 25 m a skloněného o 7 0 proti vodorovné rovině, jestliže na horním okraji začal brzdit na hranici možností

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám Výukový materiál zpracován v rámci projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0996 Šablona: III/2 č. materiálu: VY_32_INOVACE_368 Jméno autora: Třída/ročník: Mgr. Alena Krejčíková

Více

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z

Okamžitý výkon P. Potenciální energie E p (x, y, z) E = x E = E = y. F y. F x. F z 5. Práce a energie 5.1. Základní poznatky Práce W jestliže se hmotný bod pohybuje po trajektorii mezi body (1) a (), je práce definována křivkovým integrálem W = () () () F dr = Fx dx + Fy dy + (1) r r

Více

Měření teplotní roztažnosti

Měření teplotní roztažnosti KATEDRA EXPERIMENTÁLNÍ FYZIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY PALACKÉHO V OLOMOUCI FYZIKÁLNÍ PRAKTIKUM Z MOLEKULOVÉ FYZIKY A TERMODYNAMIKY Měření teplotní roztažnosti Úvod Zvyšování termodynamické teploty

Více

Dynamika. Dynamis = řecké slovo síla

Dynamika. Dynamis = řecké slovo síla Dynamika Dynamis = řecké slovo síla Dynamika Dynamika zkoumá příčiny pohybu těles Nejdůležitější pojmem dynamiky je síla Základem dynamiky jsou tři Newtonovy pohybové zákony Síla se projevuje vždy při

Více

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie

Mechanická práce a. Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce a energie Mechanická práce Výkon a práce počítaná z výkonu Účinnost stroje, Mechanická energie Zákon zachování mechanické energie Mechanická práce Mechanickou práci koná každé těleso,

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů

Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Mechanika tekutin Tlak v kapalinách a plynech Vztlaková síla Prodění kapalin a plynů Vlastnosti kapalin a plynů Tekutiny = kapaliny + plyny Ideální kapalina - dokonale tekutá - bez vnitřního tření - zcela

Více

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem?

4. V každé ze tří lahví na obrázku je 600 gramů vody. Ve které z lahví má voda největší objem? TESTOVÉ ÚLOHY (správná je vždy jedna z nabídnutých odpovědí) 1. Jaká je hmotnost vody v krychlové nádobě na obrázku, která je vodou zcela naplněna? : (A) 2 kg (B) 4 kg (C) 6 kg (D) 8 kg 20 cm 2. Jeden

Více

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie)

Vnitřní energie pevné látky < Vnitřní energie kapaliny < Vnitřní energie plynu (nejmenší energie) Změny skupenství Při změně tělesa z pevné látky na kapalinu nebo z kapaliny na plyn se jeho vnitřní energie zvyšuje musíme dodávat teplo (zahřívat). Při změně tělesa z plynu na kapalinu, nebo z kapaliny

Více

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9

Obsah. Kmitavý pohyb. 2 Kinematika kmitavého pohybu 2. 4 Dynamika kmitavého pohybu 7. 5 Přeměny energie v mechanickém oscilátoru 9 Obsah 1 Kmitavý pohyb 1 Kinematika kmitavého pohybu 3 Skládání kmitů 6 4 Dynamika kmitavého pohybu 7 5 Přeměny energie v mechanickém oscilátoru 9 6 Nucené kmity. Rezonance 10 1 Kmitavý pohyb Typy pohybů

Více

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa].

Cvičení z termomechaniky Cvičení 2. Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. Příklad 1 Stanovte objem nádoby, ve které je uzavřený dusík o hmotnosti 20 [kg], teplotě 15 [ C] a tlaku 10 [MPa]. m 20[kg], t 15 [ C] 288.15 [K], p 10 [MPa] 10.10 6 [Pa], R 8314 [J. kmol 1. K 1 ] 8,314

Více

IDEÁLNÍ PLYN. Stavová rovnice

IDEÁLNÍ PLYN. Stavová rovnice IDEÁLNÍ PLYN Stavová rovnice Ideální plyn ) rozměry molekul jsou zanedbatelné vzhledem k jejich vzdálenostem 2) molekuly plynu na sebe působí jen při vzájemných srážkách 3) všechny srážky jsou dokonale

Více

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika

PRÁCE, VÝKON, ENERGIE. Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika PRÁCE, VÝKON, ENERGIE Mgr. Jan Ptáčník - GJVJ - Fyzika - 1. ročník - Mechanika Mechanická práce Závisí na velikosti síly, kterou působíme na těleso, a na dráze, po které těleso posuneme Pokud má síla stejný

Více

Variace. Mechanika kapalin

Variace. Mechanika kapalin Variace 1 Mechanika kapalin Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Pascalův zákon, mechanické vlastnosti

Více

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5

POZNÁMKA: V USA se používá ještě Fahrenheitova teplotní stupnice. Převodní vztahy jsou vzhledem k volbě základních bodů složitější: 9 5 TEPLO, TEPLOTA Tepelný stav látek je charakterizován veličinou termodynamická teplota T Jednotkou je kelvin T K Mezi Celsiovou a Kelvinovou teplotní stupnicí existuje převodní vztah T 73,5C t POZNÁMKA:

Více

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9

3 Mechanická energie 5 3.1 Kinetická energie... 6 3.3 Potenciální energie... 6. 3.4 Zákon zachování mechanické energie... 9 Obsah 1 Mechanická práce 1 2 Výkon, příkon, účinnost 2 3 Mechanická energie 5 3.1 Kinetická energie......................... 6 3.2 Potenciální energie........................ 6 3.3 Potenciální energie........................

Více

Laboratorní práce č. 3: Měření součinitele smykového tření

Laboratorní práce č. 3: Měření součinitele smykového tření Přírodní vědy moderně a interaktivně FYZIKA 3. ročník šestiletého a 1. ročník čtyřletého studia Laboratorní práce č. 3: Měření součinitele smykového tření G Gymnázium Hranice Přírodní vědy moderně a interaktivně

Více

(test version, not revised) 9. prosince 2009

(test version, not revised) 9. prosince 2009 Mechanické kmitání (test version, not revised) Petr Pošta pposta@karlin.mff.cuni.cz 9. prosince 2009 Obsah Kmitavý pohyb Kinematika kmitavého pohybu Skládání kmitů Dynamika kmitavého pohybu Přeměny energie

Více