definice kritického bodu okolí kritického bodu kritické veličiny čistých látek a možnosti jejich odhadu příklady na procvičení kritické bod u směsí
|
|
- Karolína Soukupová
- před 8 lety
- Počet zobrazení:
Transkript
1 defne rtého bodu oolí rtého bodu rté velčny čstýh láte a možnost eh odhadu řílady na rovčení rté bod u směsí ombnační ravdla ro odhad rtýh velčn směsí řílady na rovčení
2 Kontnuta aalného a lynného stavu Krtý bod K rtý bod [,,,..] nebo [,,,..] aalna láta ř telotě nžší než e rtá a tlau větším než tla nasyené áry (oblast vlevo od rté zotermy a řvy LK) nasyená aalna aalna v rovnováze se svou arou (body na řve LK) lyn láta v lynném stavu, eíž telota e vyšší než rtá ára láta v lynném stavu, eíž telota e nžší než rtá nasyená ára ára v rovnováze s nasyemou aalnou (body na řve GK)
3 Přílady fázovýh dagramů čstýh slože - CO voda
4 Krtý bod - záladní haratersta vlastnost aalné fáze a nasyené arní fáze sou stené defne rtého bodu z D hledsa: -složový systém: 4 4 A 0 A 0 A 0 m m m m m m yužtí: / haraterstá vlastnost složy (odobně ao bod varu nebo hustota) / odhady vlastností láte (teelná aata) / haraterzae P-- hování 4/ výočet stavovýh velčn (H,S,G,,..) reálnýh čstýh slože směsí 5/ výočet tela a ráe 4
5 5 zotermní oefent obemové stlačtelnost čsté láty teelná aata za onst. tlau : výarné telo e nulové rozdíl hustot ČISÉ SLOŽKY: Krtý bod - záladní haratersta 0 m m m 0 v H 0 g l
6 6 zotermní oefent obemové stlačtelnost čsté láty v rtém bodě, v blízost rude roste hování láte e ovlvněno ředevším flutuaem hustoty (velý dosah), nolv slam mez moleulam (ůsobení na vzdálenost v nm) všehny láte se hovaí steně tzv rté eonenty měření: roblém gravtae stav beztíže ρ g a ρ l víe od slňuí ravdlo římového růměru využtí: suerrté teutny (oblast nad rtým bodem) vlastnost mez lynem a aalnou (hustota a ao aalny, vsozta a ao lyny) Oolí rtého bodu C g l m m Blízost rtého bodu: flutuae hustoty (čsté složy) flutuae ndeu lomu otá nehomogenta tzv. rtá oalesene vlv na řadu temodynamýh velčn flutuae onentrae (směs) , ;, ; C, ; g l
7 Suerrté velčny Suerrté aalny se oužívaí ao rozouštědla: CO oovování, etrae vůní (arfémy), etrae esenálníh oleů, etrae tuu z hsů; H O - syntéza řemennýh rystalů ro moblní telefony ÚCHP CAS: Laboratoř suerrtýh etraí Etrae ofenu z ávy e nevýznamněší růmyslovou alaí suerrté etrae odem uhlčtým. Kofen se etrahue z elýh zelenýh bobů. y sou nerve navlhčeny horou vodní arou, oté vloženy do etratoru a omalu etrahovány rotéaíím suerrtým CO. Etrae e vysoe seletvní a boby se ř ní zbaví až 97% ofenu. Po uončení etrae odhází od uhlčtý ao lyn a zelené boby, zbavené ofenu, ostuuí do roesu ražení, terý dává ávě haraterstou huť a vůn. Druhou nevýznamněší alaí suerrté etrae e etrae láte z hmelovýh šše. Chmelové etraty se tradčně zísávaí etraí hlávového hmele horou vodou nebo ethanolem, terý e olárním rozouštědlem. Dobře rozustné láty: vonné láty, esenální olee, estery, aloholy, aldehydy, etony 7
8 Krtý bod - eermentální stanovení + odhady Eermentální stanovení: / (0,%) / etraolae tlau nasyenýh ar směrem e rt. bodu (0,5%) / omoí hustot aalny a áry od rtou telotou (%) data as ro 700 láte Odhad čsté složy ednoduhé Guldbergovo ravdlo ro neolární láty:. v n b. řísěvové metody vyházeí ze znalost strutury a nbv odhad omoí nbv a hustoty (ro sefé tyy směsí) % hyba ve stanovení C benzenu může zůsobt až 0% hybu v odhadu eho tlau nasyenýh ar 8
9 řísěvové metody vyházeí ze znalost strutury a nbv Lydersen (955) Joba (987) Ambrose (980) ro uhlovodíy Marrero a Pardllo (999) a mnoho dalšíh a složtěšíh CH = CH CH - CH CH OH Cl P(CH =) + P(= CH ) + P( CH -) + P(CH ) + P(-OH) + P(-Cl) M Lydersen b 0,567 I 40 0,0M I P I 0,4 I g / mol K MPa m / mol Joba M 0,584 0,965 0, 0,00n 7,5 I b 0, I A I I P g / mol K MPa m / mol I I P I I I P I -CH- a CH 0,0 0,7 55 -CH 0,04-0, CH- v ruhu 0,0 0,84 44,5 -CH- 0, CH< 0,0 0, 5 >CH- 0,064 0, CH< v ruhu 0,0 0,9 46 >C< 0,0067 0,004 7 =CH- a =CH 0,08 0,98 45 =CH 0,0-0, =CH- v ruhu 0,0 0,54 7 =CH- 0,09-0,
