TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA.

Rozměr: px
Začít zobrazení ze stránky:

Download "TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA."

Transkript

1 TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 4. PREDNÁŠKA - SOUČIN PROSTORŮ A TICHONOVOVA VĚTA. PAVEL RŮŽIČKA 4.1. (Kvazi)kompaktnost a sub-báze. Buď (Q, ) uspořádaná množina. Řetězcem v Q budeme rozumět lineárně uspořádanou podmnožinu Q. Níže použijeme Zornovo lemma v následujícím tvaru: Zornovo lemma. Buď Q neprázdná množina podmnožin množiny P uzpořádaná inkluzí taková, že pro každý neprázdný řetězec L v Q je L Q. Potom má Q maximální prvek. Zornovo lemma je ekvivalentní s axiomem výběru a je nezávislé na ostatních axiomech teorie množin. Lemma 4.1. Buď (X, τ) topologický prostor a S sub-báze topologie τ. Topologický prostor X je kvazikompaktní právě když lze z každého jeho pokrytí množinami sub-báze S vybrat konečné podpokrytí. Důkaz. ( ) Tato implikace je zřejmá z definice. ( ) Symbolem P označme množinu všech pokrytí prostoru X ze kterých nelze vybrat konečné podpokrytí. Na množině P uvažme uspořádání inkluzí. Pro spor předpokládejme, že prostor X není kvazikompaktní, tj., že je množina P neprázdná. Buď L řetězec v P a předpokládejme, že L / P. To znamená, že z pokrytí L lze vybrat konečné podpokrytí F. Protože je množina L lineárně uspořádaná inkluzí a pokrytí F L konečné, existuje pokrytí Q L takové, že F Q. To je ve sporu s tím, že Q P, neboť z Q stejně jako z L lze vybrat konečné podpokrytí F. Podle Zornova lemmatu existuje maximální pokrytí M P vzhledem k inkluzi. Polžme T = S M. Množina T je obsažena v M a proto z ní nelze vybrat konečné podpokrytí. Současně množina T sestává z množin subbáze S. Vzhledem k našemu předpokladu, že každé pokrytí prostoru X množinami sub-báze S obsahuje konečné podpokrytí, existuje y X \ T. Protože M pokrývá X, existuje Y M obsahující bod y. Protože S je zub-báze, existují S 1,..., S n S tak, že y n i=1 S i Y. Protože Date: 20. března

2 2 PAVEL RŮŽIČKA y / M, S i / M, pro všechna i = 1,..., n. Vzhledem k maximalitě M v množině P, lze z každé z množin M {S i }, i = 1,..., n, vybrat konečné pokrytí. Proto existují množiny Z 1,..., Z m M takové, že m X = S i Z j, pro všechna i = 1,..., n. Odtud plyne, že ( ) ( n m n ) ( m ) ( m ) X = S i Z j = S i Z j Y Z j. i=1 i=1 To je ve sporu s předpokladem, že z množiny M nelze vybrat konečné pokrytí X, neboť {Y, Z 1,..., Z m } M. Důsledek 4.2. Buď (X, τ) Hausdorffův topologický prostor a S subbáze topologie τ. Topologický prostor X je kompaktní právě když lze z každého jeho pokrytí množinami sub-báze S vybrat konečné podpokrytí Součin topologických prostorů. Nechť τ, υ jsou topologie na množině X. Řekneme, že topologie τ je jemnější než topologie υ, je-li υ τ. Ekvivalentně řekneme, že topologie υ je hrubší než topologie τ. Všimněme si, že topologie τ je jemnější než topologie υ právě když je identické zobrazení (X, τ) (X, υ) spojité. Definice. Nechť Y je množina, (Y i, τ i ) i I soubor topologických prostorů a F := f i : Y Y i i I soubor zobrazení. Topologii τ jejíž sub-báze je tvořena množinou {f 1 i (A) i I a A τ i } nazveme topologií generovanou souborem zobrazení F 1. Z definice je zřejmé, že topologie generovaná souborem zobrazení F je nejhrubší topologií na množině Y takovou, že jsou zobrazení f i : (Y, τ) (Y i, τ i ), i I, spojitá. Lemma 4.3. Buď Y i i I soubor topologických prostorů, Y prostor s topologií generovanou souborem zobrazení f i : Y Y i i I a X topologický prostor. Potom je zobrazení f : X Y spojité právě když jsou spojitá všechna složení f i f, i I. Důkaz. ( ) Je-li zobrazení f : X Y spojité, jsou spojitá i složení f i f, i I. ( ) Předpokládejme, že jsou všechna složení f i f, i I, spojitá. Potom pro každé i I a každou otevřenou podmnožinu A Y i platí, že je množina (f i f) 1 (A) = f 1 (f 1 i (A)) spojitá. Podle definice je množina {f 1 i (A) i I a A Y i otevřená} sub-bázi prostoru Y. Vzhledem k Lemmatu 2.4 je zobrazení f : X Y spojité. 1 Předpokládáme, že prostory (Y i, τ i ) jsou dány z kontextu.

