Přednáška č. 11 Analýza rozptylu při dvojném třídění

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška č. 11 Analýza rozptylu při dvojném třídění"

Transkript

1 Přednáška č. Analýza roztlu ř dvojném třídění Ve většně říadů v rax výsledk exermentu, rozboru závsí na více faktorech. Př této analýze se osuzují výsledk náhodných okusů (exerment nebo soubor získané jným zůsobem (rozbor dat ř: - ůsobení dvou vbraných faktorů A, B, který záměrně ovlvňujeme, - celkovém očtu úrovní vbraných faktorů,, - celkový očet oakování.. Analzuje se celkem nezávslých výběrů usořádaných do skun s konstantní úrovní druhého faktoru. Četnost ř oakování se volí stejné. Př analýze se ředokládá, že všechn výběr bl roveden z téhož základního souboru, který je osán normální náhodnou velčnou N(. Pro většnu říadů v nženýrské rax je možné uvedený ředoklad řmou vzhledem k velkému očtu vlvů (faktorů ůsobících na vznk náhodné velčn. Prncem analýz je rokázání, že vlastnost jednotlvých výběrů jsou takové, že lze řmout ředoklad o stejné střední hodnotě o řádcích sloucích: H o : = =. Souhrnnou analýzu je možné rovést následujícím zůsobem. Usořádání údajů v hodnocených výběrových souborech je dle tabulk včetně výočtu odhadů základní charakterstk náhodné velčn - střední hodnot. Hodnocení se rovádí ro konstantní úroveň druhého faktoru tj. o sloucích Úroveň Úroveň faktoru B Součet Průměr Faktoru A j,,., j,..., Y x x.,,...,,,n Y x x.,,., j,,n Y x x Součet Y x, Y Y x Y Průměr x, x Hodnota náhodné velčn se skládá t g j kde: celková střední hodnota, t účnek -té úrovně faktoru A g j účnek j-té úrovně faktoru B chba (nejstota, kterou vjadřujeme normální normovanou velčnou N(0, střední hodnota chb je nulová. Nejstota je určena šířkou ásma kolem střední hodnot ro zvolenou solehlvost tvrzení. Bude ted střední hodnota náhodné velčn E( t g j

2 Př výočtu budeme ředokládat, že součt účnků u obou faktorů jsou nulové a faktor jsou v ůsobení nezávslé. Pro jednotlvé úrovně (řádk zavedeme označení Součet hodnot v řádku ve slouc Y x Odhad střední hodnot v řádku Yx x ve slouc Y Y Pro celkový hodnocený soubor hodnot celkový součet Y Odhad střední hodnot ro celkový hodnocený soubor hodnot j Y. Mez jednotlvým hodnotam náhodné velčn a zvoleným arametr ro osuzovaní exstují odchlk, které je možné znázornt ve schématu Y x celk celk j j kde: odchlk růměrů ř jednotlvých úrovních faktoru a celkového růměru (roměnlvost mez řádk- vlv faktoru A odchlk jednotlvých hodnot náhodně velčn od růměru na úrovn (roměnlvost uvntř řádků celk... odchlka jednotlvých hodnot náhodné velčn od celkového růměru ( osouzení vlastností nerozděleného souboru j odchlk růměrů ř jednotlvých úrovních faktoru a celkového růměru (roměnlvost mez slouc - vlv faktoru B j odchlk jednotlvých hodnot náhodně velčn od růměru na úrovn (roměnlvost uvntř slouců Mez odchlkam latí vztah

3 j j Př testu se sestavuje tabulka analýz roztlu ro dvojné třídění: Součet čtverců odchlek Mez úrovněm faktoru A (řádkový ( x Mez úrovněm faktoru B (sloucový. ( Uvntř úrovní (resduální res Celkový j ( ( x Počet stuňů volnost - - (-.(-.- Podíl = /(- = /(- res = res /(-.(- = celk /(.- Hodnot lze určt dle výše uvedených vztahů event. omocí součtových hodnot ve sloucích a řádcích. Y x Y x Y Y.. res Y. a celkové hodnot Y. celk 3 est významnost Postuně se testuje statstcké tvrzení o nevýznamném vlvu faktoru A a B Posouzení faktoru A ( vlv charakterzovaný hodnotam v řádcích Formulace hotéz H o : t = 0 H : t 0 faktoru není nevýznamný vlv řádkového faktoru A je nevýznamný Hladna významnost testu, test jednostranný. Výočet charakterstk výběrových souborů Určíme střední hodnot součtu čtverců odchlek: osující roměnlvost mez řádk (úrovněm faktoru, res osující roměnlvost vlvem ůsobení obou faktorů