10 Krtý bod - databáze Pro značné množství láte sou rtá data tabelována. evýznamněším databázem sou IS - RC, DIPPR a DD. RC: HERMODYAMICS RESEARCH CEER HP://RC.IS.GO/) USA, COLORADO IS AIOAL ISIUE OF SADARS AD ECHOLOGY termofyzální vlastnost, transortní vlastnost čsté láty, bnární a ternární směs, hemé reae neta DIPPR: Desgn Insttute for Physal Proertes (htt:// 78 sloučenn; 49 termofyzálníh vlastností,. sídlo AIChE (Ameran Insttute of Chemal Engneers) USA, ew Yor IS romě RC atomová setra DD Dortmund Data Ban (htt:// LE data, rozustnost, transortní vlastnost, termodynama, ChemSder. 0
11 Krtý bod - zhodnoení řís. odhadovýh metod Přesnost odhadu:.. 4,5K. 0, MPa...8 m/mol Ambrose, Joba, Lydersen DOPORUČOÁO K POUŽIÍ Další možnost: / odhad rtého tlau neasouííh láte, 08 Ant / odhad rtého obemu neasouííh láte Pouze ao dolňuíí metoda! Ant tla odle Antoneovy rovne vyočtený ř ln ln M l 7 ln 7 R ověření omoí tzv. omresbltního fatoru z z deální lyn: z= R rtý omresbltní fator z 0,4 až 0,0 R
12 PŘÍKLADY K PROCIČEÍ - Odhadněte, a u následuííh sloučenn: a/ -methyl--butanone Data: b= 67,4 K, M = 86,4g/mol (e) = 55,4 K, (e) =,85 MPa, (e) = 0 m/mol b/ -Chloro-,, trfluoroethyl dfluoromethyl ether CHF -CFCl-O-CHF Data: b= 0, K, M = 84,49 g/mol (e) = 474, K, (e) =,7 MPa / -methylroylbutanoate Data: b= 409,75 K, M = 0,87 g/mol (e) = 59 K, (e) =,7 MPa, (e) = 447 m/mol d/ Pentafluorotoluen C 7 H F 5 Data: b= 90,95 K, M = 8,g/mol (e) = 566 K, (e) =, MPa Použte Lydersenovu a Jobaovu metodu. yočítete relatvní hybu u velčn, de sou známy eermentální data.
13 KRIICKÝ BOD ro SMĚSI a PSEUDOKRIICKÉ ELIČIY vlastnost aalné fáze a nasyené arní fáze sou stené defne rtého bodu z D hledsa ro víesložový systém: D A/ m A/, m A/ A/ m, m 0 a zároveň: A / 0 m, m, o znamená, že u těhto systémů tla v rtém bodě lesá s rostouím obemem a neslňue odmínu, terá latí u ednosložovýh systémů. ýmou sou říady, dy azeotroý bod slývá s rtým bodem. KRIICKÝ BOD lasé oetí = slývaí vlastnost aalné a lynné fáze nevýhoda: rté velčny směsí závsí na složení a není dsoz dostate eermentálníh dat seudorté velčny Jednoaalnová aromae na směs ohlížíme ao na ftvní čstou látu..seudorté velčny,,, z, ω, Pozor: nezaměňovat s rtým velčnam seudorté velčny slouží en ro výočet stavového hování směsí (stavové rovne, stavové velčny) ednomu z řísluší víe dvo,,.
14 z R Pozn. Ideální lyn e haraterzován z =.
15 ýočet seudortýh velčn a směs lze ohlížet ao na ftvní čstou látu tzv. seudorté velčny / Kayovy seudorté velčny: (96) ' ω z ω ω (,,, z, ) z oužtí: omezené z složy ve směs se nelší (nař. homologé řady) oměry / a / by měly být mez / až / selhává v rté oblast hyba až 0%
16 ýočet seudortýh velčn / Joffeho seudorté velčny: 64 7 R a P R 64 7 a ' 8 ω ω z z 0.08ω 0.9 z odvození: ombnae onstant stavovýh rovn nař. ro van der Waalse 8 l R z / van der Waalsova aromae:, l tabelované nebo nulové
17 ýočet seudortýh velčn 4/ Lee-Kesslerovy seudorté velčny: ω z R z 8 ω ω 0.085ω z 8 ' R z obdoba van der Waalsovy aromae výhoda vyloučen
18 5/ seudorté velčny s nastavtelným arametry: n n K n n 8 ' R z n z z ýočet seudortýh velčn Zhodnoení: / neleší metoda nastavtelnýh arametrů / Joffeho metoda / Kayova metoda ro ryhlý odhad
19
20 Krtý bod - seální směs odhad omoí nbv a hustoty Raz a Daubert, 980 haraterzae ronýh fraí, ondenzátů zemního lynu a láte, vznaííh ř zaalňování lynů záladem o určení seudosložy sou destlační řvy, de se měří telota v růběhu destlae. Daná frae (t. seudosloža) e a haraterzována středním bodem varu a střední molární hmotností, říadně eště hustotou. K MPa m 9, 06 / mol 0, nbv 5, , 0, 5 nbv 4 0, 596 R, 89 nbv, 0 R, 68 R R H 55, o C O; 55, o C 55, o C 0, ,5 o C = 60 o F 0
21 PŘÍKLADY K PROCIČEÍ - yočtěte seudortou telotu, tla a obem směs : methan (=0,608) butan(=0,9). Použte / Kayovu metodu / Joffeho metodu / metodu s nastavtelným arametry Parametr K ro tuto směs má hodnotu,.