3 Definice. Buď (X i, τ i ) i I soubor topologických prostorů. Uvažme množinu X i := { x i i I i I : x i X i }. i I Pro každé i I dále uvažme projekci p i : i I X i X i danou předpisem x i i I x i. Na množině i I X i uvažme topologii τ = i I τ i generovanou souborem zobrazení p i i I. Potom nazveme topologický prostor ( i I X i, τ) součinem prostorů X i, i I. Topologii τ nazveme součinovou topologií tohoto prostoru. Z definic je ihned vidět, že sub-báze topologie τ sestává z množin j (A) = { x i i I x j A}, kde j I a A τ j. Je zřejmé, že podmínku A τ j můžeme nahradit podmínkou A S j, kde S j jsou sub-báze topologií τ j, j I. Protože konečné průniky množin nějaké sub-báze daného topologického prostoru tvoří jeho bázi platí, že Tvrzení 4.4. Množiny tvaru i I A i, kde A i τ i a A i = X i pro skoro všechna 2 i I tvoří bázi topologie i I τ i. Podmínku A i τ i lze nahradit podmínkou A i B i, kde B i jsou báze prostorů X i, i I. Je-li indexová množina I konečná, pro jednoduchost předpokládejme I = {1,..., n}, je báze součinu n i=1 X i tvořena množinami tvaru n i=1 A i, kde A i je otevřená podmnožina X i pro všechna i = 1,..., n. Z Lemmatu 4.3 a z definice kartézského součinu ihned plyne, že Věta 4.5. Buď Y i i I soubor topologických prostorů a X topologický prostor. Zobrazení f : X i I Y i je spojité právě když jsou spojitá všechna složení p i f, i I, tohoto zobrazení s projekcemi na jednotlivé složky kartézského součinu. Lemma 4.6. Nechť je dán soubor topologických prostorů X i i I a pro každé i I podmnožina Y i X i. Potom platí, že Y i = Y i. i I i I Důkaz. Předpokládejme, že x i i I ( i I X ) ( i \ i I Y i). Potom existuje i I takové, že x i / Y i. Podle definice kartézského součinu je (X i \ Y i ) okolím x i i I, které je disjunktní s i I \Y i. Proto je množina i I Y i uzavřená, odkud je vidět, že i I Y i i I Y i. i 2 Existuje konečná F I taková, že A i = X i pro všechna i I \ F. 3

4 4 PAVEL RŮŽIČKA Nechť naopak x i i I i I Y i. Buď U okolí x i i I. Potom U obsahuje podmnožinu tvaru i I U i, kde U i je okolí x i v X i pro každé i I (a U i = X i pro skoro všechna i I). Z toho, že x i i I i I Y i plyne, že x i Y i pro všechna i I. Odtud dostaneme, že U i Y i pro všechna i I a tedy U i I Y i. Proto platí, že x i i I i I Y i. Ukázali jsme tak, že i I Y i i I Y i. Důsledek 4.7. Nechť je dán soubor topologických prostorů X i i I a pro každé i I podmnožina = G i X i. Potom je součin i I G i uzavřený v i I X i, právě když jsou podmnožiny G i uzavřené v X i pro všechna i I. Připomeňme, že symbolem I značíme podprostor 0, 1 reálné přímky. Lemma 4.8. Nechť X je topologický prostor, J konečná množina a f j : X I j = J soubor spojitých zobrazení. Potom je zobrazení f : X I definované předpisem x max j J f j (x) spojité. Důkaz. Intervaly (a, 1 a 0, a), kde 0 < a < 1, tvoří sub-bázi prostoru I. Vzhledem k Lemmatu 2.4 stačí ukázat, že jsou vzory těchto intervalů otevřené. Nechť a (0, 1) a nechť x X je takové, že a < f(x) = max j J f j (x). Potom existuje j J takové, že a < f j (x). Podle předpokladu je zobrazení f j spojité, a proto existuje okolí U bodu x takové, že a < f j (y) pro každé y U. Vzhledem k tomu, že f j (y) f(y), je také a < f(y) pro každé y U. Proto je f 1 ((a, 1 ) otevřená podmnožina X. Buď nyní x X takové, že f(x) < a. Potom pro každé j J platí nerovnost f j (x) < a. Ze spojitosti zobrazení f j plyne, že existuje okolí U j bodu x takové, že f j (y) < a pro každé y U j. Potom je x U = j J U j, množina U je okolím bodu x a je-li y U, je f j (y) < a pro všechna j J. Odtud plyne, že f(y) < a pro všechna y U. Vidíme, že je množina f 1 ( 0, a)) otevřená. Tvrzení 4.9. Buď j {0, 1, 2, 3, }. Je-li X i i I soubor T j prostorů, potom je součin i I X i také T j prostorem. Důkaz. Tvrzení ukážeme pro j = 2 a j = 3 1. Zbylé případy ponecháme 2 jako cvičení. Předpokládejme, že X i, i I, jsou T 2 prostory. Nechť x i i I a y i i I jsou dva různé prvky součinu i I X i. Existuje i I tak, že x i y i. Protože je prostor X i Hausdorffův, existují disjunktní otevřené A, B X i takové, že x i A a y i B. Potom jsou i (A) a i (B) disjunktní otevřené podmnožiny kartézského součinu i I X i takové, že x i i I i (A) a y i i I i (B). Proto je součin i I X i Hausdorffův. Předpokládejme, že X i, i I, jsou T 3 1 prostory. Potom jsou všechny 2 Hausdorffovy a tedy jejich součin je Hausdorffův, speciálně je T 1. Nechť

