5. Sekvenční logické obvody
|
|
- Marcela Moravcová
- před 8 lety
- Počet zobrazení:
Transkript
1 5. Sekvenční logické obvody
2 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou
3 3. Sekvenční logické obvody - příklad asynchronního sekvenčního obvodu
4 3. Sekvenční logické obvody příklad asynchronního sekvenčního obvodu. Příklad sledování polohy vozíku graf přechodů
5 3. Sekvenční logické obvody tabulka přechodů
6 3. Sekvenční logické obvody mapy Zakódované tabulky přechodů a výstupů Poznámka: řídící funkce a, b se ztotožňují s vnitř. prom.
7 3. Sekvenční logické obvody výsledné schéma Schéma vyhodnocovacích obvodů
8 3. Sekvenční logické obvody Mealy, Moore
9 3. Sekvenční obvody - paměťové členy, klopné obvody flip-flop Asynchronní klopné obvody
10 3. Sekvenční obvody fundamentální režim
11 3. Sekvenční obvody synchronní systémy
12 3. Sekvenční obvody synchronní systémy Model synchronního sekvenčního systému
13 3. Synchronní obvody Mealy a Moore
14 3. Synchronní obvody hladinové KO
15 3. Synchronní obvody Master- Slave RS
16 3. Synchronní klopné obvody - hranové
17 3. Synchronní klopné obvody hranové 2
18 3. Synchronní obvody model sekvenčního systému
19 3. Sekvenční systémy popis jako KA Matematický model Sekv. Log. Obvodu: jako Konečný automat KA je definován jako uspořádaná pětice, resp. šestice A = X, Y, Q, δ, λ resp. A = X, Y, Q,Q0 δ, λ Kde: X. množina možných kombinací hodnot vstup. proměnných - - jinak množina vstupních symbolů např. pro 3 vst. proměnné 3 má množina X 2 = 8 možných kombinací, tedy 8 symbolů Y. množina možných kombinací výstupních proměnných - jinak množina výstupních symbolů Q.,nožina možných kombinací hodnot na vnitřních proměnných - jinak množina vnitřních stavů Q0. počáteční vnitřní stav δ. stavově přechodová funkce : definuje příští vnitřní stav - zobrazuje se do tabulky přechodů δ: Xi x Qi Qi+1 λ. výstupní funkce : a) Xi x Qi Yi pro Mealyho automat - tab. výstupů b) Qi Yi pro Mooreův automat ξk. vstupní slovo - posloupnost vstupních symbolů X3X0X2.. ηk. výstupní slovo posloupnost výstupních symbolů Y0Y2Y0.
20 3. Sekvenční systém příklad popisu KA
21 3. Sekvenční systém příklad popisu KA 2
22 3. Sekvenční systém př. sériové sčítačkay
23 3. Sekvenční systém popis sériové sčítačky tabulkou přechodů a výstupů
24 3. Sekvenční systém použití tabulky přechodů
25 3. Sekvenční systém určení automatu Mealyho
26 3. Sekvenční systém příklad automatu Mealy
27 3. Sekvenční systém určení automatu Moore
28 3. Sekvenční systém postup návrhu synchr. a. 1. Provede se analýza zadání funkcí sekvenčního systému, event. se stanoví počet vstupních a výstupních proměnných (pokud to nebylo definováno na počátku). 2. Stanoví se počet vnitřních stavů a sestaví se tabulky přechodů a výstupů, resp. graf přechodů 3. Provede se podle situace redukce počtu vnitřních stavů. 4. Určí se počet vnitřních proměnných (tomu odpovídá počet KO) podle nerovnosti 2 r-1 < s 2 r Dále se navrhne vhodný kód pro zakódování vnitřních stavů a sestaví se zakódovaná tabulka přechodů. 5. Ze zakódované tabulky přechodů a přechodových funkcí zvoleného paměťového členu (KO) vytvoříme tabulky resp. mapy řídících funkcí těchto klopných obvodů. Z tabulek resp. map se naleznou minimalizované booleovské výrazy (z nich se pak realizuje kombinační logický obvod 1 KLO 1).