4 3 Výočet testovacího krtéra K osouzení vlvu vbraného faktoru slouží odíl varablt zůsobené různou úrovní vbraného faktoru A, kterou získáme záměrným ovlvněním úrovně tohoto faktoru ř exermentu, růzkumu aod. a celkové varablt od ůsobení ostatních faktorů. res res (.( estovací krtérum je náhodná velčna a vzhledem ke struktuře vztahu se jedná o velčnu Fscherovu F k,k. Stuně volnost jsou k = - a k = (-.(-. 4 Určení krtcké hodnot testovacího krtéra Vzhledem k charakteru testu se jedná o jednostranný test a mezní hodnota testovacího krtéra je kvantl Fscherov náhodné velčn. kr F, k, k (.( 5 Platnost H o estovanou hotézu římáme okud latí kr Posouzení faktoru B ( vlv charakterzovaný hodnotam ve sloucích Formulace hotéz H o : = 0 H : 0 faktoru není nevýznamný vlv sloucového faktoru B je nevýznamný Hladna významnost testu, test jednostranný. Výočet charakterstk výběrových souborů Určíme střední hodnot součtu čtverců odchlek: osující roměnlvost mez slouc (úrovněm faktoru B, res osující roměnlvost vlvem ůsobení obou faktorů 3 Výočet testovacího krtéra K osouzení vlvu vbraného faktoru slouží odíl varablt zůsobené různou úrovní vbraného faktoru B, kterou získáme záměrným ovlvněním úrovně tohoto faktoru ř exermentu, růzkumu aod. a celkové varablt od ůsobení ostatních faktorů. res res (.(

5 estovací krtérum je náhodná velčna a vzhledem ke struktuře vztahu se jedná o velčnu Fscherovu F k,k. Stuně volnost jsou k = - a k = (-.(-. 4 Určení krtcké hodnot testovacího krtéra Vzhledem k charakteru testu se jedná o jednostranný test a mezní hodnota testovacího krtéra je kvantl Fscherov náhodné velčn. kr F k, k (.(, 5 Platnost H o estovanou hotézu římáme okud latí kr

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění

Přednáška č. 10 Analýza rozptylu při jednoduchém třídění Předáška č. 0 Aalýza roztylu ř jedoduchém tříděí Aalýza roztylu je statstcká metoda, kterou se osuzuje romělvost oakovaých realzací áhodého okusu tj. romělvost áhodé velčy. Náhodá velča vzká za relatvě

Více

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA)

ANALÝZA ROZPTYLU (Analysis of Variance ANOVA) NLÝZ OZPYLU (nalyss of Varance NOV) Používá se buď ako samostatná technka, nebo ako postup, umožňuící analýzu zdroů varablty v lneární regres. Př. použtí: k porovnání středních hodnot (průměrů) více než

Více

Příklady z přednášek Statistické srovnávání

Příklady z přednášek Statistické srovnávání říklad z řednášek Statstcké srovnávání Jednoduché ndvduální ndex říklad V následující tabulce jsou uveden údaje o očtu závažných závad v areálu určté frm zjštěných a oravených v letech 9-998. Závažná závada

Více

2. Najděte funkce, které vedou s těmto soustavám normálních rovnic

2. Najděte funkce, které vedou s těmto soustavám normálních rovnic Zadání. Sestavte soustavu normálních rovnc ro funkce b b a) b + + b) b b +. Najděte funkce, které vedou s těmto soustavám normálních rovnc nb a) nb. Z dat v tabulce 99 4 4 b) určete a) rovnc regresní funkce

Více

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese

9. cvičení 4ST201. Obsah: Jednoduchá lineární regrese Vícenásobná lineární regrese Korelační analýza. Jednoduchá lineární regrese cvčící 9. cvčení 4ST01 Obsah: Jednoduchá lneární regrese Vícenásobná lneární regrese Korelační analýza Vysoká škola ekonomcká 1 Jednoduchá lneární regrese Regresní analýza je statstcká metoda pro modelování

Více

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu

6. Demonstrační simulační projekt generátory vstupních proudů simulačního modelu 6. Demonstrační smulační projekt generátory vstupních proudů smulačního modelu Studjní cíl Na příkladu smulačního projektu představeného v mnulém bloku je dále lustrována metodka pro stanovování typů a

Více

Národní informační středisko pro podporu jakosti

Národní informační středisko pro podporu jakosti Národní informační středisko ro odoru jakosti Konzultační středisko statistických metod ři NIS-PJ Analýza zůsobilosti Ing. Vratislav Horálek, DrSc. ředseda TNK 4: Alikace statistických metod Ing. Josef

Více

Regresní lineární model symboly

Regresní lineární model symboly Lneární model, Dskrmnační analýza, Podůrné vektory Regresní lneární model symboly Použté značení b arametry modelu (vektor ) očet atrbutů (skalár) N očet říkladů (skalár) x jeden říklad (vektor ) x -tá

Více

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL

NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL NÁVRH A OVĚŘENÍ BETONOVÉ OPŘENÉ PILOTY ZATÍŽENÉ V HLAVĚ KOMBINACÍ SIL 1. ZADÁNÍ Navrhněte růměr a výztuž vrtané iloty délky L neosuvně ořené o skalní odloží zatížené v hlavě zadanými vnitřními silami (viz