5 x i i I je prvek a G je uzavřená podmnožina součinu i I X i a předpokládejme, že x i i I / G. Buď B báze součinu i I X i popsaná v Tvrzení 4.4. Protože je množina G uzavřená, existuje A = i I A i B obsahující x a disjunktní s G. Navíc existuje konečná podmnožina J indexové množiny I, taková, že A i = X i pro každé i I \ J. Protože prostory X i, i I, jsou všchny T 3, existuje pro každé j J spojité zobrazení f j : X j I takové, že f j (x j ) = 0 a f j (X j \ A j ) = {1}. Položme f = max j J (f j p j ) (kde p j : i I X i X j jsou kanonické projekce). Vzhledem k Lemmatu 4.8 je zobrazení f spojité. Pro každé j J platí, že (f j p j )( x i i I ) = f j (x j ) = 0, odkud je vidět, že f( x i i I ) = 0. Buď y i i I G. Protože jsou množiny A a G disjunktní, existuje j J takové, že y j / A j. Potom je (f j p j )( y i i I ) = f j (y j ) = 1, odkud plyne, že f( y i i I ) = 1.. Poznámka. Poznamenejme, že kartézský součin dvou normálních prostorů nemusí být normální (Kvazi)kompaktnost a součin. Nechť (X i, τ i ) i I je soubor topologických prostorů. Sub-báze topologie jejich součinu i I X i je podle definice množina S := { i (A) A τ i }. Pro každou množinu S S zvolme i S I tak, že S = i S (A) pro nějakou A τ is a položme A S := A. Věta 4.10 (Tichonovova). Nechť X i i I je soubor kvazikompaktních prostorů. Potom je součin i I X i kvazikompaktní. Důkaz. Buď S := { i (A) A τ i } sub-báze součinu X i i I a definujme i S pro každé S S jako v úvodu podkapitoly. Podle Lemmatu 4.1 stačí ukázat, že z každého pokrytí T prostoru X i i I množinami sub-báze S lze vybrat konečné podpokrytí. Pro každé i I T i := {T T i T = i}. Ukážeme, že existuje k I takové, že X k = T T k A T. Pro spor předpokládejme opak. Potom pro každé i I existuje x i X i \ T T i A T. Protože i I X i = T, existuje S T tak, že x i i I S. Potom ale x is A S, což je ve sporu s volbou x is X is \ T T is A T neboť S T is. Protože je prostor X k kvazikompaktní, existuje konečná podmnožina J T k taková, že X k = j J A T j. Potom je ale i I X i = j J T j a proto je {T j j J} konečné podpokrytí vybrané z T. Z Tvrzení 4.9 a Věty 4.10 ihned plyne, že Důsledek Součin kompaktních prostorů je kompaktní. 5

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY.

TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. TOPOLOGIE A TEORIE KATEGORIÍ (2017/2018) 3. PREDNÁŠKA - KOMPAKTNÍ PROSTORY. PAVEL RŮŽIČKA 3.1. Kompaktní prostory. Buď (X, τ) topologický prostor a Y X. Řekneme, že A τ je otevřené pokrytí množiny Y, je-li

Více

Kompaktnost Kompaktifikace Prostory funkcí 4. KOMPAKTNOST. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 4. Kompaktnost

Kompaktnost Kompaktifikace Prostory funkcí 4. KOMPAKTNOST. Miroslav Hušek, Pavel Pyrih KMA MFF UK. 4. Kompaktnost 4. KOMPAKTNOST Poznámky Miroslav Hušek, Pavel Pyrih KMA MFF UK 2008 4. bez oddělovacích axiómů Je-li S S pokrytím množiny X, říká se často, že S je podpokrytí nebo že je pokrytím vybraným z S. Relaci zjemnění

Více

PŘEDNÁŠKA 7 Kongruence svazů

PŘEDNÁŠKA 7 Kongruence svazů PŘEDNÁŠKA 7 Kongruence svazů PAVEL RŮŽIČKA Abstrakt. Definujeme svazové kongruence a ukážeme jak pro vhodné binární relace svazu ověřit, že se jedná o svazové kongruence. Popíšeme svaz Con(A) kongruencí

Více

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy PAVEL RŮŽIČKA Abstrakt. Ukážeme, že každý prvek distributivního svazu odpovídá termu v konjuktivně-disjunktivním (resp. disjunktivně-konjunktivním)

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť.

Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť. Přednáška 3, 19. října 2015 Důkaz Heineho Borelovy věty. Bez újmy na obecnosti vezmeme celý prostor A = M (proč? úloha 1). Implikace. Nechť je (M, d) kompaktní a nechť X i = M i I je jeho pokrytí otevřenými

Více

4. Topologické vlastnosti množiny reálných

4. Topologické vlastnosti množiny reálných Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 4. Topologické vlastnosti množiny reálných čísel V této kapitole definujeme přirozenou topologii na množině

Více

OBECNÁ TOPOLOGIE - PŘEDNÁŠKA ZIMA 2014/15. Literatura: Je možno užívat knihy od Engelkinga, Kelleyho, Nagaty, Dugundjiho,...

OBECNÁ TOPOLOGIE - PŘEDNÁŠKA ZIMA 2014/15. Literatura: Je možno užívat knihy od Engelkinga, Kelleyho, Nagaty, Dugundjiho,... OBECNÁ TOPOLOGIE - PŘEDNÁŠKA ZIMA 2014/15 Literatura: Je možno užívat knihy od Engelkinga, Kelleyho, Nagaty, Dugundjiho,... 1. Pojem topologického prostoru Historie: Maurice Fréchet (1906) definoval metrické

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

3. přednáška 15. října 2007

3. přednáška 15. října 2007 3. přednáška 15. října 2007 Kompaktnost a uzavřené a omezené množiny. Kompaktní množiny jsou vždy uzavřené a omezené, a v euklidovských prostorech to platí i naopak. Obecně to ale naopak neplatí. Tvrzení

Více

Základní pojmy teorie množin Vektorové prostory

Základní pojmy teorie množin Vektorové prostory Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy

Více

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra.

Báze a dimense. Odpřednesenou látku naleznete v kapitolách a 3.6 skript Abstraktní a konkrétní lineární algebra. Báze a dimense Odpřednesenou látku naleznete v kapitolách 3.1 3.3 a 3.6 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 15.10.2015: Báze a dimense 1/19 Minulé přednášky 1 Lineární

Více

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R... Kapitola 1 Úvod 1.1 Značení N... přirozená čísla (1, 2, 3,...). Z... celá čísla ( 3, 2, 1, 0, 1, 2,...). Q... racionální čísla ( p, kde p Z a q N) q R... reálná čísla C... komplexní čísla 1.2 Výroky -

Více

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice

Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Greenova funkce pro dvoubodové okrajové úlohy pro obyčejné diferenciální rovnice Jan Tomeček Tento stručný text si klade za cíl co nejrychlejší uvedení do teorie Greenových funkcí pro obyčejné diferenciální

Více

10 Přednáška ze

10 Přednáška ze 10 Přednáška ze 17. 12. 2003 Věta: G = (V, E) lze nakreslit jedním uzavřeným tahem G je souvislý a má všechny stupně sudé. Důkaz G je souvislý. Necht v je libovolný vrchol v G. A mějme uzavřený eurelovský

Více

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ),

1 Kardinální čísla. množin. Tvrzení: Necht X Cn. Pak: 1. X Cn a je to nejmenší prvek třídy X v uspořádání (Cn, ), Pracovní text k přednášce Logika a teorie množin 4.1.2007 1 1 Kardinální čísla 2 Ukázali jsme, že ordinální čísla reprezentují typy dobrých uspořádání Základy teorie množin Z minula: 1. Věta o ordinálních

Více

Lineární algebra : Lineární prostor

Lineární algebra : Lineární prostor Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární

Více

METRICKÉ A NORMOVANÉ PROSTORY

METRICKÉ A NORMOVANÉ PROSTORY PŘEDNÁŠKA 1 METRICKÉ A NORMOVANÉ PROSTORY 1.1 Prostor R n a jeho podmnožiny Připomeňme, že prostorem R n rozumíme množinu uspořádaných n tic reálných čísel, tj. R n = R } R {{ R }. n krát Prvky R n budeme

Více

Doporučené příklady k Teorii množin, LS 2018/2019

Doporučené příklady k Teorii množin, LS 2018/2019 Doporučené příklady k Teorii množin, LS 2018/2019 1. přednáška, 21. 2. 2019 1. Napište množina x je prázdná (přesněji množina x nemá žádné prvky ) formulí základního jazyka teorie množin. 2. Dokažte ((x

