MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem ( ) po dlouhou dobu bylo vojenským tajemstvím
|
|
- Miloslav Matoušek
- před 9 lety
- Počet zobrazení:
Transkript
1 část 1.
2 MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem ( ) po dlouhou dobu bylo vojenským tajemstvím
3 ZOBRAZENÍ BODU - sdružení průměten sdružení průměten π 1... půdorysna (první průmětna) π 2... nárysna (druhá průmětna) x... osa x (průsečnice průměten) A 1... první průmět bodu A A 2... druhý průmět bodu A Každý bod prostoru je jednoznačně dán svým prvním a druhým průmětem. Tyto průměty leží na kolmici na osu x, takové kolmici říkáme ordinála.
4 ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
5 ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
6 ZOBRAZENÍ PŘÍMKY p 1... půdorys přímky p p 2... nárys přímky p
7 ZOBRAZENÍ PŘÍMKY P... půdorysný stopník (průsečík přímky s π 1 ) N... nárysný stopník (průsečík přímky s π 2 ) P 1... půdorys půdorysného stopníku P 2... nárys půdorysného stopníku N 1... půdorys nárysného stopníku N 2... nárys nárysného stopníku
8 Příklad: Určete podle obrázků polohu přímky p vzhledem k průmětnám.
9 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB
10 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB
11 SKLOPENÍ PŘÍMKY - do půdorysny sklápíme první promítací rovinu přímky AB
12 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou
13 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou
14 SKLOPENÍ PŘÍMKY - do polohy rovnoběžné s půdorysnou
15 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.
16 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.
17 Obdobně funguje i sklápění do nárysny a do polohy rovnoběžné s nárysnou. Příklad: Určete odchylku přímky p (A, B) od nárysny.
18 vzájemná poloha dvou přímek rovnoběžky různoběžky mimoběžky
19 ZOBRAZENÍ ROVINY - stopy roviny
20 Příklad: Určete podle obrázků polohu roviny σ vzhledem k průmětnám.
21 ZOBRAZENÍ ROVINY - hlavní a spádové přímky první osnovy hlavní přímka 1 h ρ... přímka roviny ρ rovnoběžná s první průmětnou
22 ZOBRAZENÍ ROVINY - hlavní a spádové přímky první osnovy hlavní přímka 1 h ρ... přímka roviny ρ rovnoběžná s první průmětnou spádová přímka 1 s ρ... přímka roviny ρ kolmá na hlavní přímky první osnovy
23 ZOBRAZENÍ ROVINY - hlavní a spádové přímky druhé osnovy hlavní přímka 2 h ρ... přímka roviny ρ rovnoběžná s druhou průmětnou
24 ZOBRAZENÍ ROVINY - hlavní a spádové přímky druhé osnovy hlavní přímka 2 h ρ... přímka roviny ρ rovnoběžná s druhou průmětnou spádová přímka 2 s ρ... přímka roviny ρ kolmá na hlavní přímky druhé osnovy
25 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.
26 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.
27 Příklad: Je dán první průmět bodu A a stopy roviny ρ. Určete druhý průmět bodu A, jestliže bod A leží v rovině ρ.
28 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.
29 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.
30 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.
31 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.
32 Příklad: Určete stopy roviny ρ, která je zadána rovnoběžkami a, b.
33 průsečnice dvou rovin daných stopami
34 průsečnice dvou rovin
35 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky
36 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ
37 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ
38 PRŮSEČÍK PŘÍMKY S ROVINOU - metoda krycí přímky krycí přímka r... průsečnice promítací roviny přímky p s rovinou ρ
39 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.
40 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.
