8. Deskriptivní geometrie

Rozměr: px
Začít zobrazení ze stránky:

Download "8. Deskriptivní geometrie"

Transkript

1 8. Deskriptivní geometrie 337

2 Volitelný pedmt - dvouletý Vzdlávací oblast: Matematika a její aplikace Vzdlávací obor: Matematika a její aplikace Vyuovací pedmt: Deskriptivní geometrie 1. Charakteristika vyuovacího pedmtu a) Obsahové, asové a organizaní vymezení pedmtu Vyuovací pedmt Deskriptivní geometrie vznikl z volitelných vzdlávacích aktivit RVP GV. Výuka se uskuteuje ve 3. a 4. roníku. Pro výuku je k dispozici odborná uebna. Žáci eší konstrukní úlohy, zobrazují technické souásti a architektonické prvky, užívají deduktivní a induktivní postupy, volí vhodné metody ešení, vytváejí algoritmy ešení, zdvodují postupy a diskutují ešitelnost (pípadn poet ešení) daného problému. Pi studiu využívají pomcky a modely, odbornou literaturu, internet, výukové programy pro deskriptivní geometrii, grafické CAD systémy, seznamují se s prostedky a možnostmi poítaové grafiky. Výuka deskriptivní geometrie má úzké mezipedmtové vztahy k matematice, informatice a výpoetní technice a k estetické výchov. Žáci poznávají význam oboru ve stavitelství, architektue a v jiných technických oborech, v oblasti prmyslového designu nebo v lékaské anatomii a uvdomují si, že znalosti a dovednosti z deskriptivní geometrie jsou využitelné a potebné v reálném život i pi studiu na vysokých školách zejména technických, matematicko-pírodovdných a umleckých smr. Roník Hodinová dotace 3. roník a septima 2 4. roník a oktáva 3 Kompetence k uení c) Výchovné a vzdlávací strategie uitel vede žáky k získávání zkušeností s geometrickým modelováním, pochopení vztah mezi modelem a jeho prmtem, k pstování a rozvíjení prostorové pedstavivosti uitel vede žáky k pesnému a strunému vyjadování spojeného s užíváním odborného jazyka vetn symboliky uitel vede postupn žáky k samostatné práci s informacemi 338

3 uitel podporuje u žák úelný, informativní a vkusný grafický projev i rozvíjení estetického cítní Kompetence k ešení problém uitel se zajímá o námty, názory, zkušenosti žák uitel klade otevené otázky a vybízí žáky k nejvhodnjšímu zpsobu ešení problémových úloh uitel vede žáky k analyzování problému, volb správného postupu ešení a jeho zdvodování, výbru vhodné zobrazovací metody uitel umožuje, aby žáci v hodin pracovali s odbornou literaturou uitel podle poteby žákm v innostech pomáhá, pracuje s chybou žáka jako s píležitostí, jak ukázat cestu ke správnému ešení Kompetence komunikativní uitel se vyjaduje v hodinách pesn a srozumiteln a totéž vyžaduje od žák uitel vede žáky k užívání k užívání správné terminologie a frazeologie, zavedené symboliky a norem (harmonizované SN) uitel moderuje žákovské debaty, klade draz na kvalitní argumentaci uitel vybírá vhodné úkoly, pi kterých si žáci uí pracovat v týmu Kompetence sociální a personální uitel organizuje innost žák ve dvojicích, skupinách, vede žáky k vlastní organizaci práce skupiny, k zodpovdnosti za innost skupiny uitel úspšným ešením úloh pimené obtížnosti žákm umožuje získávat a rozvíjet zdravou sebedvru Kompetence obanské uitel rozvíjí zodpovdný vztah žáka k plnní povinností, ke studiu uitel vede žáky k iniciativ, samostatnosti, obrazotvornosti a tvrímu myšlení uitel vede žáky k projevu úcty k práci druhých uitel vybízí žáky k toleranci, ale také ke kritickému hodnocení názor jiných Kompetence k podnikavosti uitel vede žáky k zodpovdnosti za vykonanou práci uitel umožuje každému žákovi zažít úspch uitel podncuje žáky k argumentaci uitel hodnotí žáky zpsobem, který jim umožuje vnímat vlastní pokrok 339