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha

ANOVA. Analýza rozptylu při jednoduchém třídění. Jana Vránová, 3.lékařská fakulta UK, Praha ANOVA Analýza rozptylu př jednoduchém třídění Jana Vránová, 3.léařsá faulta UK, Praha Teore Máme nezávslých výběrů, > Mají rozsahy n, teré obecně nemusí být stejné V aždém z nch známe průměr a rozptyl

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 04/2016 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN

ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN ANALÝZA VZTAHU DVOU SPOJITÝCH VELIČIN V dokumentu 7a_korelacn_a_regresn_analyza jsme řešl rozdíl mez korelační a regresní analýzou. Budeme se teď věnovat pouze lneárnímu vztahu dvou velčn, protože je nejjednodušší

Více

3.2 Metody s latentními proměnnými a klasifikační metody

3.2 Metody s latentními proměnnými a klasifikační metody 3. Metody s latentními roměnnými a klasifikační metody Otázka č. Vyočtěte algoritmem IPALS. latentní roměnnou z matice A[řádek,slouec]: A[,]=, A[,]=, A[3,]=3, A[,]=, A[,]=, A[3,]=0, A[,3]=6, A[,3]=4, A[3,3]=.

Více

VYHODNOCENÍ MĚŘENÍ (varianta "soulodí")

VYHODNOCENÍ MĚŘENÍ (varianta soulodí) VYHODNOCENÍ MĚŘENÍ (varanta "soulodí") Měřl (Jméno, Příjmení, skuna):... Datum:... Vyhodnocení hydrometrckého měření na Berounce (soulodí) Z vyočtených rychlostí ve všech bodech svslce určíme střední svslcovou

Více

Výpočet svislé únosnosti osamělé piloty

Výpočet svislé únosnosti osamělé piloty Inženýrský manuál č. 13 Aktualizace: 06/2018 Výočet svislé únosnosti osamělé iloty Program: Soubor: Pilota Demo_manual_13.gi Cílem tohoto inženýrského manuálu je vysvětlit oužití rogramu GEO 5 PILOTA ro

Více

můžeme toto číslo považovat za pravděpodobnost jevu A.

můžeme toto číslo považovat za pravděpodobnost jevu A. RAVDĚODOBNOST - matematická discilína, která se zabývá studiem zákonitostí, jimiž se řídí hromadné náhodné jevy - vytváří ravděodobnostní modely, omocí nichž se snaží ostihnout náhodné rocesy. Náhodné

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

Regresní a korelační analýza

Regresní a korelační analýza Regresní a korelační analýza Závslost příčnná (kauzální). Závslostí pevnou se označuje případ, kdy výskytu jednoho jevu nutně odpovídá výskyt druhé jevu (a často naopak). Z pravděpodobnostního hledska

Více

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny

Téma 5: Parametrická rozdělení pravděpodobnosti spojité náhodné veličiny 0.05 0.0 0.05 0.0 0.005 Nomnální napětí v pásnc Std Mean 40 60 80 00 0 40 60 Std Téma 5: Parametrcká rozdělení pravděpodobnost spojté náhodné velčn Přednáška z předmětu: Pravděpodobnostní posuzování konstrukcí

Více

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny

Aproximativní analytické řešení jednorozměrného proudění newtonské kapaliny U8 Ústav rocesní a zracovatelské techniky F ČVUT v Praze Aroximativní analytické řešení jednorozměrného roudění newtonské kaaliny Některé říady jednorozměrného roudění newtonské kaaliny lze řešit řibližně

Více

7. VÝROBNÍ ČINNOST PODNIKU

7. VÝROBNÍ ČINNOST PODNIKU 7. Výrobní činnost odniku Ekonomika odniku - 2009 7. VÝROBNÍ ČINNOST PODNIKU 7.1. Produkční funkce teoretický základ ekonomiky výroby 7.2. Výrobní kaacita Výrobní činnost je tou činností odniku, která

Více

REGRESNÍ ANALÝZA. 13. cvičení

REGRESNÍ ANALÝZA. 13. cvičení REGRESNÍ ANALÝZA 13. cvčení Závslost náhodných velčn Závslost mez kvanttatvním proměnným X a Y: Funkční závslost hodnotam nezávsle proměnných je jednoznačně dána hodnota závslé proměnné. Y=f(X) Stochastcká

Více

Dynamické programování

Dynamické programování ALG Dynamické rogramování Nejdelší rostoucí odoslounost Otimální ořadí násobení matic Nejdelší rostoucí odoslounost Z dané oslounosti vyberte co nejdelší rostoucí odoslounost. 5 4 9 5 8 6 7 Řešení: 4 5

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tsty - NOV NOV tsty s rovádí s omocí aalýzy roztylů NOV souhré tsty ro víc ěž dva výběry. NOV aramtrcká tstováí charaktrstk z zámých rozdělí

Více

STATISTIKA (pro navazující magisterské studium)