29 3. Sekvenční systém postup návrhu synchr. a. 6. Dále ze zakódované tabulky výstupů se naleznou minimalizované booleovské výrazy pro jednotlivé výstupní proměnné ( z nich se pak realizuje kombinační logický obvod 2 KLO 2). 7. Pak již můžeme nakreslit schéma zapojení a provede se výpočet parametrů synchronizačního (hodinového) signálu. 8. Na závěr se musí provést verifikace návrhu simulací jsou k dispozici různé simulační programy, jako např. OrCAD, B2LOGICx aj.) V další části si ukážeme alespoň jednoduché postupy sestrojení tabulky přechodů a tabulky výstupů.
30 3. Sekvenční systém sestrojení tabulek a) Sestrojení tabulky přechodů z časového diagramu Nechť je dá časový digram vstupních signálů a požadované odezvy na výstupní proměnné
31 3. Sekvenční systém sestrojení tabulky Každé kombinaci stavů na vstupních proměnných odpovídá určitý vstupní symbol Xi a tomu pak je přiřazen vnitřní stav Q = {1, 2, 3, 4, 5, 6}. Po stavu 6 by cyklicky následoval stav 1 atd. X a b X X X X Y y Y 0 0 Y 1 1 X3 nepřístupný vstupní stav Automat budeme řešit jako Mooreův A q 1 q 2 q 3 Q Q Q Q Q Q
32 3. Sekvenční systém sestrojení tabulky Zakódované vnitřní stavy 6 stavů. Dva kódy jsou nevyužité. Navrhneme nejprve stabilní vnitřní stavy pro každý přípustný vstupní symbol : δ (1, X0 ) = 1 δ (2, X1 ) = 2 δ (3, X0 ) = 3 δ (4, X2 ) = 4 δ (5, X0 ) = 5 δ (6, X1 ) = 6 Q X X 0 X 1 X 2 X 3 Y ? Y 0 2 2? 3 3? 4 4? 5 5? 6 6?
33 3. Sekvenční systém sestrojení tabulky Přijde-li impuls na proměnné a, tj. působí na vstupu písmeno X1, bude přechodová funkce δ (X1, 1) = 2. Tedy automat přejde do stavu 2. Kdyby přišel ale nejdříve impuls na vstupní proměnné b můžeme automat ponechat v počátečním stavu 1. Kdyby přišly impulsy na obou proměnných současně, tedy přišel by nepřípustný symbol X3, mohl by opět automat zůstat v počátečním stavu 1 a čekat na příchod správného impulsu. Z časového diagramu můžeme také stanovit výstupní stav Mooreova automatu, tedy λ(q0) = Y0. Nyní dořešíme další řádky tabulky přechodů, tedy pro současné stavy 2, 3, 4, 5 a 6.
34 3. Sekvenční systém sestrojení tabulky Mooreova automatu Q X X 0 X 1 X 2 X 3 Y K ? 1 Y 0 K (4) (7) Y 0 K (2) 4 (7) Y 0 K (6) 4 (7) Y 0 K (4) (7) Y 0 K (1) (7) Y 1 K 0 (7) 1 (7) (7) (7) Y 0 K 1 δ λ
35 3. Sekvenční systém tabulka z vývojového diagramu b) Sestrojení tabulky přechodů, resp.grafu přechodů z vývojového diagramu Úloha: Je třeba dosypávat zásobník sypkým materiálem
36 3. Sekvenční systém tabulka z vývojového diagramu
37 3. Sekvenční systém tabulka z vývojov. diagr. Automat bude mít 3 vnitřní stavy, jak je to naznačeno ve vývojovém diagramu. Na základě tohoto přiřazení jsme sestavili graf přechodů a poté tabulku přechodů.