4 2. Vzdlávací obsah vyuovacího pedmtu Roník: 3. roník a septima Oekávané výstupy Žák vymodeluje a zobrazí bod, pímku a rovinu správn klasifikuje vzájemnou polohu bod, pímek a rovin v prostoru využívá kritéria rovnobžnosti a kolmosti pímek a rovin sestrojí délku úseky, odchylku pímky a roviny od prmtny urí kótu bodu na pímce sestrojí chybjící prmty bodu na pímce a v rovin zobrazí prseík pímky s rovinou, prsenici dvou rovin sestrojí pímku kolmou k rovin zobrazí útvar ležící v obecné rovin zobrazí jednoduché hranaté tleso sestrojí sdružené prmty bodu, pímky, úseky, roviny vymodeluje základní geometrické útvary v prostoru sestrojí délku úseky, odchylku pímky a roviny od prmtny urí jednoznan pímku a bod ležící v rovin zobrazí prsenici dvou rovin, prseík pímky s rovinou sestrojí pímku kolmou k rovin a rovinu kolmou k pímce zobrazí útvar ležící v obecné rovin užitím osové afinity eší jednoduché úlohy pomocí tetí prmtny Obsah uiva KÓTOVANÉ PROMÍTÁNÍ Soustava souadnic v prmtn Principy a vlastnosti pravoúhlého promítání Kóta bodu Stopník pímky, stopa roviny Sklápní promítací roviny pímky Hlavní a spádová pímka roviny Vzájemná poloha bod, pímek a rovin Kolmost pímky a roviny Otáení roviny do prmtny, osová afinita MONGEOVO PROMÍTÁNÍ 1 Pravoúhlé promítání na dv prmtny Stopníky pímky, stopy roviny Hlavní a spádové pímky roviny Vzájemná poloha bod, pímek a rovin Vzdálenost bodu od pímky a od roviny Kolmost pímky a roviny Otáení roviny do prmten Základní hranatá tlesa Sít tles PT a TO 340

5 zobrazí hranol a jehlan v základní poloze, jednoduché tleso v prostoru sestrojí ez hranolu a jehlanu rovinou zobrazí prseík pímky s hranolem a jehlanem formuluje s pochopením ohniskové definice kuželoseek a aplikuje je pi bodové konstrukci sestrojí kuželoseku z daných prvk sestrojí tenu kuželoseky v daném bod kuželoseky aplikuje vlastnosti vrcholové a ídící kružnice elipsy a hyperboly, vrcholové a ídící pímky paraboly pi konstrukci kuželoseek a jejich teen využívá poznatky o kuželosekách pi zobrazení oblých tles a jejich rovinných ez KUŽELOSEKY Elipsa, hyperbola, parabola základní pojmy Oskulaní kružnice ve vrcholech Proužková konstrukce elipsy Tena všech kuželoseek Vrcholová a ídící kružnice elipsy a hyperboly Roník: 4.roník a oktáva sestrojí sdružené prmty kružnice zobrazí kulovou plochu, bod na kulové ploše a tenou rovinu kulové plochy sestrojí prnik kulové plochy s rovinou a prseíky s pímkou zobrazí rotaní válec a rotaní kužel, bod na jejich povrchu a tené roviny ke kuželi a válci sestrojí ez válce a kužele rovinou kolmou k prmtn a prnik pímky s válcovou a kuželovou plochou MONGEOVO PROMÍTÁNÍ 2 Základní oblá tlesa Sít tles Klasifikace rovinných ez na kuželové ploše, vty Quételetovy-Dandelinovy 341

6 zobrazí bod, pímku a rovinu urí polohu vzhledem k prmtnám urí bod a pímku ležící v dané rovin sestrojí prsenici dvou rovin a prseík pímky s rovinou zobrazí útvar ležící v pomocné prmtn zobrazí hranaté a rotaní tleso v základní poloze sestrojí ez hranatého a rotaního tlesa rovinou kolmou k pomocné prmtn urí prnik pímky s tlesem KOLMÁ AXONOMETRIE Principy pravoúhlé axonometrie Otáení pomocných prmten Stopníky pímky, stopy roviny Vzájemná poloha bod, pímek, a rovin Prsená (záezová rovina) 342

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.19. Úvod do deskriptivní geometrie

ŠVP Gymnázium Ostrava-Zábřeh. 4.8.19. Úvod do deskriptivní geometrie 4.8.19. Úvod do deskriptivní geometrie Vyučovací předmět Úvod do deskriptivní geometrie je na naší škole nabízen v rámci volitelných předmětů v sextě, septimě nebo v oktávě jako jednoletý dvouhodinový

Více

4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL

4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL 4. EZY NA KUŽELÍCH 4.1. KUŽELOVÁ PLOCHA, KUŽEL Definice : Je dána kružnice k ležící v rovin a mimo ni bod V. Všechny pímky jdoucí bodem V a protínající kružnici k tvoí kruhovou kuželovou plochu. Tyto pímky