STATISTIKA (pro navazující magisterské studium) Slezská unverzta v Opavě Obchodně podnkatelská fakulta v Karvné STATISTIKA (pro navazující magsterské studum) Jaroslav Ramík Karvná 007 Jaroslav Ramík, Statstka Jaroslav Ramík, Statstka 3 OBSAH MODULU

Více

Třídění a významné hodnoty

Třídění a významné hodnoty Lekce Třídění a významné hodnoty Ponechme nyní oněkud stranou různorodé oznatky rvní lekce týkající se zjšťování a tyů dat a omezme se jen na nejjednodušší říad datových souborů tvořených hodnotam kardnálních

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZITA V LIBERCI Ekoomcká fakulta Semestrálí ráce S kua Jméa: Leka Pastorová, Davd arha, Ja Vtásek a Fl Urbačík Ročík: 0/06 Učtel: gr. Jří Rozkovec Obor: Podková ekoomka Datum:.. 06 Obsah

Více

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t)

Náhodným (stochastickým) procesem nazveme zobrazení, které každé hodnotě náhodnou veličinu X ( t) MARKOVOVY PROCESY JAKO APARÁT PRO ŘEŠENÍ SPOLEHLIVOSTI VÍCESTAVOVÝCH SYSTÉMŮ Náhodné rocesy Náhodným (stochastckým) rocesem nazveme zobrazení, které každé hodnotě náhodnou velčnu X ( t). Proměnná t má

Více

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ

Univerzita Pardubice FAKULTA CHEMICKO TECHNOLOGICKÁ Univerzita Pardubice FAKULA CHEMICKO ECHNOLOGICKÁ MEODY S LAENNÍMI PROMĚNNÝMI A KLASIFIKAČNÍ MEODY SEMINÁRNÍ PRÁCE LICENČNÍHO SUDIA Statistické zracování dat ři kontrole jakosti Ing. Karel Dráela, CSc.

Více

7. Analýza rozptylu jednoduchého třídění

7. Analýza rozptylu jednoduchého třídění 7. nalýza rozptylu jednoduchého třídění - V této kaptole se budeme zabývat vztahem mez znaky kvanttatvním (kolk) a kvaltatvním (kategorálním, jaké jsou) Doposud jsme schopn u nch hodnott: - podmíněné charakterstky

Více

Stabilita prutu, desky a válce vzpěr (osová síla)

Stabilita prutu, desky a válce vzpěr (osová síla) Stabilita rutu, deky a válce vzěr (oová íla) Průběh ro ideálně římý rut (teoretický tav) F δ F KRIT Průběh ro reálně římý rut (reálný tav) 1 - menší očáteční zakřivení - větší očáteční zakřivení F Obr.1

Více

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran

2 TESTOVÁNÍ HYPOTÉZ. RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevil jsem pravdu! ale raději: Objevil jsem jednu z pravd! Chalil Gibran Elena Melcová, Radmla Stoklasová a Jaroslav Ramík; Statstcké programy TESTOVÁNÍ HYPOTÉZ RYCHLÝ NÁHLED KAPITOLY Neříkej: Objevl jsem pravdu! ale raděj: Objevl jsem jednu z pravd! Chall Gbran Testování hypotéz

Více

Metody s latentními proměnnými a klasifikační metody

Metody s latentními proměnnými a klasifikační metody Univerzita Pardubice Fakulta chemicko-technologická Katedra analytické chemie etody s latentními roměnnými a klasifikační metody Ing. Roman Slavík V Bohumíně 4.4. ŽDB a.s. Příklad č. Vyočtěte algoritmem

Více

Téma 7: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV

Téma 7: Přímý Optimalizovaný Pravděpodobnostní Výpočet POPV Téma 7: Přímý Otimalizovaný Pravděodobnostní Výočet POPV Přednáška z ředmětu: Pravděodobnostní osuzování konstrukcí 4. ročník bakalářského studia Katedra stavební mechaniky Fakulta stavební Vysoká škola

Více

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y

podle typu regresní funkce na lineární nebo nelineární model Jednoduchá lineární regrese se dá vyjádřit vztahem y 4 Lneární regrese 4 LINEÁRNÍ REGRESE RYCHLÝ NÁHLED DO KAPITOLY Častokrát potřebujete zjstt nejen, jestl jsou dvě nebo více proměnných na sobě závslé, ale také jakým vztahem se tato závslost dá popsat.