Více

Množiny, relace, zobrazení

Množiny, relace, zobrazení Množiny, relace, zobrazení Množiny Množinou rozumíme každý soubor určitých objektů shrnutých v jeden celek. Zmíněné objekty pak nazýváme prvky dané množiny. Pojem množina je tedy synonymem pojmů typu soubor,

Více

Riemannův určitý integrál

Riemannův určitý integrál Riemannův určitý integrál 1. Motivační příklad Příklad (Motivační příklad pro zavedení Riemannova integrálu). Nechť,. Vypočtěme obsah vybarvené oblasti ohraničené grafem funkce, osou a svislými přímkami

Více

Lineární algebra Kapitola 1 - Základní matematické pojmy

Lineární algebra Kapitola 1 - Základní matematické pojmy Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,

Více

1 Lineární prostory a podprostory

1 Lineární prostory a podprostory Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C

Více

Lineární algebra : Báze a dimenze

Lineární algebra : Báze a dimenze Lineární algebra : Báze a dimenze (5. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 9. dubna 2014, 13:33 1 2 5.1 Báze lineárního prostoru Definice 1. O množině vektorů M z LP V řekneme,

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. Cantorovu větu (x P(x)) 2. základní vlastnosti disjunktního sjednocení, kartézského součinu a množinové mocniny (z hlediska relací, ) 3. vztah P(a) a 2 4. větu (2 a

Více

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny

K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište všechny FUNKCIONÁLNÍ ANALÝZA 1 PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2016/2017 PŘÍKLADY KE KAPITOLE VI K oddílu VI.1 obecné slabé topologie Příklad 1. Necht X = C([0, 1]) s topologií bodové konvergence na [0, 1]. Popište

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Matematická analýza 1

Matematická analýza 1 Matematická analýza 1 ZS 2019-20 Miroslav Zelený 1. Logika, množiny a základní číselné obory 2. Limita posloupnosti 3. Limita a spojitost funkce 4. Elementární funkce 5. Derivace 6. Taylorův polynom Návod

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

K oddílu I.1 základní pojmy, normy, normované prostory

K oddílu I.1 základní pojmy, normy, normované prostory ÚVOD DO FUNKCIONÁLNÍ ANALÝZY PŘÍKLADY PRO POROZUMĚNÍ LÁTCE ZS 2015/2016 PŘÍKLADY KE KAPITOLE I K oddílu I1 základní pojmy, normy, normované prostory Příklad 1 Necht X je reálný vektorový prostor a : X

Více

Základy teorie množin

Základy teorie množin 1 Základy teorie množin Z minula: 1. zavedení pojmů relace, zobrazení (funkce); prostá zobrazení, zobrazení na, bijekce 2. rozklady, relace ekvivalence, kongruence, faktorizace 3. uspořádání a některé

Více

Co je to univerzální algebra?

Co je to univerzální algebra? Co je to univerzální algebra? Při studiu řadu algebraických struktur (grupoidy, pologrupy, grupy, komutativní grupy, okruhy, obory integrity, tělesa, polosvazy, svazy, Booleovy algebry) se často některé

Více

Projekty - Úvod do funkcionální analýzy

Projekty - Úvod do funkcionální analýzy Projekty - Úvod do funkcionální analýzy Projekt č. 1. Nechť a, b R, a < b. Dokažte, že prostor C( a, b ) = f : R R: f je spojitá na D(f) = a, b s metrikou je úplný. ρ(f, g) = max f(x) g(x) x a,b Projekt

Více

Modely Herbrandovské interpretace

Modely Herbrandovské interpretace Modely Herbrandovské interpretace Petr Štěpánek S využitím materialu Krysztofa R. Apta 2006 Logické programování 8 1 Uvedli jsme termové interpretace a termové modely pro logické programy a také nejmenší

Více

Báze a dimenze vektorových prostorů

Báze a dimenze vektorových prostorů Báze a dimenze vektorových prostorů Buď (V, +, ) vektorový prostor nad tělesem (T, +, ). Nechť u 1, u 2,..., u n je konečná posloupnost vektorů z V. Existují-li prvky s 1, s 2,..., s n T, z nichž alespoň

Více

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice Vektorové podprostory K množina reálných nebo komplexních čísel, U vektorový prostor nad K. Lineární kombinace vektorů u 1, u 2,...,u

Více

Lebesgueovsky neměřitelné množiny

Lebesgueovsky neměřitelné množiny Lebesgueovsky neměřitelné množiny Jonathan Verner jonathan.verner@matfyz.cz, http://jonathan.verner.matfyz.cz Motivace Lebesgueova míra nám umožňuje porovnávat velikost objektů. Na rozdíl od pojmu mohutnosti

Více

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno

Teorie množin. pro fajnšmekry - TeMno. Lenka Macálková BR Solutions Orličky. Lenka (Brkos 2010) TeMno Teorie množin pro fajnšmekry - TeMno Lenka Macálková BR Solutions 2010 - Orličky 23.2. 27.2.2010 Lenka (Brkos 2010) TeMno 23.2. 27.2.2010 1 / 42 Bylo nebylo... Starověké Řecko - nekonečnost nepochopená