Více

ESKÝ JAZYK A LITERATURA

ESKÝ JAZYK A LITERATURA ESKÝ JAZYK A LITERATURA CHARAKTERISTIKA PEDMTU 1. Obsahové vymezení Realizuje obsah vzdlávacího oboru eský jazyk a literatura RVP GV. Zaujímá dležité postavení ve výchovn vzdlávacím procesu. Je to povinný

Více

Pr niky ploch a t les

Pr niky ploch a t les Gymnázium Christiana Dopplera, Zborovská 45, Praha 5 RONÍKOVÁ PRÁCE Prniky ploch a tles Vypracoval: Tomáš Martínek ída: 4.C Školní rok: 2013/2014 Seminá: Deskriptivní geometrie Prohlašuji, že jsem svou

Více

Konstruktivní geometrie

Konstruktivní geometrie Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou.

2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. 2. EZY NA JEHLANECH Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. Popis konstrukce : Podobn jako u píkladu 41 je výhodné proložit nkterými dvma hranami jehlanu rovinu kolmou k pdorysn.

Více

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec.

Definice : Jsou li povrchové pímky kolmé k rovin, vzniká kolmá kruhová válcová plocha a pomocí roviny také kolmý kruhový válec. 3. EZY NA VÁLCÍCH 3.1. VÁLCOVÁ PLOCHA, VÁLEC Definice : Je dána kružnice k ležící v rovin a pímka a rznobžná s rovinou. Všechny pímky rovnobžné s pímkou a protínající kružnici k tvoí kruhovou válcovou

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

Vzdlávací oblast: Jazyk a jazyková komunikace Vzdlávací obor: Latina Vyuovací pedmt: Latina

Vzdlávací oblast: Jazyk a jazyková komunikace Vzdlávací obor: Latina Vyuovací pedmt: Latina Latina 244 Vzdlávací oblast: Jazyk a jazyková komunikace Vzdlávací obor: Latina Vyuovací pedmt: Latina 1. Charakteristika vyuovacího pedmtu a) Obsahové, asové a organizaní vymezení pedmtu Pedmt Latina

Více

MATEMATIKA MATEMATIKA

MATEMATIKA MATEMATIKA PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY MATEMATIKA MATEMATIKA Struktura vyuovací hodiny Metodický Struktura vyuovací list aplikace hodiny Ukázková Metodický hodina list aplikace materiál Záznamový Ukázková

Více

! " # $ % # & ' ( ) * + ), -

!  # $ % # & ' ( ) * + ), - ! " # $ % # & ' ( ) * + ), - INDIVIDUÁLNÍ VÝUKA MATEMATIKA METODIKA Kuželosek Mgr. Petra Dunovská bezen 9 Obtížnost této kapitol matematik je dána tím, že se pi výkladu i ešení úloh komplexn vužívají vdomosti

Více

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu

Osmileté gymnázium GEOMETRIE. Charakteristika vyučovacího předmětu 1 z 8 Osmileté gymnázium GEOMETRIE Charakteristika vyučovacího předmětu Obsahové vymezení: Vyučovací předmět geometrie pokrývá spolu s předmětem algebra (má samostatné osnovy) a s předmětem matematika

Více

Multimediální seminá tvorba asopisu a rozhlasové relace

Multimediální seminá tvorba asopisu a rozhlasové relace CHARAKTERISTIKA VYUOVACÍHO PEDMTU Multimediální seminá tvorba asopisu a rozhlasové relace 1. Obsahové, asové a organizaní vymezení Obsahové vymezení rozvíjení kultivovaného písemného a ústního projevu

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ VOLITELNÉ PŘEDMĚTY Seminář z matematiky Mgr. Dana Rauchová Vyučovací volitelný předmět Cvičení z matematiky je zařazen samostatně na druhém

Více

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět)

MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) MATEMATICKÝ SEMINÁŘ (volitelný a nepovinný předmět) Charakteristika vyučovacího předmětu Obsahové vymezení Vzdělání v matematickém semináři je zaměřeno na: užití matematiky v reálných situacích osvojení

Více

MATEMATIKA CHARAKTERISTIKA PŘEDMĚTU pro 1. až 5. ročník

MATEMATIKA CHARAKTERISTIKA PŘEDMĚTU pro 1. až 5. ročník 1. Obsahové, časové a organizační vymezení předmětu 1.1 Vzdělávací obsahy, ze kterých je vyučovací předmět utvořen MATEMATIKA CHARAKTERISTIKA PŘEDMĚTU pro 1. až 5. ročník Vzdělávání klade důraz na důkladné

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

Gymnázium Jiřího Ortena, Kutná Hora

Gymnázium Jiřího Ortena, Kutná Hora Předmět: Náplň: Cvičení z matematiky geometrie (CZMg) Systematizace a prohloubení učiva matematiky Planimetrie, Stereometrie, Analytická geometrie, Kombinatorika, Pravděpodobnost a statistika Třída: 4.