Více

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu

definovat pojmy: PI člen, vnější a vnitřní omezení, přenos PI členu popsat činnost PI regulátoru samostatně změřit zadanou úlohu . PI regulátor Čas ke studu: 5 mnut Cíl Po rostudování tohoto odstavce budete umět defnovat ojmy: PI člen, vnější a vntřní omezení, řenos PI členu osat čnnost PI regulátoru samostatně změřt zadanou úlohu

Více

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky

Závislost indexů C p,c pk na způsobu výpočtu směrodatné odchylky Závislost indexů C,C na zůsobu výočtu směrodatné odchyly Ing. Renata Przeczová atedra ontroly a řízení jaosti, VŠB-TU Ostrava, FMMI Podni, terý chce usět v dnešní onurenci, musí neustále reagovat na měnící

Více

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2

Dále budeme předpokládat, že daný Markovův řetězec je homogenní. p i1 i 2 4 Markovovy řetězce se nazývá Markovův řetě- Defnce 7 Posloupnost celočíselných náhodných velčn {X n } zec (markovský řetězec), jestlže P(X n+ = j X n = n,, X 0 = 0 ) = P(X n+ = j X n = n ) (7) pro každé

Více

Předpjatý beton Přednáška 12

Předpjatý beton Přednáška 12 Předjatý beton Přednáška 12 Obsah Mezní stavy oužitelnosti - omezení řetvoření Deformace ředjatých konstrukcí Předoklady, analýza, Stanovení řetvoření. Všeobecně - u ředjatých konstrukcí nejen růhyb od

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model kde Y = Xβ + e, y 1 e 1 β y 2 Y =., e = e 2 x 11 x 1 1k., X =....... β 2,

Více

Testování hypotéz o parametrech regresního modelu

Testování hypotéz o parametrech regresního modelu Testování hypotéz o parametrech regresního modelu Ekonometrie Jiří Neubauer Katedra kvantitativních metod FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Jiří Neubauer (Katedra UO

Více

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti)

Cvičení 1 (Opakování základních znalostí z pružnosti a pevnosti) VŠ Techncká unverzta Ostrava akulta strojní Katedra ružnost a evnost (9 Pružnost a evnost v energetce (Návod do cvčení Cvčení (Oakování základních znalostí z ružnost a evnost utor: aroslav ojíček Verze:

Více

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain)

Markovovy řetězce se spojitým časem CTMC (Continuous time Markov Chain) Markovovy řetězce se soitým časem CTMC (Continuous time Markov Chain) 3 5 1 4 Markovovy rocesy X Diskrétní stavový rostor Soitý obor arametru t { } S e1, e,, en t R t 0 0 t 1 t t 3 t Proces e Markovův

Více

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu.

7. Měření dutých objemů pomocí komprese plynu a určení Poissonovy konstanty vzduchu Úkol 1: Určete objem skleněné láhve s kohoutem kompresí plynu. 7. Měření dutých objemů omocí komrese lynu a určení Poissonovy konstanty vzduchu Úkol : Určete objem skleněné láhve s kohoutem komresí lynu. Pomůcky Měřený objem (láhev s kohoutem), seciální lynová byreta

Více

Testování statistických hypotéz

Testování statistických hypotéz Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)

Více

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy

6. Vliv způsobu provozu uzlu transformátoru na zemní poruchy 6. Vliv zůsobu rovozu uzlu transformátoru na zemní oruchy Zemní oruchou se rozumí sojení jedné nebo více fází se zemí. Zemní orucha může být zůsobena řeskokem na izolátoru, růrazem evné izolace, ádem řetrženého

Více

Metoda hlavních komponent

Metoda hlavních komponent d d Víceozměná data Metoda hlavních komonent Václav Adamec vadamec@mendelucz Extenze unvaetních dat na více oměnných () Datová matce: n x Hodnot oměnných získán z jednoho subjektu () Předoklad závslostí

Více

FYZIKA. rovnováhy atmosférického tlaku a hydrostatického tlaku ve válci

FYZIKA. rovnováhy atmosférického tlaku a hydrostatického tlaku ve válci FYZIKA Exerimentální ověření rovnováhy atmosférického tlaku a hydrostatického tlaku ve válci ČENĚK KODEJŠKA 1 JAN ŘÍHA 1 SAVATORE GANCI 2 1 Katedra exerimentální fyziky, Přírodovědecká fakulta Univerzity

Více

Simulační metody hromadné obsluhy

Simulační metody hromadné obsluhy Smulační metody hromadné osluhy Systém m a model vstupy S výstupy Systém Část prostředí, kterou lze od jeho okolí oddělt fyzckou neo myšlenkovou hrancí Model Zjednodušený, astraktní nástroj používaný pro

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Řešený příklad:: Kloubový přípoj nosníku na pásnici sloupu s čelní deskou

Řešený příklad:: Kloubový přípoj nosníku na pásnici sloupu s čelní deskou Dokument: SX01a-CZ-EU Strana 1 z 9 Řešený říklad: Kloový říoj nosníku na ásnici slouu Vyracoval Edurne Nunez Datum březen 005 Kontroloval Abdul Malik Datum sren 005 Řešený říklad:: Kloový říoj nosníku

Více

PARALELNÍ PROCESY A PROGRAMOVÁNÍ

PARALELNÍ PROCESY A PROGRAMOVÁNÍ PARALELNÍ PROCESY A PROGRAMOVÁNÍ 6 Analýza složitosti algoritmů - cena, ráce a efektivita Ing. Michal Bližňák, Ph.D. Zlín 2013 Tento studijní materiál vznikl za finanční odory Evroského sociálního fondu