38 3. Sekvenční systém sestrojení grafu přechodů Příklad sestavení grafu přechodů detektoru znaků Pro daný detektor znaků je výhodnější sestrojovat graf přechodů. Měli bychom nevrhnout tedy graf přechodů automatu, který bude detekovat např. přicházející lichá čísla x v rozmezí 2 < x < 14 v přímém binárním kódu sériově na vstup a Mealyho automatu. Přijde-li tedy na vstup sériově číslo 3 (nebo 5, 7, 9, 11, 13) bude spříchozím 4.bitem na výstupu y generována jedničková hodnota. V ostatních případech bude na výstupu y nula. Čísla vstupují do automatu počínaje bitem s nejnižší váhou (nultým bitem). Přicházející čísla :
39 3. Sekvenční systém sestrojení grafu přechodů Sestavovaný graf přechodů Mealyho automatu : Počáteční vnitřní stav bude Q0 a bude např. při číslici 3 přicházet nultý bit, tj. a = 1 a na výstupu y bude 0 a automat přejde do stavu Q1. S příchozím dalším 2. bitem, který je rovněž 1, přejde automat do stavu Q2 a y =0. S třetím bitem a = 0 přejde automat do stavu Q3 a výstup je stále y = 0. Teprve se 4. bitem a = 0 bude na výstupu generována hodnota y = 1 a automat přechází do počátečního stavu Q0. Nyní může přicházet další číslice. Toto je potřeba udělat pro všechny indikované číslice a i pro takové, tj. sudé i další do možného zápisu 16 binárních čísel.
40 3. Sekvenční systém sestrojení grafu přechodů Z tohoto grafu přechodů je možno získat potřebnou tabulku přechodů, která je nutná pro návrh struktury automatu.
41 3. Sekvenční systém funkce přechodů KO Tabulky přechodů klopných obvodů : Požadovaný přechod RS S R JK J K D T Zjednodušená symbolika (silná) (silná) Typ KO Musí pokrýt Může pokrýt Nesmí pokrýt D všechny 1, 1 -- žádné 0, 0 T Všechny 0, 1 -- žádné 0, 1 RS S: všechny 1 R: všechny 0 JK J: všechny 1 K: všechny , 0 0, 1 žádné 0, 0 žádné 1, 1 0 1
42 3. Sekvenční systém Příklad návrhu generátoru impulsů Návrh synchronního sekvenčního systému zadaného časovými průběhy signálů
43 3. Příklad návrhu synchronního obvodu Výstupy I. Varianta řešení - klasický postup - - tabulka přechodů, zakódovaná tabulka přechodů Volba kódu - mapa přiřazení 3 vnitřní prom. Q t Q t+1 H 3 H 2 H 1 H
44 3. Příklad návrhu synchr. systému Zakódovaná tabulka přechodů a mapy řídících, resp budících funkcí KO JK MS q3 q2 q1 q3 q2 q1 H3 H2 H1H
45 3. Příklad návrhu synchr. systému Minimalizované funkce vstupů J, K J 1 = q3 + q2 K 1 = 1 J 2 = q 1 K 2 = q 1 + q 3 J 3 = q 1 q 2 K 3 = q 2 Mapy výstupních funkcí a minimalizované výstupní funkce : H = q 0 1 q2 q3 H + 1 = q1q 2 q1 q2 q3 H = q 2 2 q3 H3 = q1 q3 + q2 q3
46 3. Příklad návrhu synchronního obvodu Výsledné schéma zapojení I.varianty:
47 3. Příklad návrhu synchronního obvodu Řešení II. Varianty se 4 KO viz zadání q4 q3 q2 q1 q4 q3 q2 q1 H3 H2 H1H V této variantě budou výstupní funkce následující: H0 = q1 H1 = q2 H3 = q4 - výstupy přímo z KO a musí se řešit jen H2 mapou
48 3. Příklad návrhu synchronního obvodu Mapy budících funkcí 4 KO II.var. - viz zadání
49 3. Příklad návrhu synchronního obvodu Výstupní funkce H2 a budící funkce J = q 1 1.q3. q4 K 1 = 1 J = q 1 1.q3. q4 J = q 2 3. q4 K 2 = q 3 J 3 = q 1 + q 2 J 4 = q 1.q 3 K 3 = q 1 K 4 = q 3 H = 0 = q1 H1 = q2 H2 = q1.q3 + q3.q4 H3 q4