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb

vést žáky k pečlivému vypracování výkresu vést je k organizaci a plánování práce vést žáky k používání vhodných rýsovacích potřeb Vyučovací předmět: TECHNICKÉ KRESLENÍ A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Předmět Technické kreslení má žákům umožnit zvládnout základy technického

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie, Komplexní čísla Třída: 3. ročník Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor Volné rovnoběžné promítání Zobrazí ve volném rovnoběžném

Více

Průmyslová střední škola Letohrad Komenského 472, Letohrad

Průmyslová střední škola Letohrad Komenského 472, Letohrad Geodézie (profilová část maturitní zkoušky formou ústní zkoušky před zkušební komisí) 1) Měření délek 2) Teodolity 3) Zaměření stavebních objektů 4) Odečítací pomůcky 5) Nivelační přístroje a pomůcky 6)

Více

16. Výtvarná výchova

16. Výtvarná výchova 16. Výtvarná výchova 505 Vzdlávací oblast: Umní a kultura Vzdlávací obor: Výtvarná výchova Vyuovací pedmt: Výtvarná výchova 1. Charakteristika vyuovacího pedmtu a) Obsahové, asové a organizaní vymezení

Více

Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu.

Výuka může probíhat v kmenových učebnách, část výuky může být přenesena do multimediálních učeben, k interaktivní tabuli, popřípadě do terénu. 7.2 MATEMATIKA A JEJÍ APLIKACE 7.2.1 Matematika (M) Charakteristika předmětu 1. stupně Vyučovací předmět má časovou dotaci v 1. ročníku 4 hodiny týdně + 1 disponibilní hodinu týdně, ve 2. a 3. ročníku

Více

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule.

Vyučovací hodiny mohou probíhat v multimediální učebně a odborných učebnách s využitím interaktivní tabule. Charakteristika předmětu 2. stupně Matematika je zařazena do vzdělávací oblasti Matematika a její aplikace. Vyučovací předmět má časovou dotaci v 6. ročníku 4 hodiny týdně, v 7., 8. a 9 ročníku bylo použito

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl

Více

Předpokládané znalosti žáka 1. stupeň:

Předpokládané znalosti žáka 1. stupeň: Předpokládané znalosti žáka 1. stupeň: ČÍSLO A POČETNÍ OPERACE používá přirozená čísla k modelování reálných situací, počítá předměty v daném souboru, vytváří soubory s daným počtem prvků čte, zapisuje

Více

23-41-M001 Strojírenství. Celkový počet týdenních vyučovacích hodin za studium: 4 Celkový počet vyučovacích hodin: 136 Platnost od: 1.9.

23-41-M001 Strojírenství. Celkový počet týdenních vyučovacích hodin za studium: 4 Celkový počet vyučovacích hodin: 136 Platnost od: 1.9. Učební osnova vyučovacího předmětu technické kreslení Obor vzdělání: 2-41-M001 Strojírenství Délka forma studia: 4 roky, denní Celkový počet týdenních vyučovacích hodin za studium: 4 Celkový počet vyučovacích

Více

MATEMATICKÁ KARTOGRAFIE

MATEMATICKÁ KARTOGRAFIE VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL KARTOGRAFICKÁ ZKRESLENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie

Více

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli

Matematika - Kvarta. řeší ekvivalentními úpravami rovnice s neznámou ve jmenovateli - Kvarta Matematika Výchovné a vzdělávací strategie Kompetence k řešení problémů Kompetence komunikativní Kompetence sociální a personální Kompetence občanská Kompetence k učení Kompetence pracovní Učivo

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10.