41 Příklad: Určete průsečík přímky p s rovinou danou různoběžkami a, b.
42 Příklad: Určete průsečík přímky a s trojúhelníkem ABC
43 Příklad: Určete průsečík přímky a s trojúhelníkem ABC
44 Příklad: Určete průsečík přímky a s trojúhelníkem ABC
45 Příklad: Určete průsečík přímky a s trojúhelníkem ABC
46 Příklad: Určete průsečík přímky a s trojúhelníkem ABC
47 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa
48 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2
49 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí
50 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí
51 ZOBRAZENÍ KRUŽNICE kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice se zobrazuje ve skutečné velikosti pouze na hlavních přímkách procházejících středem kružnice...v prvním průmětu na 1 h ρ 1, v druhém průmětu na 2 h ρ 2 koncové body průměrů zobrazených ve skutečné velikosti jsou hlavními vrcholy elips v jednotlivých průmětech, vedlejší vrcholy získáme proužkovou konstrukcí konstrukcí oskulačních kružnic získáme představu o tvaru elips a vykreslíme je
52 ZOBRAZENÍ TĚLES - s podstavou v půdorysně pravidelný kolmý čtyřboký jehlan šikmý válec
53 ZOBRAZENÍ TĚLES - s podstavou v nárysně rotační kužel šikmý trojboký hranol
54 PERSPEKTIVNÍ AFINITA malé odbočení - vztah mezi objekty promítnutými z jedné roviny do druhé roviny směrem, který není rovnoběžný ani s jednou z rovin o... osa afinity, s... směr afinity, A... vzor, A... obraz vlastnosti: odpovídající si body leží na rovnoběžkách se směrem s odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence, rovnoběžné přímky se zobrazí na rovnoběžné přímky, střed úsečky se zobrazí na střed úsečky
55 Příklady perspektivní afinity: - mezi dolní podstavou hranolu a řezem hranolu: osa afinity je průsečnice roviny dolní podstavy s rovinou řezu, směr afinity je rovnoběžný s bočními hranami - mezi rovinou a jejím otočeným obrazem: osa afinity je osa otáčení, směr afinity je určený libovolným bodem původní roviny a jeho otočeným obrazem
56 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )
57 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )
58 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )
59 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )
60 OSOVÁ AFINITA vzniká promítnutím perspektivní afinity do roviny (směr promítání musí být různoběžný od rovin ve kterých probíhala perspektivní afinita od původního směru promítání a od roviny do které promítáme) vlastnosti perspektivní afinity zůstávají zachovány afinita (perspektivní i osová) je daná osou o a párem odpovídajících si bodů AA, které určují směr afinity s AF = (o AF, A, A )
61 ŘEZY TĚLES - hranol postup řešení - řez hranolu rovinou: najdeme jeden bod řezu - průsečík jedné z bočních hran hranolu s rovinou řezu určíme osu afinity mezi řezem a dolní podstavou - průsečnice roviny řezu s rovinou dolní podstavy další body řezu na hranách určíme afinitou určíme viditelnost řezu
62 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence
63 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence
64 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence
65 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence
66 Poznámka: Tak jako je mezi řezem hranolu a jeho dolní podstavou vztah afinity, tak je mezi řezem jehlanu a jeho dolní podstavou vztah středové kolineace. STŘEDOVÁ KOLINEACE je daná osou o středem S a párem odpovídajících si bodů AA (které leží na přímce procházející středem) KOL = (S, o, A, A ), A... vzor, A... obraz vlastnosti: odpovídající si body leží na přímkách procházejících středem S odpovídající si přímky se protínají na ose o v tzv. samodružných bodech zachovává se incidence
67 ŘEZY TĚLES - jehlan postup řešení - řez jehlanu rovinou: najdeme jeden bod řezu - průsečík jedné z bočních hran jehlanu s rovinou řezu určíme osu kolineace mezi řezem a dolní podstavou - průsečnice roviny řezu s rovinou dolní podstavy další body řezu na hranách určíme kolineací určíme viditelnost řezu
68 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
69 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
70 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
71 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
72 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
73 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
74 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
75 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
76 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
77 Příklad: Sestrojte řez šikmého čtyřbokého hranolu ABCDĀ B C D rovinou ρ, která je daná stopami.
78 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
79 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
80 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
81 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
82 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
83 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
84 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
85 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
86 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
87 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
88 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
89 Příklad: Sestrojte řez daného čtyřbokého jehlanu ABCDV rovinou ρ (K, L, M).
90 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten
91 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten
92 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez rovinou kolmou k jedné z průměten
93 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
94 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
95 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
96 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
97 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
98 SPECIÁLNÍ PŘÍPADY ŘEZŮ - řez kolmého hranolu
MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
MONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
AXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr
BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura
Pracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Mongeova projekce - úlohy polohy
Mongeova projekce - úlohy polohy Mgr. František Červenka VŠB-Technická univerzita Ostrava 16. 2. 2010 Mgr. František Červenka (VŠB-TUO) Mongeova projekce - úlohy polohy 16. 2. 2010 1 / 14 osnova 1 Mongeova
0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.
strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---
DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně
Zadání domácích úkolů a zápočtových písemek
Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační
Axonometrie KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Axonometrie ZS / 60
Axonometrie KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Axonometrie ZS 2008 1 / 60 Obsah 1 Úvod 2 Typy axonometrií 3 Pravoúhlá axonometrie Zobrazení přímky Zobrazení roviny Polohové úlohy KG - L (MZLU
Mongeovo zobrazení. Řez jehlanu
Mongeovo zobrazení Řez jehlanu Středová kolineace Středová kolineace Definice Geometrická příbuznost mezi útvary dvou rovin (různých nebo totožných) splňující následující podmínky Středová kolineace Definice
Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1
Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu
3.MONGEOVO PROMÍTÁNÍ. Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru
3.MONGEOVO PROMÍTÁNÍ A B E 3 E 2 Rovnoběžný průmět 3D těles na rovinu není vzájemně jednoznačné zobrazení, k obrazu neumíme jednoznačně určit objekt v prostoru 3.1.Kartézský souřadnicový systém O počátek
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy Mongeovo promítání 1. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Obsah TEMATICKÉ ROZDĚLENÍ DÍLŮ KNIHY DESKRIPTIVNÍ GEOMETRIE 1. díl
Mongeova projekce KG - L ZS MZLU v Brně. KG - L (MZLU v Brně) Mongeova projekce ZS / 102
Mongeova projekce KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Mongeova projekce ZS 2008 1 / 102 Obsah 1 Úvod 2 Zobrazení bodu 3 Zobrazení přímky 4 Určení roviny 5 Polohové úlohy Vzájemná poloha dvou
Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:
Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme
KONSTRUKTIVNÍ GEOMETRIE
KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
Pravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
Deskriptivní geometrie pro střední školy
Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:
Zobrazení a řezy těles v Mongeově promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 3. ročník prezenční studium Obor: Matematika se zaměřením na vzdělávání a český jazyk se zaměřením na vzdělávání
1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika
Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu
Pravoúhlá axonometrie - osvětlení těles
Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE KOSOÚHLÉ PROMÍTÁNÍ DO PŮDORYSNY BAKALÁŘSKÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok odevzdání: 2012 Vypracovala:
UNIVERZITA PALACKÉHO V OLOMOUCI
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok
Deskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou
Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří
BAKALÁŘSKÁ PRÁCE. Řešené úlohy v axonometrii. UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie
UNIVERZITA PALACKÉHO V OLOMOUCI Přírodovědecká fakulta Katedra algebry a geometrie BAKALÁŘSKÁ PRÁCE Řešené úlohy v axonometrii Vypracovala: Barbora Bartošová M-DG, III. ročník Vedoucí práce: RNDr. Miloslava
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 2. října 2006 verze 2.0 Předmluva Tento pomocný
Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].
Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
Pravoúhlá axonometrie
Pravoúhlá axonometrie bod, přímka, rovina, bod v rovině, trojúhelník v rovině, průsečnice rovin, průsečík přímky s rovinou, čtverec v půdorysně, kružnice v půdorysně V Rhinu vypneme osy mřížky (tj. červenou
Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
Konstruktivní geometrie
Konstruktivní geometrie Elipsa Úloha 1: Najděte bod M takový, aby součet jeho vzdáleností od bodů F 1 a F 2 byl 12cm; tj. F 1 M+F 2 M=12. Najděte více takových bodů. Konstruktivní geometrie Elipsa Oskulační
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie. Pomocný učební text. František Ježek, Světlana Tomiczková
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie Pomocný učební text František Ježek, Světlana Tomiczková Plzeň 20. září 2004 verze 2.0 Předmluva Tento pomocný text
Pravoúhlá axonometrie. tělesa
Pravoúhlá axonometrie tělesa V Rhinu vypneme osy mřížky (tj. červenou vodorovnou a zelenou svislou čáru). Tyto osy v axonometrii vůbec nevyužijeme a zbytečně by se nám zde pletly. Stejně tak můžeme vypnout
Kótované promítání. Úvod. Zobrazení bodu
Úvod Kótované promítání Každá promítací metoda má z pohledu praxe určité výhody i nevýhody podle toho, co při jejím užití vyžadujeme. Protože u kótovaného promítání jde o zobrazení prostoru na jednu rovinu,
A[ 20, 70, 50] a výška v = 70, volte z V > z S ; R[ 40, 20, 80], Q[60, 70, 10]. α(90, 60, 70).