plynné směsi viriální rozvoj plynné směsi stavové rovnice empirická pravidla pro plynné směsi příklady na procvičení
lyé směs válí ovo lyé směs stavové ove emá avdla o lyé směs řílady a ovčeí Směs lyů eálé a deálí hováí eáměší vtahy: magatův áo: m...,, m Daltoův áo:...,,, Směs lyů válí ovo B C... R m m R B SISICKÁ ERMODYMIK:
Membránové procesy. (koncentrát) permeát P. (diluát) mikrofiltrace ultrafiltrace 0,2. reverzní osmóza (hyperfiltrace) dialýza elektrodialýza.
nástř F retentát R (oncentrát) ermeát P (dluát) 0.110 m 3 0.110 m 1 nm 1 nm ( 1 m) 0.2 1 m 0,2 MPa mrofltrace ultrafltrace 0,2 1,5 MPa nanofltrace 1 4 MPa reverzní osmóza (hyerfltrace) dalýza eletrodalýza
ý ů č č Í ď ř č ý ř ý č č ď č ř ý ř ó Í ř č ď ď ř ů ý ý Š ř ďý ř Ž č č ý ř ý ř ř ý ý čř ď É Ř Ě ý č ů ř ď č č ř ý ř ý č č ý č ř ď ř ů ý ř ř č ř ď ď ď ý ý č ď ů ů ů ř ď ď ř č č ý č ď ř ď ý ý ý ď ů ř ř ď
Fyzikální chemie 1: Termodynamika Sylabus přednášky
Fyzkální heme : ermodynamka Sylabus řednášky ohuslav aš Dooručená lteratura: P.W. tkns: Physal Chemstry, Oford Unversty Press W.J. Moore: Fyzkální heme, SNL, Praha Dvořák, rdčka: Základy fyzkální heme,
Je vzduch vhodný modelový plyn pro výkonnostní zkoušky plynového radiálního kompresoru?
Turbostroje 03 Je vzduch vhodný modelový lyn ro výonnostní zoušy lynového radálního omresoru? Ing. Jří Oldřch, CSc. ČKD KOMPRESORY, a.s., Klečáova 347, 90 0 Praha 9 jr.oldrch@cdomresory.cz oldrch.jr@seznam.cz
Agregace vzájemné spojování destabilizovaných částic ve větší celky, případně jejich adheze na povrchu jiných materiálů
Agregace - úvod 1 Agregace vzáemné spoování destablzovaných částc ve větší cely, případně ech adheze na povrchu ných materálů Částce mohou agregovat, poud vyazuí adhezní schopnost a poud e umožněno ech
Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem
DVOUSLOŽKOVÉ SYSTÉMY lkace Gbbsova zákona fází v f s 2 3 1 4 2 2 4 mamálně 3 roměnné, ro fázový dagram bchom otřeboval trojrozměrný 1 3 4 graf, oužíváme lošné graf, kd volíme buď konstantní telotu (zotermcký
symetrická rovnice, model Redlich- Kister dvoukonstantové rovnice: Margules, van Laar model Hildebrandt - Scatchard mřížková teorie roztoků příklady
symetrcá rovnce, model Redlch- Kster dvouonstantové rovnce: Margules, van Laar model Hldebrandt - Scatchard mřížová teore roztoů přílady na procvčení 0 lm Bnární systémy: 0 atvtní oefcenty N I E N I E
Fyzikální chemie. 1.2 Termodynamika
Fyzikální chemie. ermodynamika Mgr. Sylvie Pavloková Letní semestr 07/08 děj izotermický izobarický izochorický konstantní V ermodynamika rvní termodynamický zákon (zákon zachování energie): U Q + W izotermický
Pomoc v nouzi. (m B je hmotnost rozpouštědla v gramech)
Pomo v nouz m / M n n n n n.. B B x m n g 000 mol kg M mb 0 m B (g mol ) (0 g) mb mb. n M n M m m B B B W B (m B je hmotnot rozouštědla v grameh).4 000 000 n 000 n n M V M V V M m ( ) 0 m m roztok mol
Termodynamika pro +EE1
ermodynamka ro +EE Možné zůsoby výroby elektrcké energe v současnost: termodynamcká řeměna energe jaderného alva a salování foslních alv v mechanckou energ a následně elektrckou - jaderné a klascké teelné
Aplikované chemické procesy
pliované hemié proesy Záladní pojmy, bilanování Rozdělení systému - podle výměny hmoty a energie Otevřený systém může se svým oolím vyměňovat hmotu a energii v průběhu časového období bilanování Uzavřený
7. Fázové přeměny Separace
7. Fázové řeměny Searace Fáze Fázové rovnováhy Searace látek Evroský sociální fond Praha & EU: Investujeme do vaší budoucnosti 7. Fázové řeměny Searace fáze - odlišitelný stav látky v systému; v určité