Vzdělávací předmět: Seminář z matematiky. Charakteristika vyučovacího předmětu. Obsahové, časové a organizační vymezení předmětu 5.10. 5.10. Vzdělávací oblast: Vzdělávací obor: Vzdělávací předmět: Matematika a její aplikace Matematika a její aplikace Seminář z matematiky Charakteristika vyučovacího předmětu Vyučovací předmět Seminář z

Více

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01

MOCNINY A ODMOCNINY. Standardy: M-9-1-01 M-9-1-02 PYTHAGOROVA VĚTA. Standardy: M-9-3-04 M-9-3-01 matematických pojmů a vztahů, k poznávání základě těchto vlastností k určování a zařazování pojmů matematického aparátu Zapisuje a počítá mocniny a odmocniny racionálních čísel Používá pro počítání s mocninami

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

SEMINÁŘ K VÝUCE MATEMATIKA 1

SEMINÁŘ K VÝUCE MATEMATIKA 1 Charakteristika vyučovacího předmětu SEMINÁŘ K VÝUCE MATEMATIKA 1 Vzdělávací oblast: Vzdělávací obor: Název vyučovacího předmětu: Časové vymezení předmětu: Matematika a její aplikace Matematika a její

Více

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely

Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Předmět: Náplň: Třída: Počet hodin: Pomůcky: Matematika (MAT) Rovnice, soustavy rovnic, funkce, podobnost a funkce úhlů, jehlany a kužely Kvarta 4 hodiny týdně Učebna s PC a dataprojektorem (interaktivní

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

MATEMATIKA. 1. 5. ročník

MATEMATIKA. 1. 5. ročník Charakteristika předmětu MATEMATIKA 1. 5. ročník Obsahové, časové a organizační vymezení Vyučovací předmět matematika má časovou dotaci 4 hodiny týdně v 1. ročníku, 5 hodin týdně ve 2. až 5. ročníku. Časová

Více

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9.

Mat2 - Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků základních škol. Matematické semináře pro 9. škola: číslo projektu: název projektu: Základní škola Ivana Olbrachta, Semily CZ.1.07/1.4.00/21.0439 Inovace pro kvalitní výuku Název šablony: číslo šablony: 1 poř.č. označení oblast dle RVP okruh dle

Více

Cvičení z matematiky - volitelný předmět

Cvičení z matematiky - volitelný předmět Vyučovací předmět : Období ročník : Učební texty : Cvičení z matematiky - volitelný předmět 3. období 9. ročník Sbírky úloh, Testy k přijímacím zkouškám, Testy Scio, Kalibro aj. Očekávané výstupy předmětu

Více

SEMINÁŘ K VÝUCE MATEMATIKA

SEMINÁŘ K VÝUCE MATEMATIKA Charakteristika vyučovacího předmětu SEMINÁŘ K VÝUCE MATEMATIKA Vzdělávací oblast: Vzdělávací obor: Název vyučovacího předmětu: Časové vymezení předmětu: Matematika a její aplikace Matematika a její aplikace

Více

Úvod do Deskriptivní geometrie

Úvod do Deskriptivní geometrie Úvod do Deskriptivní geometrie Deskriptivní geometrie se věnuje zkoumání geometrických vztahů trojrozměrných objektů prostřednictvím jejich dvojrozměrného znázornění. www.ak3d.de/portfolio/tutorials/freesample.pdf

Více

12. VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV

12. VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV 12. VYTVÁŘENÍ GEOMETRICKÝCH PŘEDSTAV Geometrie je specifickou oblastí matematiky, která může být pro děti, které mají poruchy v oblasti numerace a operací s přirozenými čísly, záchranou. Učitel sleduje

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika.

B) výchovné a vzdělávací strategie jsou totožné se strategiemi vyučovacího předmětu Matematika. 4.8.3. Cvičení z matematiky Předmět Cvičení z matematiky je vyučován v sextě a v septimě jako volitelný předmět. Vzdělávací obsah vyučovacího předmětu Cvičení z matematiky vychází ze vzdělávací oblasti

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu.

Vyučovací předmět: CVIČENÍ Z MATEMATIKY. A. Charakteristika vyučovacího předmětu. Vyučovací předmět: CVIČENÍ Z MATEMATIKY A. Charakteristika vyučovacího předmětu. a) Obsahové, časové a organizační vymezení předmětu Základem vzdělávacího obsahu předmětu Cvičení z matematiky je vzdělávací

Více

Témata profilové maturitní zkoušky z předmětu Název oboru: Kód oboru: Druh zkoušky: Forma zkoušky: Školní rok: Číslo tématu Téma

Témata profilové maturitní zkoušky z předmětu Název oboru: Kód oboru: Druh zkoušky: Forma zkoušky: Školní rok: Číslo tématu Téma ta profilové maturitní zkoušky z předmětu Deskriptivní geometrie Druh zkoušky: profilová nepovinná 1. Základní geometrické útvary 2. Principy a druhy promítání 3. Pravoúhlé promítání na jednu průmětnu