Více

PRŮTOK PLYNU OTVOREM

PRŮTOK PLYNU OTVOREM PRŮTOK PLYNU OTVOREM P. Škrabánek, F. Dušek Univerzita Pardubice, Fakulta chemicko technologická Katedra řízení rocesů a výočetní techniky Abstrakt Článek se zabývá ověřením oužitelnosti Saint Vénantovavy

Více

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu

Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot

Více

Úloha syntézy čtyřčlenného rovinného mechanismu

Úloha syntézy čtyřčlenného rovinného mechanismu Úloha syntézy čtyřčlenného rovnného mechansmu Zracoval: Jaroslav Beran Pracovště: Techncká unverzta v Lberc katedra textlních a ednoúčelových stroů Tento materál vznkl ako součást roektu In-TECH 2, který

Více

Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem

Raoultův zákon, podle kterého je při zvolené teplotě T parciální tlak i-té složky nad roztokem DVOUSLOŽKOVÉ SYSTÉMY lkace Gbbsova zákona fází v f s 2 3 1 4 2 2 4 mamálně 3 roměnné, ro fázový dagram bchom otřeboval trojrozměrný 1 3 4 graf, oužíváme lošné graf, kd volíme buď konstantní telotu (zotermcký

Více

Větrání hromadných garáží

Větrání hromadných garáží ětrání hromadných garáží Domácí ředis: ČSN 73 6058 Hromadné garáže, základní ustanovení, latná od r. 1987 Zahraniční ředisy: ÖNORM H 6003 Lüftungstechnische Anlagen für Garagen. Grundlagen, Planung, Dimensionierung,

Více

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti ZČB 2013/2

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti ZČB 2013/2 Závěrečná zpráva o výsledcích expermentu shodnost ZČB 2013/2 Obsah Úvod a důležté kontakty... 2 Postupy statstcké analýzy expermentu shodnost... 4 2.1 Numercký postup zjšťování odlehlých hodnot... 4 2.1.1

Více

Úvěr a úvěrové výpočty 1

Úvěr a úvěrové výpočty 1 Modely analýzy a syntézy lánů MAF/KIV) Přednáška 8 Úvěr a úvěrové výočty 1 1 Rovnice úvěru V minulých řednáškách byla ro stav dluhu oužívána rovnice 1), kde ředokládáme, že N > : d = a b + = k > N. d./

Více

Využití logistické regrese pro hodnocení omaku

Využití logistické regrese pro hodnocení omaku Využtí logstcké regrese pro hodnocení omaku Vladmír Bazík Úvod Jedním z prmárních proevů textlí e omak. Jedná se o poct který vyvolá textle př kontaktu s pokožkou. Je to ntegrální psychofyzkální vlastnost

Více

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat

Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného plynu - statistické zpracování dat Úloha č.1: Stanovení Jouleova-Thomsonova koeficientu reálného lynu - statistické zracování dat Teorie Tam, kde se racuje se stlačenými lyny, je možné ozorovat zajímavý jev. Jestliže se do nádoby, kde je

Více

METODICKÉ POZNÁMKY VÝPOČET BAZICKÉHO CENOVÉHO INDEXU *100

METODICKÉ POZNÁMKY VÝPOČET BAZICKÉHO CENOVÉHO INDEXU *100 METODICKÉ POZNÁMKY Index cen tržních služeb v rodukční sféře (Service Producer Price Index - SPPI) je ukazatel ro sledování cenových ohybů a měření inflačních tlaků na trhu služeb. Cenové indexy tržních

Více

Dynamika populací. s + W = 1

Dynamika populací. s + W = 1 Je-li oulace v genetické rovnováze, je stabilizovaná bez dalšího vývoje - evoluční stagnace. V reálných oulacích zvířat a rostlin, kdy nejsou slňovány výše zmíněné odmínky rovnováhy, je H.-W. genetická

Více

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Testování hypotéz testy o tvaru rozdělení. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Statistickou hypotézou se rozumí určité tvrzení o parametrech rozdělení zkoumané náhodné veličiny (µ, σ 2, π,

Více

Univerzita Pardubice. Fakulta ekonomicko-správní

Univerzita Pardubice. Fakulta ekonomicko-správní Unverzta Pardubce Fakulta ekonomcko-srávní Vývoj hyotečních úvěrů a dskontní sazby v ČR s rognózou do budoucna Ilona Gerčáková Bakalářská ráce 2014 PROHLÁŠENÍ Prohlašuj, že jsem tuto rác vyracovala samostatně.