c A = c A0 a k c ln c A A0
řád n 2.řád.řád 0.řád. KINETIK JEDNODUCHÝCH REKCÍ 0 Ryhlost reae, ryhlosti přírůstu a úbytu jednotlivýh slože... 2 02 Ryhlost reae, ryhlosti přírůstu a úbytu jednotlivýh slože... 2 03 Ryhlost reae, ryhlosti
II. MOLEKULOVÁ FYZIKA 3. Reálné plyny a fázové přechody 4. Molekulární jevy v kapalinách
II. MOLEKULOÁ FYZIK. Reálné lyny a fázové řechody 4. Moleulární jevy v aalnách Osah Stavová rovnce reálných lynů an der Waalsův lyn Jouleův-homsonův jev Suenství suensé řechody fáze Složy stuně volnost
Stavové chování kapalin a plynů II. 12. března 2010
Stavové chování kapalin a plynů II. 12. března 2010 Stavové rovnice - obecně Van der Waalsova rovnice V čem je ukryta síla van der Waalse... A b=4n A V mol. Van der Waalsova rovnice (r. 1873) - první úspěšná
Entropie (opičí tým) M možných výsledků (x 1, x 2, x M ) jak přiřadit pravděpodobnosti jednotlivým výsledkům?
ntroe (očí tým) možnýh výsledů (,, ) a řřadt ravděodobnost ednotlvým výsledům? aždou možnost rerezentueme rabí a náhodně do rab rozházíme mní ravděodobnost -tého výsledu: výsledem e -te ravděodobností:
i=1..k p x 2 p 2 s = y 2 p x 1 p 1 s = y 1 p 2
i I i II... i F i..k Binární mě, ideální kaalina, ideální lyn x y y 2 Křivka bodů varu: Křivka roných bodů: Pákové ravidlo: x y y 2 n I n x I z II II z x Henryho zákon: 28-2 U měi hexan() + hetan(2) ři
2. Cvi ení A. Výpo et množství vzduchu Zadání p íkladu: Množství p ivád ného vzduchu Vp :
2. Cvčení Požadavky na větrání rostor - Výočet množství větracího vzduchu - Zůsob ohřevu a chlazení větracího vzduchu A. Výočet množství vzduchu výočet množství čerstvého větracího vzduchu ro obsluhovaný
V xv x V V E x. V nv n V nv x. S x S x S R x x x x S E x. ln ln
Souhrn 6. přednášky: 1) Terodynaka sěsí a) Ideální sěs: adtvta objeů a entalpí, Aagatův zákon b) Reálná sěs: pops poocí dodatkových velčn E Def. Y Y Y, d Aplkace: - př. obje reálné dvousložkové sěs V xv
Výpo ty Výpo et hmotnostní koncentrace zne ující látky ,
"Zracováno odle Skácel F. - Tekáč.: Podklady ro Ministerstvo životního rostředí k rovádění Protokolu o PRTR - řehled etod ěření a identifikace látek sledovaných odle Protokolu o registrech úniků a řenosů
Chemie cvičení 3 Soustavy s chemickou reakcí
U 8 - Ústav oesí a zaovatelsé tehiy FS ČUT Chemie vičeí 3 Soustavy s hemiou eaí A. Reačí ietia 3/ eatou obíhá eae A + B C. oetae láty A a vstuu do eatou je,3 mol/l a láty B, mol/l. Ja se změí eačí yhlost,
03 Návrh pojistného a zabezpečovacího zařízení
03 Návrh ojistného a zabezečovacího zařízení Roman Vavřička ČVUT v raze, Fakulta strojní Ústav techniky rostředí 1/14 htt://ut.fs.cvut.cz Roman.Vavricka@fs.cvut.cz ojistné zařízení chrání zdroj tela roti
doplňkové a dodatkové veličiny ideální směs parciální molární veličiny fugacita maximální obsah vody v plynu Gibbs Duhemova rovnice příklady na
dňvé a ddatvé večny deáí sěs arcáí ární večny ugacta aáí bsah vdy v ynu bbs Duheva rvnce říady na rcvčení Sěs ynů Závs árníh beu na sžení dňvý be ddatvý be 3 Ddatvé večny - vyadřuí dchyu d deáí sěs X E
2.6.6 Sytá pára. Předpoklady: 2604
.6.6 Sytá ára Předolady: 604 Oaování: aaliny se vyařují za aždé teloty. Nejrychlejší částice uniají z aaliny a stává se z nich ára. Do isy nalijee vodu voda se ostuně vyařuje naonec zůstane isa rázdná,
Viz též stavová rovnice ideálního plynu, stavová rovnice reálného plynu a van der Waalsova stavová rovnice.