50 3. Příklad návrhu synchronního obvodu Schéma zapojení II. varianty
51 3. Příklad návrhu synchronního obvodu III. Varianta - tabulka přechodů a zakódování vnitřních stavů přidá se jedna vnitřní proměnná q 5 Q t Q t+1 H 3 H 2 H 1 H
52 3. Příklad návrhu synchronního obvodu III. varianta zakódovaná tabulka přechodů q 5 q 4 q 3 q 2 q 1 q 5 q 4 q 3 q 2 q 1 H 0 H 1 H 2 H
53 3. Příklad návrhu synchronního obvodu Mapy budících funkcí III. varianta
54 3. Příklad návrhu synchronního obvodu Budící funkce III. varianta
55 3. Příklad návrhu synchronního obvodu Schéma zapojení III. varianta I. varianta se jeví jako nejméně výhodná je třeba nejvíce integrovaných obvodů
56 3. Příklad čítače modulo 3
57 3. Příklad registrů
3. Sekvenční logické obvody
3. Sekvenční logické obvody 3. Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou 3. Sekvenční logické obvody příklad sekv.o. Příklad sledování polohy vozíku
Sekvenční logické obvody
Sekvenční logické obvody Sekvenční logické obvody - úvod Sledujme chování jednoduchého logického obvodu se zpětnou vazbou Sekvenční obvody - paměťové členy, klopné obvody flip-flop Asynchronní klopné obvody
Struktura a architektura počítačů (BI-SAP) 3
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 3 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
1 z 16 11.5.2009 11:33 Test: "CIT_04_SLO_30z50" Otázka č. 1 U Mooreova automatu závisí okamžitý výstup Odpověď A: na okamžitém stavu pamětí Odpověď B: na minulém stavu pamětí Odpověď C: na okamžitém stavu
Návrh synchronního čítače
Návrh synchronního čítače Zadání: Navrhněte synchronní čítač mod 7, který čítá vstupní impulsy na vstupu x. Při návrhu použijte klopné obvody typu -K a maximálně třívstupová hradla typu NAND. Řešení: Čítač
{ } SYNTÉZA TABULEK PŘECHODŮ 1. NEALGEBRAICKÉ METODY
SNTÉZA TABULEK PŘECHODŮ. NEALGEBRAICKÉ METOD a) GINSBURGOVA METODA Využívá tzv. korespondencí mez vstupním a výstupním slovem př dané vstupní a výstupní abecedě. Jnak řečeno, vyhodnocuí se ednotlvé odezvy
Návrh asynchronního automatu
Návrh asynchronního automatu Domovská URL dokumentu: http://dce.felk.cvut.cz/lsy/cviceni/pdf/asyn_automat.pdf Obsah DEFINICE AUTOMATU... 2 KROK 1: ZADÁNÍ... 3 KROK 2: ANALÝZA ZADÁNÍ... 3 KROK 3: VYJÁDŘENÍ
Konečný automat. Studium chování dynam. Systémů s diskrétním parametrem číslic. Počítae, nervové sys, jazyky...
Konečný automat. Syntéza kombinačních a sekvenčních logických obvodů. Sekvenční obvody asynchronní, synchronní a pulzní. Logické řízení technologických procesů, zápis algoritmů a formulace cílů řízení.
SEKVENČNÍ LOGICKÉ OBVODY
Sekvenční logický obvod je elektronický obvod složený z logických členů. Sekvenční obvod se skládá ze dvou částí kombinační a paměťové. Abychom mohli určit hodnotu výstupní proměnné, je potřeba u sekvenčních
Návrh čítače jako automatu
ávrh čítače jako automatu Domovská URL dokumentu: http://dce.felk.cvut.cz/lsy/cviceni/pdf/citacavrh.pdf Obsah ÁVRH ČÍTAČE JAO AUTOMATU.... SYCHROÍ A ASYCHROÍ AUTOMAT... 2.a. Výstupy automatu mohou být
Projekt Pospolu. Sekvenční logické obvody Klopné obvody. Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych.