Více

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ

POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ POTENCIÁL ELEKTRICKÉHO POLE ELEKTRICKÉ NAPĚTÍ ELEKTRICKÝ POTENCIÁL Elektrcká potencální energe Newtonův zákon pro gravtační sílu mm F = G r 1 2 2 Coulombův zákon pro elektrostatckou sílu QQ F = k r 1 2

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky. Bakalářská práce. Zpracování výsledků vstupních testů z matematiky Západočeská unverzta v Plzn Fakulta aplkovaných věd Katedra matematky Bakalářská práce Zpracování výsledků vstupních testů z matematky Plzeň, 13 Tereza Pazderníková Prohlášení Prohlašuj, že jsem bakalářskou

Více

SHANNONOVY VĚTY A JEJICH DŮKAZ

SHANNONOVY VĚTY A JEJICH DŮKAZ SHANNONOVY VĚTY A JEJICH DŮKAZ JAN ŠŤOVÍČEK Abstrakt. Důkaz Shannonových vět ro binární symetrický kanál tak, jak měl být robrán na řednášce. Číslování vět odovídá řednášce. 1. Značení a obecné ředoklady

Více

Předpjatý beton Přednáška 6

Předpjatý beton Přednáška 6 Předjatý beton Přednáška 6 Obsah Změny ředětí Okamžitým ružným řetvořením betonu Relaxací ředínací výztuže Přetvořením oěrného zařízení Rozdílem telot ředínací výztuže a oěrného zařízení Otlačením betonu

Více

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23

Cyklické kódy. Alena Gollová, TIK Cyklické kódy 1/23 Cyklické kódy 5. řednáška z algebraického kódování Alena Gollová, TIK Cyklické kódy 1/23 Obsah 1 Cyklické kódy Generující olynom - kódování Kontrolní olynom - objevování chyb Alena Gollová, TIK Cyklické

Více

1.3.3 Přímky a polopřímky

1.3.3 Přímky a polopřímky 1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím

Více

PZP (2011/2012) 3/1 Stanislav Beroun

PZP (2011/2012) 3/1 Stanislav Beroun PZP (0/0) 3/ tanislav Beroun Výměna tela mezi nální válce a stěnami, telotní zatížení vybraných dílů PM elo, které se odvádí z nálně válce, se ředává stěnám ve válci řevážně řestuem, u vznětových motorů

Více

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY

TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ ZÁKLADNÍ POJMY Statistická hypotéza je určitá domněnka (předpoklad) o vlastnostech ZÁKLADNÍHO SOUBORU. Test statistické hypotézy je pravidlo (kritérium), které na základě

Více

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla.

Obr. V1.1: Schéma přenosu výkonu hnacího vozidla. říklad 1 ro dvounáravové hnací kolejové vozidlo motorové trakce s mechanickým řenosem výkonu určené následujícími arametry určete moment hnacích nárav, tažnou sílu na obvodu kol F O. a rychlost ři maximálním

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM

7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM 7. STATISTICKÝ SOUBOR S JEDNÍM ARGUMENTEM Průvodce studem Předchozí kaptoly byly věnovány pravděpodobnost a tomu, co s tímto pojmem souvsí. Nyní znalost z počtu pravděpodobnost aplkujeme ve statstce. Předpokládané

Více

Řešený příklad: Přípoj příhradového vazníku na sloup čelní deskou

Řešený příklad: Přípoj příhradového vazníku na sloup čelní deskou Dokument: SX033a-CZ-EU Strana 1 z 7 Řešený říklad: Příoj říhradového vazníku na slou čelní Příklad ředstavuje výočet smykové únosnosti říoje střešního říhradového vazníku k ásnici slouu omocí čelní desky.

Více

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina

Testování hypotéz. Analýza dat z dotazníkových šetření. Kuranova Pavlina Testování hypotéz Analýza dat z dotazníkových šetření Kuranova Pavlina Statistická hypotéza Možné cíle výzkumu Srovnání účinnosti různých metod Srovnání výsledků různých skupin Tzn. prokázání rozdílů mezi

Více

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie

Způsob určení množství elektřiny z kombinované výroby vázané na výrobu tepelné energie Příloha č. 2 k vyhlášce č. 439/2005 Sb. Zůsob určení množství elektřiny z kombinované výroby vázané na výrobu teelné energie Maximální množství elektřiny z kombinované výroby se stanoví zůsobem odle následujícího

Více

Statistická analýza jednorozměrných dat

Statistická analýza jednorozměrných dat Statistická analýza jednorozměrných dat Prof. RNDr. Milan Meloun, DrSc. Univerzita Pardubice, Pardubice 31.ledna 2011 Tato prezentace je spolufinancována Evropským sociálním fondem a státním rozpočtem

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti MVP 2014/1

Obsah. Příloha (celkový počet stran přílohy 13) Závěrečná zpráva o výsledcích experimentu shodnosti MVP 2014/1 Závěrečná zráva o výledcích exermentu hodnot MVP 014/1 Obah Úvod a důležté kontakty... Potuy tattcké analýzy exermentu hodnot... 3.1 Numercký otu zjšťování odlehlých hodnot... 3.1.1 Cochranův tet... 3.1.

Více

Statistická šetření a zpracování dat.

Statistická šetření a zpracování dat. Statstcká šetření a zpracování dat. Vyjadřovací prostředky ve statstce STATISTICKÉ TABULKY Typckým vyjadřovacím prostředkem statstky je číslo formalzovaným nástrojem číselného vyjádření je statstcká tabulka.