5.1 Stavová rovnice 5.1.1 Stavová rovnice ideálního plynu Stavová rovnice pro sěs ideálních plynů 5.1.2 Stavová rovnice reálného plynu Stavové rovnice se dvěa onstantai Viriální rovnice Stavové rovnice
Přednáška č. 11 Analýza rozptylu při dvojném třídění
Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané
Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky
Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící
Termodynamika pro +EE1 a PEE
ermodynamika ro +EE a PEE Literatura: htt://home.zcu.cz/~nohac/vyuka.htm#ee [0] Zakladni omocny text rednasek Doc. Schejbala [] Pomocne texty ke cviceni [] Prednaska cislo 7 - Zaklady termodynamiky [3]
ρ hustotu měřeného plynu za normálních podmínek ( 273 K, (1) ve které značí
Měření růtou lynu rotametrem a alibrace ailárního růtooměru Úvod: Průtoy lynů se měří lynoměry, rotametry nebo se vyočítávají ze změřené tlaové diference v místech zúžení růřezu otrubí nař.clonou, Venturiho
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP. Termodynamika. Příklad 10
Zadání příkladů řešených na výpočetních cvičeních z Fyzikální chemie I, obor CHTP Termodynamika Příklad 1 Stláčením ideálního plynu na 2/3 původního objemu vzrostl při stálé teplotě jeho tlak na 15 kpa.
STRUKTURA A VLASTNOSTI PLYNŮ
I N E S I C E D O R O Z O J E Z D Ě L Á Á N Í SRUKURA A LASNOSI PLYNŮ. Ideální lyn ředstavuje model ideálního lynu, který často oužíváme k oisu různých dějů. Naříklad ozději ředokládáme, že všechny molekuly
Složení soustav. c k. Přehled užívaných koncentrací. hmotnostní konc. (podíl) objemová konc. (podíl) molová konc. (podíl) hmotnostně objemová konc.
U 8 - Ústav oesí a zaovatelsé tehy FS ČVU Složeí soustav Přehled užívaýh oetaí Symbol efe Rozmě Název m hmotost_ hmotost_ hmotostí o. (odíl) v objem_ objem_ objemová o. (odíl) lat. mozství_ lat. mozství_
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
TERMODYNAMIKA 1. AXIOMATICKÁ VÝSTAVBA KLASICKÉ TD Základní pojmy
ERMODYNAMIKA. AXIOMAICKÁ ÝSABA KLASICKÉ D.. Základní ojmy Soustava (systém) je část rostoru od okolí oddělený stěnou uzavřená - stěna brání výměně hmoty mezi soustavou a okolím vers. otevřená (uzavřená
Termodynamika ideálního plynu
Přednáška 5 Termodynamika ideálního lynu 5.1 Základní vztahy ro ideální lyn 5.1.1 nitřní energie ideálního lynu Alikujme nyní oznatky získané v ředchozím textu na nejjednodužší termodynamickou soustavu
Chemické reaktory. Inženýrství chemicko-farmaceutických výrob. Chemické reaktory. » Počet fází. » Chemická reakce.
» Počet fází» homogenní» heteogenní (víefázové)» Chemá eae» neatalyté» atalyté» boeatoy (fementoy)» Chaate tou» deálně míhané» s pístovým toem» s nedoonalým míháním 1 » Výměna tepla» bez výměny tepla (adabatý)»
Numerická integrace konstitučních vztahů
Numercká ntegrace konsttučních vztahů Po výočtu neznámých deformačních uzlových arametrů v každé terac NR metody je nutné stanovt naětí a deformace na rvcích. Nař. Jednoosý tah (vz obr. vravo) Pro nterval
E = E red,pravý E red,levý + E D = E red,pravý + E ox,levý + E D
11. GALVANICKÉ ČLÁNKY 01 Výočet E článku, γ ± 1... 0 Střední aktvtní koefcent z E článku... 03 Výočet E článku, γ ± 1... 04 Tlak lnu na elektrodě z E článku; aktvtní koefcent... 05 E článku a dsocační
Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie
Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího
Difuze v procesu hoření
Difuze v procesu hoření Fyziální podmíny hoření Záladní podmínou nepřetržitého průběhu spalovací reace je přívod reagentů (paliva a vzduchu) do ohniště a zároveň odvod produtů hoření (spalin). Pro dosažení
Chemické reaktory. Chemické reaktory. Mikrokinetika a Makrokinetika. Rychlost vzniku složky reakcí. Rychlost reakce
» Počet fází» homogenní» heteogenní (víefázové)» Chemká eake» nekatalytké» katalytké» boeaktoy (fementoy)» Chaakte toku» deálně míhané» s pístovým tokem» s nedokonalým míháním Mkoknetka a Makoknetka» Výměna
3. Soustavy reakcí. Reakce vratné, paralelní, následné. Komplexní reakce.
3. Sousavy eaí. eae vané, aalelní, náslené. Komlexní eae. řílay olymeae aalyé eae, enzymaé ee hoření alv Zálaní haaesy omlexníh eaí: velé množsví slože (N > 0 6 ) složý ůběh vlv oolí na ůběh eae (nař.