Více

1 Linearní prostory nad komplexními čísly

1 Linearní prostory nad komplexními čísly 1 Linearní prostory nad komplexními čísly V této přednášce budeme hledat kořeny polynomů, které se dále budou moci vyskytovat jako složky vektorů nebo matic Vzhledem k tomu, že kořeny polynomu (i reálného)

Více

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Skalární součin. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Skalární součin študenti MFF 15. augusta 2008 1 10 Skalární součin Požadavky Vlastnosti v reálném i komplexním případě Norma Cauchy-Schwarzova nerovnost

Více

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují

Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují Definice. Vektorový prostor V nad tělesem T je množina s operacemi + : V V V, tj. u, v V : u + v V : T V V, tj. ( u V )( a T ) : a u V které splňují 1. u + v = v + u, u, v V 2. (u + v) + w = u + (v + w),

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

LIMITA A SPOJITOST FUNKCE

LIMITA A SPOJITOST FUNKCE PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:

Více

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S. 1 Kapitola 1 Množiny 11 Základní množinové pojmy Pojem množiny nedefinujeme, pouze připomínáme, že množina je souhrn, nebo soubor navzájem rozlišitelných objektů, kterým říkáme prvky 111 Princip rovnosti

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

Vrcholová barevnost grafu

Vrcholová barevnost grafu Vrcholová barevnost grafu Definice: Necht G = (V, E) je obyčejný graf a k N. Zobrazení φ : V {1, 2,..., k} nazýváme k-vrcholovým obarvením grafu G. Pokud φ(u) φ(v) pro každou hranu {u, v} E, nazveme k-vrcholové

Více

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky:

Lineární zobrazení. V prvním z následujících tvrzení navíc uvidíme, že odtud plynou a jsou tedy pak rovněž splněny podmínky: Lineární zobrazení Nechť (V, +, ) a (W, +, ) jsou dva vektorové prostory nad týmž tělesem (T, +, ). Nechť f : V W je zobrazení splňující následující podmínky: ( u, v V)(f(u + v) = f(u) + f(v)), ( s T )(

Více

Definice : Definice :

Definice : Definice : KAPITOLA 7: Spektrální analýza operátorů a matic [PAN16-K7-1] Definice : Necht H je komplexní Hilbertův prostor. Řekneme, že operátor T B(H) je normální, jestliže T T = T T. Operátor T B(H) je normální

Více

Topologie. 18. května Motivace Topologický prostor Spojitá zobrazení Podprostory, součiny Axiomy oddělitelnosti 6

Topologie. 18. května Motivace Topologický prostor Spojitá zobrazení Podprostory, součiny Axiomy oddělitelnosti 6 Topologie Lukáš Vokřínek 18. května 2013 Obsah 1. Motivace 1 2. Topologický prostor 1 3. Spojitá zobrazení 3 4. Podprostory, součiny 5 5. Axiomy oddělitelnosti 6 6. Kompaktní prostory 8 7. Souvislost 12

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout

Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní. stromový rozklad. Poznamenejme, že je-li k součástí vstupu, pak rozhodnout Ukážeme si lineární algoritmus, který pro pevné k rozhodne, zda vstupní graf má stromovou šířku nejvýše k, a je-li tomu tak, také vrátí příslušný stromový rozklad. Poznamenejme, že je-li k součástí vstupu,

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

A VLASTNOST BODU SPOJITOSTI

A VLASTNOST BODU SPOJITOSTI DĚDIČNĚ BAIREOVY PROSTORY A VLASTNOST BODU SPOJITOSTI Ondřej Kalenda Vedoucí diplomové práce: RNDr. Petr HOLICKÝ, CSc. Katedra matematické analýzy MFF UK Praha, 1995 Typeset by AMS-TEX 2 Prohlašuji, že

Více

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Číselné řady Definice (Posloupnost částečných součtů číselné řady). Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady. Definice (Součet číselné

Více

Výroková a predikátová logika - IV

Výroková a predikátová logika - IV Výroková a predikátová logika - IV Petr Gregor KTIML MFF UK ZS 2018/2019 Petr Gregor (KTIML MFF UK) Výroková a predikátová logika - IV ZS 2018/2019 1 / 17 Tablo metoda Tablo Tablo - příklady F (((p q)

Více

Metrické prostory a kompaktnost

Metrické prostory a kompaktnost Metrické prostory a kompaktnost David Hruška Abstrakt. Příspěvek shrnuje vybrané základní poznatky o metrických prostorech. Jeho závěrečná část je věnována kompaktnosti a jejím aplikacím. V reálném světě,