Úkoly k zápočtu z BA008 Všechny úkoly jsou povinné. Úkoly číslo 4, 7, 12, 14 budou uznány automaticky, pokud poslední den semestru, tj. 3. 5. 2019, budou všechny ostatní úkoly odevzdané a uznané. 1. Je
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ
STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE
Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.
Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1
Další servery s elektronickým obsahem
Právní upozornění Všechna práva vyhrazena. Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele.
Mongeovo zobrazení. Osová afinita
Mongeovo zobrazení Osová afinita nechť je v prostoru dána průmětna π, obecná rovina ρ a v této rovině libovolný trojúhelník ABC, promítneme-li trojúhelník kolmo do průmětny π, dostaneme trojúhelník A
půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho
Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA. Mgr. Ondřej Machů. --- Pracovní verze:
DESKRIPTIVNÍ GEOMETRIE PRO STUDENTY GYMNÁZIA CH. DOPPLERA Mgr. Ondřej Machů --- Pracovní verze: 6. 10. 2014 --- Obsah Úvodní slovo... - 3-1 Základy promítacích metod... - 4-1.1 Rovnoběžné promítání...
Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ.
Řez jehlanu Mongeovo promítání Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. A[ 3; 1; 0], B[0; 2; 0], y C > y B, v = 8cm, σ(4; 7; 3) B 2 A 2 Vyneseme
KÓTOVANÉ PROMÍTÁNÍ KÓTOVANÉ PROMÍTÁNÍ
KÓTOVANÉ PROMÍTÁNÍ 2.KÓTOVANÉ PROMÍTÁNÍ Označíme: s...směr promítání, s p k c...kóta bodu C C 1 (k c )...kótovaný průmět bodu C. pokud k c 0 (k c 0), potom bod C leží nad (pod) průmětnou p. jednotka j=1cm
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 11. září 2006 verze 4.0 Předmluva
5) Průnik rotačních ploch. A) Osy totožné (a kolmé k půdorysně) Bod R průniku ploch. 1) Pomocná plocha κ
5) Průnik rotačních ploch Bod R průniku ploch κ, κ : 1) Pomocná plocha κ ) Průniky : l κ κ, l κ κ 3) R l l Volba pomocné plochy pro průnik rotačních ploch závisí na poloze os ploch. Omezíme se pouze na
2. EZY NA JEHLANECH. Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou.
2. EZY NA JEHLANECH Píklad 47 : Sestrojte ez pravidelného tybokého jehlanu ABCDV rovinou. Popis konstrukce : Podobn jako u píkladu 41 je výhodné proložit nkterými dvma hranami jehlanu rovinu kolmou k pdorysn.
Elementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Obrázek 34: Vznik středové kolineace
6 Středová kolineace Jak naznačuje Obr. 34, středová kolineace (se středem S), jako vzájemně jednoznačné zobrazení Ē 2 na sebe, je výsledkem středového průmětu (se středem S ) středového promítání (se
A 1. x x. 1.1 V pravoúhlé axonometrii zobrazte průměty bodu A [4, 5, 8].
strana 1 1. onometrie. 1.1 V pravoúhlé aonometrii obrate průmět bodu [4, 5, 8]. 1.2 Zobrate bývající pravoúhlé průmět bodu do souřadnicových rovin. Určete souřadnice bodu, který je obraen v pravoúhlé aonometrii.