Více

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM

ŠKOLNÍ VZDĚLÁVACÍ PROGRAM Vyučovací předmět : Období ročník : Učební texty : Matematika 3. období 9. ročník J.Coufalová : Matematika pro 9.ročník ZŠ (Fortuna) Očekávané výstupy předmětu Na konci 3. období základního vzdělávání

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY

2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla

Matematika. 7. ročník. Číslo a proměnná celá čísla. absolutní hodnota čísla. zlomky. racionální čísla list 1 / 9 M časová dotace: 4 hod / týden Matematika 7. ročník (M 9 1 01) provádí početní operace v oboru celých a racionálních čísel; čte a zapíše celé číslo, rozliší číslo kladné a záporné, určí číslo

Více

3. Charakteristika ŠVP

3. Charakteristika ŠVP 3. Charakteristika ŠVP 3.1. Zamení školy Dané podmínky spolen s bohatou historií ve výuce pírodovdných pedmt pedurují zamení školy, které je všeobecné s drazem na pírodovdnou a jazykovou oblast. Zamení

Více

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel

Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014. 1. Obor reálných čísel Mgr. Ladislav Zemánek Maturitní okruhy Matematika 2013-2014 1. Obor reálných čísel - obor přirozených, celých, racionálních a reálných čísel - vlastnosti operací (sčítání, odčítání, násobení, dělení) -

Více

Časové a organizační vymezení

Časové a organizační vymezení Vzdělávací oblast Vzdělávací obor Vyučovací předmět Týdenní hodinové dotace Časové a organizační vymezení Matematika a její aplikace Matematika a její aplikace Matematika 1. stupeň 2. stupeň 1. ročník

Více

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce ta profilové maturitní zkoušky z předmětu Stavební konstrukce 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4. Dimenzování ocelových válcovaných

Více

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová

CHARAKTERISTIKA. VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová CHARAKTERISTIKA VZDĚLÁVACÍ OBLAST VYUČOVACÍ PŘEDMĚT ZODPOVÍDÁ MATEMATIKA A JEJÍ APLIKACE MATEMATIKA Mgr. Martina Fujavová Vyučovací předmět Matematika je na prvním stupni zařazen v 1. - 5. ročníku, a to

Více

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose

Matematika - 6. ročník Očekávané výstupy z RVP Učivo Přesahy a vazby desetinná čísla. - zobrazení na číselné ose Matematika - 6. ročník desetinná čísla - čtení a zápis v desítkové soustavě F užití desetinných čísel - zaokrouhlování a porovnávání des. čísel ve výpočtových úlohách - zobrazení na číselné ose MDV kritické

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika analytická geometrie. Mgr. Pavel Liška Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity IV/2 Inovace

Více

Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3)

Matematika. 6. ročník. Číslo a proměnná. desetinná čísla (využití LEGO EV3) číselný výraz. zaokrouhlování desetinných čísel. (využití LEGO EV3) list 1 / 8 M časová dotace: 4 hod / týden Matematika 6. ročník (M 9 1 01) (M 9 1 02) (M 9 1 03) provádí početní operace v oboru celých a racionálních čísel; čte, zapíše, porovná desetinná čísla a zobrazí

Více

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války

Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ. 1 Deskriptivní geometrie na VUT do 2. světové války 25. KONFERENCE O GEOMETRII A POČÍTAČOVÉ GRAFICE Lucie Zrůstová HISTORIE DESKRIPTIVNÍ GEOMETRIE NA VUT V BRNĚ Abstrakt Příspěvek se zabývá historií výuky deskriptivní geometrie na Vysokém učení technickém.

Více

Vzdělávací obsah vyučovacího předmětu

Vzdělávací obsah vyučovacího předmětu Vzdělávací obsah vyučovacího předmětu Matematika 9. ročník Zpracovala: Mgr. Michaela Krůtová Číslo a početní operace zaokrouhluje, provádí odhady s danou přesností, účelně využívá kalkulátor účelně a efektivně

Více

ZEM PIS ZEM PIS PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY. Struktura vyu ovací hodiny. Záznamový Záznamový arch

ZEM PIS ZEM PIS PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY. Struktura vyu ovací hodiny. Záznamový Záznamový arch PRACOVNÍ MATERIÁLY PRACOVNÍ MATERIÁLY ZEMPIS ZEMPIS Struktura vyuovací hodiny Plán Struktura vyuovací vyuovací hodiny hodiny Plán Metodický vyuovací list aplikace hodiny Záznamový Metodický list arch aplikace