Více

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace

α β ) právě tehdy, když pro jednotlivé hodnoty platí β1 αn βn. Danou relaci nazýváme relace Monotónní a Lineární Funkce 1. Relace předcházení a to Uvažujme dva vektory hodnot proměnných α = α,, 1 αn ( ) a β = ( β β ) 1,, n x,, 1 xn. Říkáme, že vekto r hodnot α předchází vektor hodnot β (značíme

Více

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ

Množinu všech slov nad abecedou Σ značíme Σ * Množinu všech neprázdných slov Σ + Jazyk nad abecedou Σ je libovolná množina slov nad Σ Abecedou se rozumí libovolná konečná množina Σ. Prvky abecedy nazýváme znaky (symboly) Slovo (řetězec) v nad abecedou Σ je libovolná konečná posloupnost znaků této abecedy. Prázdné posloupnosti znaků odpovídá

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Úlohy k procvičování textu o univerzální algebře

Úlohy k procvičování textu o univerzální algebře Úlohy k procvičování textu o univerzální algebře Číslo za pomlčkou v označení úlohy je číslo kapitoly textu, která je úlohou procvičovaná. Každá úloha je vyřešena o několik stránek později. Kontrolní otázky

Více

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT

Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT Pavel Horák, Josef Janyška LINEÁRNÍ ALGEBRA UČEBNÍ TEXT 2 0 1 8 Obsah 1 Vektorové prostory 1 1 Vektorový prostor, podprostory........................ 1 2 Generování podprostor u............................

Více

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace RELACE Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace slouží k vyjádření vztahů mezi prvky nějakých množin. Vztahy mohou být různé povahy. Patří sem vztah býti potomkem,

Více

Michal Garlík. Topologie v teorii relativity

Michal Garlík. Topologie v teorii relativity Univerzita Karlova v Praze Matematicko-fyzikální fakulta BAKALÁŘSKÁ PRÁCE Michal Garlík Topologie v teorii relativity Ústav teoretické fyziky Vedoucí bakalářské práce: RNDr. Otakar Svítek, Ph.D. Studijní

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

Lineární algebra : Lineární zobrazení

Lineární algebra : Lineární zobrazení Lineární algebra : Lineární zobrazení (6. přednáška František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 20. května 2014, 22:40 1 2 6.1 Lineární zobrazení Definice 1. Buďte P a Q dva lineární prostory

Více

Hypergrafové removal lemma a Szemérediho

Hypergrafové removal lemma a Szemérediho Hypergrafové removal lemma a Szemérediho věta Zdeněk Dvořák 7. prosince 207 Hypergrafové removal lemma a jeho důsledek Definice. Dvojice (V, E) je k-uniformní hypergraf, je-li E množina neuspořádaných

Více

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT 2 0 1 7 Obsah 1 Vektorové prostory 2 1 Vektorový prostor, podprostory........................ 2 2 Generování podprostor u............................

Více

6. přednáška 5. listopadu 2007

6. přednáška 5. listopadu 2007 6. přednáška 5. listopadu 2007 Souvislost diferenciálu a parciálních derivací. Diferenciál implikuje parciální derivace a spojité parciální derivace implikují diferenciál. Tvrzení 2.3. Když je funkce f

Více

0. ÚVOD - matematické symboly, značení,

0. ÚVOD - matematické symboly, značení, 0. ÚVOD - matematické symboly, značení, číselné množiny Výroky Výrok je každé sdělení, u kterého lze jednoznačně rozhodnout, zda je či není pravdivé. Každému výroku lze proto přiřadit jedinou pravdivostní

Více

FREDHOLMOVA ALTERNATIVA

FREDHOLMOVA ALTERNATIVA FREDHOLMOVA ALTERNATIVA Pavel Jirásek 1 Abstrakt. V tomto článku se snažíme shrnout dosavadní výsledky týkající se Fredholmovy alternativy (FA). Postupně zmíníme FA na prostorech konečné dimenze, FA pro

Více

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Základy lineárního programování študenti MFF 15. augusta 2008 1 15 Základy lineárního programování Požadavky Simplexová metoda Věty o dualitě (bez důkazu)

Více

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

FIT ČVUT MI-LOM Lineární optimalizace a metody. Dualita. Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti FIT ČVUT MI-LOM Lineární optimalizace a metody Dualita Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Michal Černý, 2011 FIT ČVUT, MI-LOM, M. Černý, 2011: Dualita 2/5 Dualita Evropský

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Obecná úloha lineárního programování

Obecná úloha lineárního programování Obecná úloha lineárního programování Úloha Maximalizovat hodnotu c T x (tzv. účelová funkce) za podmínek Ax b (tzv. omezující podmínky) kde A je daná reálná matice typu m n a c R n, b R m jsou dané reálné

Více

Úvod do denotační sémantiky a teorie kategorií

Úvod do denotační sémantiky a teorie kategorií Úvod do denotační sémantiky a teorie kategorií Obsah 1 Uspořádání a svazy 5 1.1 Uspořádané množiny......................... 5 1.2 Úplné svazy.............................. 8 1.3 Monotónní zobrazení.........................