Více

BH059 Tepelná technika budov Konzultace č. 2

BH059 Tepelná technika budov Konzultace č. 2 Vysoké učení technické v Brně Fakulta stavební Ústav ozemního stavitelství BH059 Teelná technika budov Konzultace č. 2 Zadání P6 zadáno na 2 konzultaci, P7 bude zadáno Průběh telot v konstrukci Kondenzace

Více

2.3.6 Práce plynu. Předpoklady: 2305

2.3.6 Práce plynu. Předpoklady: 2305 .3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V komresoru je kontinuálně stlačován objemový tok vzduchu *m 3.s- + o telotě 0 * C+ a tlaku 0, *MPa+ na tlak 0,7 *MPa+. Vyočtěte objemový tok vzduchu vystuujícího z komresoru, jeho telotu a říkon

Více

Porovnání dvou výběrů

Porovnání dvou výběrů Porovnání dvou výběrů Menu: QCExpert Porovnání dvou výběrů Tento modul je určen pro podrobnou analýzu dvou datových souborů (výběrů). Modul poskytuje dva postupy analýzy: porovnání dvou nezávislých výběrů

Více

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu

ší ší šířen ší ší ení Modelování Klasifikace modelů podle formy podobnosti Sestavení fyzikálního modelu Modelování Modelování, klasifikace a odvozování modelů» áhrada studovaného ojektu modelem na základě odonosti» Smsl» studium originálu rostřednictvím modelu» idealizovaný» jednodušší» dostunější All models

Více

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s

Pracovní list č. 6: Stabilita svahu. Stabilita svahu. Návrh či posouzení svahu zemního tělesa. FS s Pracovní lst č. 6: Stablta svahu Stablta svahu 1 - máme-l násyp nebo výkop, uvntř svahu vznká smykové napětí - aktvuje se smykový odpor zemny - porušení - na celé smykové ploše se postupně dosáhne maxma

Více

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV

II. MOLEKULOVÁ FYZIKA 1. Základy termodynamiky IV II. MOLEKLOÁ FYZIKA 1. Základy termodynamiky I 1 Obsah Princi maxima entroie. Minimum vnitřní energie. D otenciály vnitřní energie entalie volná energie a Gibbsova energie a jejich názorný význam ři některých

Více

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí

133PSBZ Požární spolehlivost betonových a zděných konstrukcí. Přednáška B9. ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí 133PSBZ Požární solehlivost betonových a zděných konstrukcí Přednáška B9 ČVUT v Praze, Fakulta stavební katedra betonových a zděných konstrukcí MSÚ mezní stavy únosnosti Obsah: Mezní stavy únosnosti Účinek

Více

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D.

Testování statistických hypotéz. Ing. Michal Dorda, Ph.D. Testování statistických hypotéz Ing. Michal Dorda, Ph.D. Testování normality Př. : Při simulaci provozu na křižovatce byla získána data o mezerách mezi přijíždějícími vozidly v [s]. Otestujte na hladině

Více

Směrová kalibrace pětiotvorové kuželové sondy

Směrová kalibrace pětiotvorové kuželové sondy Směrová kalibrace ětiotvorové kuželové sondy Matějka Milan Ing., Ústav mechaniky tekutin a energetiky, Fakulta strojní, ČVUT v Praze, Technická 4, 166 07 Praha 6, milan.matejka@fs.cvut.cz Abstrakt: The

Více

108/2011 Sb. VYHLÁKA

108/2011 Sb. VYHLÁKA 108/2011 Sb. VYHLÁKA ze dne 14. dubna 2011 o měření lynu a o zůsobu stanovení náhrady kody ř neorávněném odběru, neorávněné dodávce, neorávněném uskladňování, neorávněné řeravě nebo neorávněné dstrbuc

Více

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné

Slezská univerzita v Opavě Obchodně podnikatelská fakulta v Karviné Slezská univerzita v Oavě Obchodně odnikatelská fakulta v Karviné Přijímací zkouška do. ročníku OPF z matematiky (00) A Příklad. Určete definiční oboovnice a rovnici řešte. n + n =. + D : n N n = b b +

Více

Bodové a intervalové odhady parametrů v regresním modelu

Bodové a intervalové odhady parametrů v regresním modelu Statistika II Katedra ekonometrie FVL UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Lineární regresní model Mějme lineární regresní model (LRM) Y = Xβ + e, kde y 1 e 1 β y 2 Y =., e

Více

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd.

1. Ukazatele primární: - jsou přímo zjišťované, neodvozené - např. stav zásob, počet pracovníků k 31. 12., atd. SROVNÁVÁNÍ HODNOT STATSTCÝCH UKAZATELŮ - oisem a analýzou ekonomikýh jevů a roesů omoí statistikýh ukazatelů se zabývá hosodářská statistika - ílem je nalézt zůsoby měření ekonomiké skutečnosti (ve formě

Více

Analytická metoda aneb Využití vektorů v geometrii

Analytická metoda aneb Využití vektorů v geometrii KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor

Více