Projekt Pospolu Sekvenční logické obvody Klopné obvody Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Ing. Jiří Ulrych. Rozlišujeme základní druhy klopných sekvenčních obvodů: Klopný obvod
Úloha 9. Stavové automaty: grafická a textová forma stavového diagramu, příklad: detektory posloupností bitů.
Úloha 9. Stavové automaty: grafická a textová forma ového diagramu, příklad: detektory posloupností bitů. Zadání 1. Navrhněte detektor posloupnosti 1011 jako ový automat s klopnými obvody typu. 2. Navržený
Sekvenční logické obvody
Název a adresa školy: Střední škola průmyslová a umělecká, Opava, příspěvková organizace, Praskova 399/8, Opava, 746 01 Název operačního programu: OP Vzdělávání pro konkurenceschopnost, oblast podpory
... sekvenční výstupy. Obr. 1: Obecné schéma stavového automatu
Předmět Ústav Úloha č. 10 BDIO - Digitální obvody Ústav mikroelektroniky Komplexní příklad - návrh řídicí logiky pro jednoduchý nápojový automat, kombinační + sekvenční logika (stavové automaty) Student
Projekt realizovaný na SPŠ Nové Město nad Metují. s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje
Projekt realizovaný na SPŠ Nové Město nad Metují s finanční podporou v Operačním programu Vzdělávání pro konkurenceschopnost Královéhradeckého kraje Modul 03 Technické předměty Ing. Otakar Maixner 1 Blokové
Struktura a architektura počítačů (BI-SAP) 4
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 4 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Registry a čítače část 2
Registry a čítače část 2 Vypracoval SOU Ohradní Vladimír Jelínek Aktualizace září 2012 Úvod Registry a čítače jsou častým stavebním blokem v číslicových systémech. Jsou založeny na funkci synchronních
ASYNCHRONNÍ ČÍTAČE Použité zdroje:
ASYNCHRONNÍ ČÍTAČE Použité zdroje: Antošová, A., Davídek, V.: Číslicová technika, KOPP, České Budějovice 2007 http://www.edunet.souepl.cz www.sse-lipniknb.cz http://www.dmaster.wz.cz www.spszl.cz http://mikroelektro.utb.cz
Y36SAP 2007 Y36SAP-4. Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač
Y36SAP 27 Y36SAP-4 Logické obvody kombinační a sekvenční používané v číslicovém počítači Sčítačka, půlsčítačka, registr, čítač 27-Kubátová Y36SAP-Logické obvody typické Často používané funkce Majorita:
Kombinační automaty (logické obvody)
Kombinační automaty (logické obvody) o Název: VY_32_INOVACE_01_CIT_01_Prehled_schematickych_znacek.pptx o Téma: Přehled schématických značek o Název: VY_32_INOVACE_01_CIT_02_Prehled_schematickych_znacek_test.pptx
Otázka 10 - Y36SAP. Zadání. Logické obvody. Slovníček pojmů. Základní logické členy (hradla)
Otázka 10 - Y36SAP Zadání Logické obvody. Logické funkce, formy jejich popisu. Kombinační obvody a jejich návrh. Sekvenční systém jako konečný automat. Synchronní a asynchronní sekvenční obvody a jejich
Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Simulace číslicových obvodů (MI-SIM) zimní semestr 2010/2011 Jiří Douša, katedra číslicového návrhu (K18103), České vysoké učení technické
LOGICKÉ SYSTÉMY PRO ŘÍZENÍ
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta elektrotechnická LOGICKÉ SYSTÉMY PRO ŘÍZENÍ Doc. Ing. Jiří Bayer, CSc Dr.Ing. Zdeněk Hanzálek Ing. Richard Šusta 2000 Vydavatelství ČVUT Předmluva Skriptum
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ
OVLÁDACÍ OBVODY ELEKTRICKÝCH ZAŘÍZENÍ Odlišnosti silových a ovládacích obvodů Logické funkce ovládacích obvodů Přístrojová realizace logických funkcí Programátory pro řízení procesů Akční členy ovládacích
Návrh ovládání zdroje ATX
Návrh ovládání zdroje ATX Zapínání a vypínání PC zdroj ATX se zapíná spojením řídicího signálu \PS_ON se zemí zapnutí PC stiskem tlačítka POWER vypnutí PC (hardwarové) stiskem tlačítka POWER a jeho podržením
Technická kybernetika. Obsah. Klopné obvody: Použití klopných obvodů. Sekvenční funkční diagramy. Programovatelné logické automaty.