FYZIKA 2. ROČNÍK. Změny skupenství látek. Tání a tuhnutí. Pevná látka. soustava velkého počtu částic. Plyn
Zěny skuenství látek Pevná látka Kaalina Plyn soustava velkého očtu částic Má-li soustava v rovnovážné stavu ve všech částech stejné fyzikální a cheické vlastnosti (stejnou hustotu, stejnou strukturu a
Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály
Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém
Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny
U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně
Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými
1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte
č Ú Í ř
č Ú ř ť á ě á é á ý ě ě é ů ě č ň ě ř é ú ř ž č ě ň ř á ě ě ě ř ů žý č ú ť ě ř ť á š šť č ž ý ů ů ň ě ř ě č é ř á ž ž ž ď š ě ň ů ú Ě é ř á ě ě ř ř ě ř á ý ý ú ř ěž ó ě ý ž ě ý ř ř á ě ě ř š ž š ř ú ý
Téma 6: Indexy a diference
dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -
VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6
UNIVERZITA TOMÁŠE BATI VE ZLÍNĚ FAKULTA APLIKOVANÉ INFORMATIKY VYBRANÉ STATĚ Z PROCESNÍHO INŽENÝRSTVÍ cvičení 6 Entalická bilance výměníků tela Hana Charvátová, Dagmar Janáčová Zlín 013 Tento studijní
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
Stabilita prutu, desky a válce vzpěr (osová síla)
Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1
II. Stavové chování látkových soustav
II. Stavové chování látkových soustav 1 II. Stavové chování látkových soustav Stavové chování látkové soustavy vztah mez telotou, tlakem, objemem a množstvím látky v soustavě Proč tyto velčny? Defnce:
Statistická analýza dat - Indexní analýza
Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...
BH059 Tepelná technika budov Konzultace č. 2
Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA INFORMAČNÍCH TECHNOLOGIÍ ÚSTAV INTELIGENTNÍCH SYSTÉMŮ FACULTY OF INFORMATION TECHNOLOGY DEPARTMENT OF INTELLIGENT SYSTEMS VLIV PŘESNOSTI
Oddělení technické elektrochemie, A037. LABORATORNÍ PRÁCE č.9 CYKLICKÁ VOLTAMETRIE
ÚSTV NORGNIKÉ THNOLOGI Oddělení technické elektrochemie, 037 LBORTORNÍ PRÁ č.9 YKLIKÁ VOLTMTRI yklická voltametrie yklická voltametrie atří do skuiny otenciodynamických exerimentálních metod. Ty doznaly
Š Ž ů Č á ž ř á ň á ř ž ů Č žá á ž č á ž ř á ž ž ř ž ď á ř ž ž á á ů ž á č á řč á ř ž ů á á ž ď á ř á ň á á á á á č ř ď á ř á á ž ů ř á á ř á á ž á č Č á á ů ř Ž Č čá Č ř á á ř Č ň ž ř ř č Ř Ž á ž á ř
I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í
CHEMICKY ČISTÉ LÁTKY A SMĚSI Látka = forma hmoty, která se skládá z velkého množství základních částic: atomů, iontů a... 1. Přiřaďte látky: glukóza, sůl, vodík a helium k níže zobrazeným typům částic.
Výpočty za použití zákonů pro ideální plyn
ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání
1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.
SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě
Národní informační středisko pro podporu jakosti
Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef
IV. Fázové rovnováhy dokončení
IV. Fázové rovnováhy dokončení 4. Fázové rovnováhy Ústav rocesní a zracovatelské techniky 1 4.3.2 Soustava tuhá složka kaalná složka Dvousložková soustava s 2 Křivka rozustnosti T nenasycený roztok nasycený
Vedení hydrostatická - příklady
Katedra onstruování stroů aulta stroní KKS/ KVS, KOS Vedení hydrostatcá - řílady Zdeně Hudec verze -. Tento roet e solufnancován Evrosým socálním fondem a státním rozočtem Česé reubly Záadočesá unverzta
Dodatkové příklady k předmětu Termika a Molekulová Fyzika. Dr. Petr Jizba. II. princip termodamický a jeho aplikace
Dodatkové říklady k ředmětu Termika a Molekulová Fyika Dr Petr Jiba II rinci termodamický a jeho alikace Pfaffovy formy a exaktní diferenciály Příklad 1: Určete která následujících 1-forem je exaktním
Středoevropské centrum pro vytváření a realizaci inovovaných technicko-ekonomických studijních programů Registrační číslo: CZ.1.07/2.2.00/28.