Více

Volitelné předměty Matematika a její aplikace

Volitelné předměty Matematika a její aplikace Vzdělávací oblast : Vyučovací předmět: Volitelné předměty Matematika a její aplikace Cvičení z matematiky Charakteristika předmětu: Vzdělávací obsah: Základem vzdělávacího obsahu předmětu Cvičení z matematiky

Více

4.9.59. Seminář z chemie

4.9.59. Seminář z chemie 4.9.59. Seminář z chemie Seminář z chemie si mohou žáci zvolit ve třetím ročníku je koncipován jako dvouletý. Umožňuje žákům, kteří si jej zvolili, prohloubit základní pojmy z chemie, systematizovat poznatky

Více

5.2.1 Charakteristika vyučovacího předmětu 1. stupeň

5.2.1 Charakteristika vyučovacího předmětu 1. stupeň 5.2.1 Charakteristika vyučovacího předmětu 1. stupeň Vyučovací předmět Matematika vychází ze vzdělávacího obsahu vzdělávacího oboru Matematika a její aplikace. Je to předmět, který by měl být chápán jako

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

současně ale zkracoval dosavadní devítiletou základní školu na osm roků (první stupeň byl zkrácen na čtyři roky)

současně ale zkracoval dosavadní devítiletou základní školu na osm roků (první stupeň byl zkrácen na čtyři roky) v roce 1968 dochází k přeměně a rozšíření tříletých SVVŠ (střední všeobecná vzdělávací škola) na čtyřletá gymnázia 1970 čtyřletá gymnázia celkem mají celkem 4 hodiny týdně na přírodovědné větvi a humanitní

Více

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7.

Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Vzdělávací oblast: MATEMATIKA A JEJÍ APLIKACE Vyučovací předmět: MATEMATIKA Ročník: 7. Výstupy dle RVP Školní výstupy Učivo žák: v oboru celých a racionálních čísel; využívá ve výpočtech druhou mocninu

Více

ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100

ŠVP Školní očekávané výstupy. - vytváří konkrétní soubory (peníze, milimetrový papír, apod.) s daným počtem prvků do 100 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 1. období 3. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo M3101 používá přirozená

Více

Charakteristika p edm tu

Charakteristika p edm tu Vzdlávací oblasti : Volitelné pedmty - lovka píroda, lovk a svt práce, prezové téma Environmentální výchova Vyuovacího pedmt: Pírodovdný seminá Charakteristika pedmtu Vzdlávací obsah: Pedmt Pírodovdný

Více

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce

Reálné gymnázium a základní škola města Prostějova Školní vzdělávací program pro ZV Ruku v ruce 2 MATEMATIKA A JEJÍ APLIKACE UČEBNÍ OSNOVY 2. 2 Cvičení z matematiky Časová dotace 7. ročník 1 hodina 8. ročník 1 hodina 9. ročník 1 hodina Charakteristika: Předmět cvičení z matematiky doplňuje vzdělávací

Více

MATEMATICKÁ KARTOGRAFIE

MATEMATICKÁ KARTOGRAFIE VYSOKÉ UENÍ TECHNICKÉ V BRN FAKULTA STAVEBNÍ MILOSLAV ŠVEC MATEMATICKÁ KARTOGRAFIE MODUL 5 NEPRAVÁ ZOBRAZENÍ STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Matematická kartografie Modul

Více

Vzdělávací obor matematika

Vzdělávací obor matematika "Cesta k osobnosti" 6.ročník Hlavní okruhy Očekávané výstupy dle RVP ZV Metody práce (praktická cvičení) obor navázání na již zvládnuté ročník 1. ČÍSLO A Žák používá početní operace v oboru de- Dělitelnost

Více

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3)

Matematika. 9. ročník. Číslo a proměnná. peníze, inflace. finanční produkty, úročení. algebraické výrazy, lomené výrazy (využití LEGO EV3) list 1 / 5 M časová dotace: 4 hod / týden včetně 1 hod z disponibilní časové dotace Matematika 9. ročník M 9 1 06 M 9 1 07 M 9 1 08 řeší aplikační úlohy na procenta (i pro případ, že procentová část je

Více

eský jazyk a literatura

eský jazyk a literatura eský jazyk a literatura Charakteristika vyuovacího pedmtu 1. stupe 1. Obsahové, asové a organizaní vymezení pedmtu asové vymezení - 1. roník 8 hodin - 2. roník 10 hodin - 3. a 4. roník 8 hodin - 5. roník