Akademický rok 2016/2017 Připravil: adim Farana Technická kybernetika Klopné obvody, sekvenční funkční diagramy, programovatelné logické automaty 2 Obsah Klopné obvody:. D. JK. Použití klopných obvodů.
Logické obvody 10. Neúplné čítače Asynchronní čítače Hazardy v kombinačních obvodech Metastabilita Logické obvody - 10 hazardy 1
Logické obvody 10 Neúplné čítače Asynchronní čítače Hazardy v kombinačních obvodech Metastabilita 6.12.2007 Logické obvody - 10 hazardy 1 Neúplné čítače Návrh čítače M5 na tabuli v kódu binárním a Grayově
Logické funkce a obvody, zobrazení výstupů
Logické funkce a obvody, zobrazení výstupů Digitální obvody (na rozdíl od analogových) využívají jen dvě napěťové úrovně, vyjádřené stavy logické nuly a logické jedničky. Je na nich založeno hodně elektronických
Cíle. Teoretický úvod
Předmět Ú Úloha č. 7 BIO - igitální obvody Ú mikroelektroniky Sekvenční logika návrh asynchronních a synchronních binárních čítačů, výhody a nevýhody, využití Student Cíle Funkce čítačů a použití v digitálních
PROGRAMOVATELNÉ LOGICKÉ OBVODY
PROGRAMOVATELNÉ LOGICKÉ OBVODY (PROGRAMMABLE LOGIC DEVICE PLD) Programovatelné logické obvody jsou číslicové obvody, jejichž logická funkce může být programována uživatelem. Výhody: snížení počtu integrovaných
Typy a použití klopných obvodů
Typy a použití klopných obvodů Klopné obvody s hodinovým vstupem mění svůj stav, pokud hodinový vstup má hodnotu =. Přidáním invertoru před hodinový vstup je lze upravit tak, že budou měnit svůj stav tehdy,
KOMBINAČNÍ LOGICKÉ OBVODY
Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je vstup určen jen výhradně kombinací vstupních veličin. Hodnoty
2.9 Čítače. 2.9.1 Úkol měření:
2.9 Čítače 2.9.1 Úkol měření: 1. Zapište si použité přístroje 2. Ověřte časový diagram asynchronního binárního čítače 7493 3. Ověřte zkrácení početního cyklu čítače 7493 4. Zapojte binární čítač ve funkci
BDIO - Digitální obvody
BIO - igitální obvody Ústav Úloha č. 6 Ústav mikroelektroniky ekvenční logika klopné obvody,, JK, T, posuvný registr tudent Cíle ozdíl mezi kombinačními a sekvenčními logickými obvody. Objasnit principy
Konečné automaty (sekvenční obvody)
Konečné automaty (sekvenční obvody) Název školy: SPŠ Ústí nad Labem, středisko Resslova Autor: Ing. Pavel Votrubec Název: VY_32_INOVACE_03_CIT_42_III_Seminarni_prace_navrh_KA Téma: Návrhy zadání III. Seminární
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 7 ČASOVÁNÍ A SYNCHRONIZACE TECHNICKÉHO VYBAVENÍ doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních
Způsoby realizace této funkce:
KOMBINAČNÍ LOGICKÉ OBVODY U těchto obvodů je výstup určen jen výhradně kombinací vstupních veličin. Hodnoty výstupních veličin nezávisejí na předcházejícím stavu logického obvodu, což znamená, že kombinační
Střední průmyslová škola, Ústí nad Labem, Resslova 5, příspěvková organizace
Číslo zadání: 1 Název zadání : Kombinační automat dvoubitová binární sčítačka Zadání : Navrhněte LO pro dvoubitovou binární sčítačku z TTL obvodů a) Proveďte analýzu zadané úlohy. b) Navrhněte sčítačku
CO JE STAVOVÝ AUTOMAT
CO JE STAVOVÝ AUTOMAT Co je stavový automat Číslo DUM v digitálním archivu školy VY_32_INOVACE_10_02_01 Materiál seznamuje s tím, co je stavový automat. PRINCIP STAVOVÉHO AUTOMATU Princip stavového automatu
Testování a spolehlivost. 3. Laboratoř Program Atalanta, BIST, testování sekvenčních obvodů
Testování a spolehlivost ZS 2011/2012 3. Laboratoř Program Atalanta, BIST, testování sekvenčních obvodů Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Příprava studijního programu
Klopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač
FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Klopný obvod typu D, dělička dvěma, Johnsonův kruhový čítač (Řídící elektronika BREB) Autoři textu: doc. Dr. Ing. Miroslav
4. Elektronické logické členy. Elektronické obvody pro logické členy
4. Elektronické logické členy Kombinační a sekvenční logické funkce a logické členy Elektronické obvody pro logické členy Polovodičové paměti 1 Kombinační logické obvody Způsoby zápisu logických funkcí:
Logické systémy a jejich návrh
Kapitola 2 Logické systémy a jejich návrh 2.1 Logické funkce a jejich návrh Vstupní/výstupní písmeno - každá kombinace hodnot všech vstupních/výstupních proměnných. Na vstup se tedy může přivést jedno
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.1 Logické obvody Kapitola 20 Klopný obvod
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics Digitální
Architektura počítačů Logické obvody
Architektura počítačů Logické obvody http://d3s.mff.cuni.cz/teaching/computer_architecture/ Lubomír Bulej bulej@d3s.mff.cuni.cz CHARLES UNIVERSITY IN PRAGUE faculty of mathematics and physics 2/36 Digitální
Obsah DÍL 1. Předmluva 11
DÍL 1 Předmluva 11 KAPITOLA 1 1 Minulost a současnost automatizace 13 1.1 Vybrané základní pojmy 14 1.2 Účel a důvody automatizace 21 1.3 Automatizace a kybernetika 23 Kontrolní otázky 25 Literatura 26
5. A/Č převodník s postupnou aproximací
5. A/Č převodník s postupnou aproximací Otázky k úloze domácí příprava a) Máte sebou USB flash-disc? b) Z jakých obvodů se v principu skládá převodník s postupnou aproximací? c) Proč je v zapojení použit
VY_32_INOVACE_CTE_2.MA_18_Čítače asynchronní, synchronní. Střední odborná škola a Střední odborné učiliště, Dubno Ing.