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA. DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA DIPLOMOVÁ PRÁCE Úlohy s prostorovými tělesy v Mongeově zobrazovací metodě BRNO 2006 BLANKA MORÁVKOVÁ Prohlášení: Prohlašuji, že jsem diplomovou práci vypracovala
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI
KRUHOVÁ ŠROUBOVICE A JEJÍ VLASTNOSTI Šroubový pohyb vzniká složením otáčení kolem osy o a posunutí ve směru osy o, přičemž oba pohyby jsou spojité a rovnoměrné. Jestliže při pohybu po ose "dolů" je otáčení
ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.
ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní
Deskriptivní geometrie 0A5
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Deskriptivní geometrie 0A5 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Veronika Roušarová Brno c 2003 Obsah
Západočeská univerzita v Plzni. Fakulta aplikovaných věd Katedra matematiky. Geometrie pro FST 1. Pomocný učební text
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Geometrie pro FST 1 Pomocný učební text František Ježek, Marta Míková, Světlana Tomiczková Plzeň 29. srpna 2005 verze 1.0 Předmluva
Cyklografie. Cyklický průmět bodu
Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme
Obsah a průběh zkoušky 1PG
Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dvě konstrukční úlohy dle části po. bodech a jedna úloha výpočetní úloha dle části za bodů. Ústní část jedna
Deskriptivní geometrie 1
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 1 Pomocný učební text 1. část Světlana Tomiczková Plzeň 22. září 2009 verze 3.0 Předmluva Tento pomocný
AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.
AXONOMETRIE 1) Princip, základní pojmy Axonometrie je rovnoběžné promítání do průmětny různoběžné se souřadnicovými rovinami. Kvádr v axonometrii : {O,x,y,z} souřadnicový systém XYZ - axonometrická průmětna
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
Perspektiva. Doplňkový text k úvodnímu cvičení z perspektivy. Obsahuje: zobrazení kružnice v základní rovině metodou osmi tečen
Perspektiva Doplňkový text k úvodnímu cvičení z perspektivy Obsahuje: úvodní pojmy určení skutečné velikosti úsečky zadané v různých polohách zobrazení kružnice v základní rovině metodou osmi tečen 1 Příklad
Deskriptivní geometrie
Deskriptivní geometrie Stavebnictví RNDr. Milan Vacka 2013 České Budějovice 1 Tento učební materiál vznikl v rámci projektu "Integrace a podpora studentů se specifickými vzdělávacími potřebami na Vysoké
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY
ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné
Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem
Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................
Axiomy: Jsou to tvrzení o těchto pojmech a vztazích, která jsou přijata bez důkazů. Například:
1.Euklidovský prostor 1.1) Základními geomterickými útvary jsou bod přímka a rovina. Základním geometrickým vztahem je vztah incidence, který se většinou opisuje spojeními bod leží na přímce, přímka prochází
PŘÍMKOVÉ PLOCHY. Přednáška DG2*A
PŘÍMKOVÉ PLOCHY Přednáška DG*A PŘÍMKOVÉ PLOCHY = plocha, jejímž každým bodem prochází alespoň jedna přímka plochy. Každá přímková plocha je určena třemi řídícími křivkami, příp. plochami. p k k k 3 Je-li
Metrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Polohové úlohy v axonometrii
Sestrojte a označte průmět, půdorys, nárys a bokorys přímky p: y=3 a z=2. Sestrojte a popište stopy roviny : x=3 a určete její průsečík R s přímkou p. Sestrojte a označte průmět, půdorys, nárys a bokorys
Polohové úlohy v axonometrii
Přímka p leží v rovině α. Doplňte p a p 2. Bod A leží v rovině α. Doplňte A a A 2. Přímka p leží v rovině α. Doplňte p a p 3. Sestrojte průmět a půdorys bodu A, který leží v rovině ρ. Přímka a leží v rovině.
Mongeovo zobrazení. Konstrukce stop roviny
Mongeovo zobrazení Konstrukce stop roviny Způsoby určení roviny Způsoby určení roviny při provádění konstrukcí v Mongeově zobrazení je výhodné pracovat s rovinami, které náme určeny pomocí stop; Způsoby
Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.
Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,
Deskriptivní geometrie II.