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, 518 01 Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE - 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 6. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 provádí

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2 Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

Učební osnovy. Doplňující vzdělávací obory. Cílové zaměření vzdělávací oblasti. Vzdělávací oblast : Vyučovací předmět :

Učební osnovy. Doplňující vzdělávací obory. Cílové zaměření vzdělávací oblasti. Vzdělávací oblast : Vyučovací předmět : Učební osnovy Vzdělávací oblast : Vyučovací předmět : Doplňující vzdělávací obory Technické kreslení volitelný předmět Charakteristika předmětu. Předmět rozvíjí aktivní, samostatnou a tvůrčí činnost žáků,

Více

Základní škola Šenov, Radniní námstí 1040, 739 34

Základní škola Šenov, Radniní námstí 1040, 739 34 Oblast Ukazatel Cíl Mechanismy ovování 1. Vize Cíle a školní Propojit cíle Kontrola propagace vzdlávací s oekáváním a cíl v praxi - program potebami klient. (konzultace, dotazníky, ukázkové hodiny, lánky

Více

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8.

Základní škola Fr. Kupky, ul. Fr. Kupky 350, Dobruška 5.2 MATEMATIKA A JEJÍ APLIKACE MATEMATIKA A JEJÍ APLIKACE Matematika 8. 5.2 MATEMATIKA A JEJÍ APLIKACE 5.2.1 MATEMATIKA A JEJÍ APLIKACE Matematika 8. ročník RVP ZV Obsah RVP ZV Kód RVP ZV Očekávané výstupy ŠVP Školní očekávané výstupy ŠVP Učivo ČÍSLO A PROMĚNNÁ M9101 M9102

Více

PŘÍLOHA KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU

PŘÍLOHA KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU VOLITELNÉ PŘEDMĚTY VE ŠKOLNÍM ROCE 2010/2011 PŘÍLOHA KE ŠKOLNÍMU VZDĚLÁVACÍMU PROGRAMU Plod přijde časem Obsah 1 Charakteristiky volitelných předmětů... 4 1.1 Deskriptivní geometrie... 4 1.2 Kancelářské

Více

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny

Reálná čísla a výrazy. Početní operace s reálnými čísly. Složitější úlohy se závorkami. Slovní úlohy. Číselné výrazy. Výrazy a mnohočleny A B C D E F 1 Vzdělávací oblast: Matematika a její aplikace 2 Vzdělávací obor: Cvičení z matematiky 3 Ročník: 9. 4 Klíčové kompetence (Dílčí kompetence) 5 Kompetence k učení učí se vybírat a využívat vhodné

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012

Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012 Tematický plán uiva z matematiky pro 6. roník na školní rok 2011-2012 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce

Témata profilové maturitní zkoušky z předmětu Stavební konstrukce ta profilové maturitní zkoušky z předmětu Stavební konstrukce Druh zkoušky: profilová - povinná 1. Dimenzování dřevěných trámů na ohyb 2. Dimenzování dřevěných sloupů 3. Dimenzování ocelových sloupů 4.

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:

Více

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009)

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k 1. 9. 2009) Střední průmyslová škola Jihlava tř. Legionářů 1572/3, Jihlava Dodatek č. 3 ke školnímu vzdělávacímu programu Strojírenství (platné znění k 1. 9. 09) Tento dodatek nabývá platnosti dne 1. 9. 13 (počínaje

Více

Témata profilové maturitní zkoušky z předmětu Pozemní stavitelství

Témata profilové maturitní zkoušky z předmětu Pozemní stavitelství ta profilové maturitní zkoušky z předmětu Pozemní stavitelství Druh zkoušky: profilová - povinná 1. Zaměřování terénu a tvorba vrstevnicového plánu 2. Svislé nosné konstrukce 3. Otvory ve zdech 4. Komíny

Více

Kuželosečky. Klasické definice. Základní vlastnosti. Alča Skálová

Kuželosečky. Klasické definice. Základní vlastnosti. Alča Skálová Kuželosečky Alča Skálová Klasické definice Elipsa je množina všech bodů v rovině, majících od dvou pevně daných různých bodů E, F(ohnisek)konstantnísoučetvzdáleností2a,kde2a > EF =2e. Parabola je množina

Více

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010

Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Tematický plán uiva z matematiky pro 6. roník na školní rok 2009-2010 Msíc: Záí Uivo: Shrnutí a opakování uiva z 5.roníku Pirozená ísla íselná osa, porovnávání, zaokrouhlování, operace s nimi, pevody,

Více