Středoeroské centr ro ytáření a realzac nooaných techncko-ekonockých stdjních rograů Regstrační číslo: CZ..07/..00/8.030 CT 07 - Teroechanka VUT, FAST, ústa Technckých zařízení bdo Ka. Základní úlohy z
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat
Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je
Statistické srovnávání Indexy
Statisticé srovnávání ndexy Statisticé srovnávání Srovnávání cháeme ao roces robíhaící odle určitého algoritmu a řinášeící obetivní výslede. Nástroem srovnávání sou indexy a absolutní rozdíly. Záladní
7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.
7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta
Jednosložkové soustavy
Jednosložkové soustavy Fázové rovnováhy Prezentace je určena pro výuku. roč. studjního oboru Nanotechnologí a není dovoleno její šíření bez vědomí garanta předmětu. K jejímu vytvoření bylo použto materálů
Cvičení z termomechaniky Cvičení 5.
Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon
rovnováha kapalina - pára Clapeyronova rovnice rovnice pro popis tlaku nasycených par výparné teplo metody výpočtu odhadové metody
ovnováha kaaina - áa Caeyonova ovnie ovnie o ois taku nasyenýh a ané teo metody očtu odhadové metody říkady na ovičení ovnováha kaaina áa diaam V: fázová řeměna kaainy v áu je ovázena změnou objemu. Při
PRAVDĚPODOBNOST A STATISTIKA. Náhodný vektor nezávislost, funkce náhodného vektoru
SP Náhodý vetor ezávislost fuce NV PRAVDĚPODONOST A STATISTIKA Náhodý vetor ezávislost fuce áhodého vetoru Libor Žá Náhodý vetor stochasticá ezávislost Náhodé veličiy... defiovaé a ravděodobostím rostoru
VLHKÝ VZDUCH STAVOVÉ VELIČINY
VLHKÝ VZDUCH STAVOVÉ VELIČINY Vlhký vzduch - vlhký vzduch je směsí suchého vzduchu a vodní áry okuující solečný objem - homogenní směs nastává okud je voda ve směsi v lynném stavu - heterogenní směs ve
PZP (2011/2012) 3/1 Stanislav Beroun
PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů
7. ZÁKLADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ
7. ZÁKADNÍ TYPY DYNAMICKÝCH SYSTÉMŮ 7.. SPOJITÉ SYSTÉMY Téměř všechny fyzálně realzovatelné spojté lneární systémy (romě systémů s dopravním zpožděním lze vytvořt z prvů tří typů: proporconálních členů
4. Látkové bilance ve směsích
4. Látové bilance ve směsích V této apitole se naučíme využívat bilanci při práci s roztoy a jinými směsmi láte. Zjednodušený princip bilance složy i v systému (napřílad v ádince, v níž připravujeme vodný
V následující tabulce jsou uvedeny jednotky pro objemový a hmotnostní průtok.
8. Měření růtoků V následující tabulce jsou uvedeny jednotky ro objemový a hmotnostní růtok. Základní vztahy ro stacionární růtok Q M V t S w M V QV ρ ρ S w ρ t t kde V [ m 3 ] - objem t ( s ] - čas, S
Analytické modely systémů hromadné obsluhy
Aalytcé odely systéů hroadé obsluhy ředěte teore hroadé obsluhy Kedallova lasface - ty SHO: X / Y / c / d / X ty stochastcého rocesu, terý osue říchody Y ty stochastcého rocesu terý osue délu obsluhy c
Zkouškový test z fyzikální a koloidní chemie
Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:
Zjednodušený návrh plnícího systému přeplňovaného vznětového motoru III
Zjednodušený návrh lnícího systéu řelňovaného vznětového otoru III Zadání: e = 300 kw (ři n = 000 1/in) D = 115 Z = 135 Výočet: lnicí systé s dvoustuňový stlačování oocí BD a chladiči lnicího vzduchu:
ý á ě ě ž ů ž čá ř á á é á á á Í Í Í Í é Í á ř á á é š é ž Á Íě ř Í Í á á á ě č é á Ť é á é é Í á á ň é úč ů č Ďě ř Í ů Í ě ě á ů š ý á ž á Í ó Ž ž ý
á Í á á ř é ě č š š ž ý ř ě ý ý řč ů á á ž ž é ů á á á é Í é úž ý á ě ě ž ý á Í á ě š ý é ě é ů á á ě č ě ř á é ě ř ě é ěá á ř é ú ý ó č á ř á ř ž ě é é á á á ě ě á ž á á ě á ř á ž ý é á š ě š ý ý á ž
4. MECHANISMY A TEORIE CHEMICKÉ KINETIKY
4. MECHANISMY A TEORIE CHEMICKÉ KINETIKY Úloha 4-1 Řešení reačních schémat... Úloha 4- Řešení reačních schémat... Úloha 4-3 Řešení reačních schémat... Úloha 4-4 Řešení reačních schémat... 3 Úloha 4-5 Řešení
CHEMICKY ČISTÁ LÁTKA A SMĚS
CHEMICKY ČISTÁ LÁTKA A SMĚS Látka = forma hmoty, která se skládá z velkého množství základních stavebních částic: atomů, iontů a... Látky se liší podle druhu částic, ze kterých se skládají. Druh částic
Obrázek1:Nevratnáexpanzeplynupřesporéznípřepážkudooblastisnižšímtlakem p 2 < p 1
Joule-Thomsonův jev Fyzikální raktikum z molekulové fyziky a termodynamiky Teoretický rozbor Entalie lynu Při Joule-Thomsonově jevu dochází k nevratné exanzi lynů do rostředí s nižším tlakem. Pro ilustraci
CVIČENÍ 1 - část 3: PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY
CVIČENÍ 1 - část 3: PROVOZNÍ STAVY VZDUCHOTECHNICKÉ JEDNOTKY Na úvod řehled Jak vyočítat množství řiváděného vzduchu - ouze řiomenutí a ár dolňkových informací Množství řiváděného vzduchu V : Standardně:
Do známky zkoušky rovnocenným podílem započítávají získané body ze zápočtového testu.