Střední průmyslová škola elektrotechnická a Vyšší odborná škola Pardubice, Karla IV. 13 Deskriptivní geometrie II. Ing. Rudolf Rožec Pardubice 2001 Skripta jsou určena pro předmět deskriptivní geometrie
Další servery s elektronickým obsahem
Právní upozornění Všechna práva vyhrazena Žádná část této tištěné či elektronické knihy nesmí být reprodukována a šířena v papírové, elektronické či jiné podobě bez předchozího písemného souhlasu nakladatele
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY
Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ KATEDRA MATEMATIKY, FYZIKY A TECHNICKÉ VÝCHOVY INTERAKTIVNÍ ÚLOHY MONGEOVA PROMÍTÁNÍ DIPLOMOVÁ PRÁCE Bc. Petra Konjatová Učitelství pro 2. stupeň ZŠ,
Test č. 1. Kuželosečky, afinita a kolineace
Test č. 1 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2006-2007 Kuželosečky, afinita a kolineace (1) (a) Je dána elipsa E(F 1, F 2, a), F 1 F 2 < 2a. Sestrojte několik bodů
Mongeovo zobrazení. Vzájemná poloha dvou přímek
Mongeovo zobrazení Vzájemná poloha dvou přímek Dvě přímky a, b mohou být v prostoru: Dvě přímky a, b mohou být v prostoru: a) rovnoběžné totožné a = b Dvě přímky a, b mohou být v prostoru: a) rovnoběžné
[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/
Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol STEREOMETRIE
Shodná zobrazení v rovině
Shodná zobrazení v rovině Zobrazení Z v rovině je předpis, který každému bodu X roviny přiřazuje právě jeden bod X roviny. Bod X se nazývá vzor, bod X jeho obraz. Zapisujeme Z: X X. Množinu obrazů všech
tečen a osu o π, V o; plochu omezte hranou vratu a půdorysnou a proved te rozvinutí
Řešené úlohy Rozvinutelná šroubová plocha v Mongeově promítání Příklad: V Mongeově promítání zobrazte půl závitu rozvinutelné šroubové plochy, jejíž hranou vratu je pravotočivá šroubovice, která prochází
ZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
Mongeovo zobrazení. Bod a přímka v rovině
Mongeovo zobrazení Bod a přímka v rovině Přímka v rovině Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka leží v rovině; Přímka v rovině připomeňme si nejprve větu, která říká, kdy přímka
Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy
1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné
Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:
Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe
Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů
1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou
Vybrané kapitoly z Mongeova promítání
UNIVERZITA PALACKÉHO V OLOMOUCI Pedagogická fakulta Katedra matematiky Michaela Sukupová 2. ročník prezenční studium Obor: Učitelství matematiky Učitelství českého jazyka Vybrané kapitoly z Mongeova promítání
9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie
9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu
Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které
Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich
STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
středu promítání (oka) se objekty promítají do roviny (nahrazuje sítnici). Perspektivní obrazy
Lineární perspektiva Lineární perspektiva je významnou aplikací středového promítání. V technické praxi se používá především k zobrazování objektů větších rozměrů, napodobuje tak lidské vidění. Ze středu
ROTAČNÍ KVADRIKY. Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou
ROTAČNÍ KVADRIKY Definice, základní vlastnosti, tečné roviny a řezy, průsečíky přímky s rotační kvadrikou Rotační kvadriky jsou rotační plochy, které vzniknou rotací kuželosečky kolem některé její osy.
Zářezová metoda Kosoúhlé promítání
Zářezová metoda Kosoúhlé promítání Mgr. Jan Šafařík Přednáška č. 6 přednášková skupina P-B1VS2 učebna Z240 Základní literatura Jan Šafařík: příprava na přednášku Autorský kolektiv Ústavu matematiky a deskriptivní
Mongeova projekce - řezy hranatých těles
Mongeova projekce - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Mongeova projekce - řezy hranatých těles 1 / 73 Obsah 1 Zobrazení těles v základní poloze 2 Řez hranolu rovinou Osová afinita Sestrojení
Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace. Šroubovice dráha hmotného bodu při šroubovém pohybu
ŠROUBOVICE Šroubový pohyb rovnoměrný pohyb složený z posunutí a rotace Šroubovice dráha hmotného bodu při šroubovém pohybu ZÁKLADNÍ POJMY osa šroubovice o nosná válcová plocha (r poloměr řídicí kružnice