Více

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V. Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,

Více

6 Lineární geometrie. 6.1 Lineární variety

6 Lineární geometrie. 6.1 Lineární variety 6 Lineární geometrie Motivace. Pojem lineární varieta, který budeme v této kapitole studovat z nejrůznějších úhlů pohledu, není žádnou umělou konstrukcí. Příkladem lineární variety je totiž množina řešení

Více

10. Vektorové podprostory

10. Vektorové podprostory Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,

Více

Matematika B101MA1, B101MA2

Matematika B101MA1, B101MA2 Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet

Více

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16

Predik atov a logika - pˇredn aˇska () Predik atov a logika - pˇredn aˇska / 16 Predikátová logika - přednáška 3 6. 1. 2015 () Predikátová logika - přednáška 3 6. 1. 2015 1 / 16 Věta (o dedukci) Bud L jazyk, T teorie pro L, ϕ L-sentence a ψ L-formule. Pak Věta (o kompaktnosti) T ϕ

Více

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN KATEDRA INFORMATIKY PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITA PALACKÉHO ALGEBRA DAGMAR SKALSKÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY Olomouc

Více

Formální systém výrokové logiky

Formální systém výrokové logiky Formální systém výrokové logiky 1.Jazyk výrokové logiky Nechť P = {p,q,r, } je neprázdná množina symbolů, které nazýváme prvotní formule. Symboly jazyka L P výrokové logiky jsou : a) prvky množiny P, b)

Více

Algebraické struktury s jednou binární operací

Algebraické struktury s jednou binární operací 16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte

Více

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu.

Kapitola 1. Relace. podle definice podmnožinou každé množiny. 1 Neříkáme už ale, co to je objekt. V tom právě spočívá intuitivnost našeho přístupu. Kapitola 1 Relace Úvodní kapitola je věnována důležitému pojmu relace. Protože relace popisují vztahy mezi prvky množin a navíc jsou samy množinami, bude vhodné množiny nejprve krátce připomenout. 1.1

Více

Úvod do funkcionální analýzy

Úvod do funkcionální analýzy Úvod do funkcionální analýzy Ladislav Lukšan Ústav informatiky AV ČR, Pod vodárenskou věží 2, 182 07 Praha 8 Technická universita v Liberci, Hálkova 6, 461 17 Liberec Tento text byl použit jako podklad

Více

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom,

Stromové rozklady. Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, Stromové rozklady Zdeněk Dvořák 25. října 2017 Definice 1. Stromový rozklad grafu G je dvojice (T, β) taková, že T je strom, β je funkce přiřazující každému vrcholu T podmnožinu vrcholů v G, pro každé

Více

Zobecněný Riemannův integrál

Zobecněný Riemannův integrál Zobecněný Riemannův integrál Definice (Zobecněný Riemannův integrál). Buď,,. Nechť pro všechna existuje určitý Riemannův integrál. Pokud existuje konečná limita, říkáme, že zobecněný Riemannův integrál

Více

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =

Více

Matematika V. Dynamická optimalizace

Matematika V. Dynamická optimalizace Matematika V. Dynamická optimalizace Obsah Kapitola 1. Variační počet 1.1. Derivace funkcí na vektorových prostorech...str. 3 1.2. Derivace integrálu...str. 5 1.3. Formulace základní úlohy P1 var. počtu,

Více

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α 1. JAZYK ATEATIKY 1.1 nožiny nožina je souhrn objektů určitých vlastností, které chápeme jako celek. ZNAČENÍ. x A x A θ A = { { a, b a A = B A B 0, 1 2 a, a,..., a n x patří do množiny A x nepatří do množiny

Více

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou, Matematická analýza I přednášky M. Málka cvičení A. Hakové a R. Otáhalové Zimní semestr 2004/05 2. Reálná čísla, funkce reálné proměnné V této kapitole zavádíme množinu, na níž stojí celá matematická analýza:

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Vlastnosti regulárních jazyků

Vlastnosti regulárních jazyků Vlastnosti regulárních jazyků Podobně jako u dalších tříd jazyků budeme nyní zkoumat následující vlastnosti regulárních jazyků: vlastnosti strukturální, vlastnosti uzávěrové a rozhodnutelné problémy pro

Více

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Vysoké učení technické v Brně Fakulta informačních technologií Regulární pologrupy Semestrální práce do předmětu Algebra, Kombinatorika, Grafy Tomáš Masopust Brno, 2006 Obsah Úvod 1 1 Základní definice

Více

Matematická logika. Miroslav Kolařík

Matematická logika. Miroslav Kolařík Matematická logika přednáška třetí Miroslav Kolařík Zpracováno dle textu R. Bělohlávka: Matematická logika poznámky k přednáškám, 2004. a dle učebního textu R. Bělohlávka a V. Vychodila: Diskrétní matematika

Více