Podmínky pro získání zápočtu a zkoušky z předmětu Chemicko-inženýrská termodynamika pro zpracování ropy Zápočet je udělen, pokud student splní zápočtový test alespoň na 50 %. Zápočtový test obsahuje 3
Kolik energie by se uvolnilo, kdyby spalování ethanolu probíhalo při teplotě o 20 vyšší? Je tato energie menší nebo větší než při teplotě 37 C?
TERMOCHEMIE Reakční entalpie při izotermním průběhu reakce, rozsah reakce 1 Kolik tepla se uvolní (nebo spotřebuje) při výrobě 2,2 kg acetaldehydu C 2 H 5 OH(g) = CH 3 CHO(g) + H 2 (g) (a) při teplotě
Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ
Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.
Úvod do laserové techniky KFE FJFI ČVUT Praha Michal Němec, 2014
Laser je řístroj, který generuje elektromagnetické záření monochromatické, směrované (s malou rozbíhavostí), koherentní, vysoce energetické, výkonné, s velkým jasem Základní konstrukční součásti evnolátkového
Název: Chemická rovnováha
Název: Chemicá rovnováha Autor: Mgr. Štěpán Miča Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzia Roční: 6. Tématicý cele: Chemicá rovnováha (fyziální
2.4. DISKRÉTNÍ SIGNÁLY Vzorkování
.4. DISKRÉTÍ SIGÁLY.4.. Vzorování Vzorování je nejběžnější způsob vznu dsrétních sgnálů ze sgnálů spojtých. Předpoládejme, že spojtý sgnál (t) je přveden na spínač, terý se velce rátce sepne aždých T vz
Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe
Š Ě É ě ě ů ď č ě ě Č Á č ě ě ě é ě é ř ů č ě ý ř ů ě é ř é é ř ú č é ý é ů é č ř ě Ť ů ý ý ů č ě ď é ě ý é é é ř ď ý ř ť ř é ě ň ť č ďě č ě ý é č ě ř ň ů ě ř ě ě ě é ů é é č ě ů é č ě é ě ď č ý ě ů ů
ných ehřátých kapalin zásobníky zkapalněných plynů havarijní scénáře a jejich rozbor
Procesy s účastí stlačených a zkaalněných ných lynů a řeh ehřátých kaalin zásobníky zkaalněných lynů havarijní scénáře a jejich rozbor Havarijní scénář Nebezečný otenciál zádrž nebezečných látek uvolnitelná
DUM VY_52_INOVACE_12CH31
Základní škola Kaplice, Školní 226 DUM VY_52_INOVACE_12CH31 autor: Kristýna Anna Rolníková období vytvoření: říjen 2011 duben 2012 ročník, pro který je vytvořen: 9. vzdělávací oblast: vzdělávací obor:
MĚŘENÍ VLHKOSTI. Vlhkoměr CHM 10 s kapacitní sondou
MĚŘENÍ VLHKOSTI 1. Úkol ěření a) Zěřte relativní vlhkost vzduchu v laboratoři sychroetre a oocí řístrojů s kaacitní olyerní sondou. b) S oocí tabulek a vzorců v teoretické úvodu vyočítejte rosný bod, absolutní
Název: Chemická rovnováha II
Název: Chemicá rovnováha II Autor: Mgr. Štěpán Miča Název šoly: Gymnázium Jana Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: chemie, fyzia Roční: 6. Tématicý cele: Chemicá rovnováha (fyziální
15 Mletí. I Základní vztahy a definice. Oldřich Holeček (aktualizace v roce 2014 Michal Přibyl & Marek Schöngut)
15 Mletí Oldřch Holeče (atualzace v roce 2014 Mchal Přbyl & Mare Schöngut) I Záladní vztahy a defnce I.1 Úvod Rychlost mnoha chemcých a fyzálních procesů závsí na velost mezfázového povrchu. Je-l v nch