Číslo projektu Číslo materiálu Z.1.07/1.5.00/34.0581 VY_3_INOVAE_TE_.MA_18_Čítače asynchronní, synchronní Název školy Autor Tematická oblast Ročník Střední odborná škola a Střední odborné učiliště, Dubno
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností
Automatizace je proces při němž je řídicí funkce člověka nahrazována činností různých přístrojů a zařízení. (Mechanizace, Automatizace, Komplexní automatizace) Kybernetika je Věda, která zkoumá obecné
Cíle. Teoretický úvod. BDIO - Digitální obvody Ústav mikroelektroniky Sekvenční logika - debouncer, čítače, měření doby stisknutí tlačítka Student
Předmět Ústav Úloha č. 9 BIO - igitální obvody Ústav mikroelektroniky Sekvenční logika - debouncer, čítače, měření doby stisknutí tlačítka Student Cíle Pochopení funkce obvodu pro odstranění zákmitů na
Naproti tomu gramatika je vlastně soupis pravidel, jak
1 Kapitola 1 Úvod V přednášce se zaměříme hlavně na konečný popis obecně nekonečných množin řetězců symbolů dané množiny A. Prvkům množiny A budeme říkat písmena, řetězcům (konečným posloupnostem) písmen
1 z 9 9.6.2008 13:27
1 z 9 9.6.2008 13:27 Test: "TVY_KLO" Otázka č. 1 Převodníku je: kombinační logický obvod, který převádí jeden binární kód do druhého Odpověď B: obvod, pomocí kterého můžeme převádět číslo z jedné soustavy
VY_32_INOVACE_CTE_2.MA_19_Registry posuvné a kruhové. Střední odborná škola a Střední odborné učiliště, Dubno Ing. Miroslav Krýdl
Číslo projektu Číslo materiálu CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_CTE_2.MA_19_egistry posuvné a kruhové Název školy Autor Tematická oblast očník Střední odborná škola a Střední odborné učiliště, ubno
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.1 Logické obvody Kapitola 16 Sekvenční logické
2. Synchronní číslicové systémy
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FON PRAHA & EU: INVESTUJENE O VAŠÍ BUOUCNOSTI 2. Synchronní číslicové systémy 1 Podmínky korektní funkce hranového
Kódováni dat. Kódy používané pro strojové operace
Kódováni dat Před zpracováním dat například v počítači je třeba znaky převést do tvaru, kterému počítač rozumí, tj. přiřadit jim určité kombinace bitů. Tomuto převodu se říká kódování. Kód je předpis pro
1. 5. Minimalizace logické funkce a implementace do cílového programovatelného obvodu CPLD
.. Minimalizace logické funkce a implementace do cílového programovatelného obvodu Zadání. Navrhněte obvod realizující neminimalizovanou funkci (úplný term) pomocí hradel AND, OR a invertorů. Zaznamenejte
mové techniky budov Osnova Základy logického Druhy signálů
Základy Systémov mové techniky budov Základy logického řízení Ing. Jan Vaňuš N 716 tel.: 59 699 1509 email: jan.vanus vanus@vsb.czvsb.cz http://sweb sweb.cz/jan.vanus Druhy signálů, Osnova, základní dělení
MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ
Projekt: MODERNIZCE VÝUK PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod XOR neboli EXLUSIV OR Obor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří
LOGICKÉ ŘÍZENÍ. Matematický základ logického řízení
Měřicí a řídicí technika bakalářské studium - přednášky LS 28/9 LOGICKÉ ŘÍZENÍ matematický základ logického řízení kombinační logické řízení sekvenční logické řízení programovatelné logické automaty Matematický
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti MI-SOC: 11 METODY VERIFIKACE SYSTÉMŮ NA ČIPU Hana Kubátov vá doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta 1 informačních
Automaty a gramatiky(bi-aag) Formální překlady. 5. Překladové konečné automaty. h(ε) = ε, h(xa) = h(x)h(a), x, x T, a T.
BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 2/41 Formální překlady BI-AAG (2011/2012) J. Holub: 5. Překladové konečné automaty p. 4/41 Automaty a gramatiky(bi-aag) 5. Překladové konečné
Číselné vyjádření hodnoty. Kolik váží hrouda zlata?
Čísla a logika Číselné vyjádření hodnoty Au Kolik váží hrouda zlata? Dekadické vážení Když přidám osmé závaží g, váha se převáží => závaží zase odeberu a začnu přidávat závaží x menší 7 závaží g 2 závaží
BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE
BISTABILNÍ KLOPNÉ OBVODY, ČÍTAČE Úvod Účelem úlohy je seznámení s funkcemi a zapojeními několika sekvenčních logických obvodů, s tzv. bistabilními klopnými obvody a čítači. U logických obvodů se často
Projekt: Přístupový terminál
Projekt: Přístupový terminál 1. Zadání 1. Seznamte se s přípravkem FITKit a způsobem připojení jeho periférií, zejména klávesnice a LCD displeje. 2. Prostudujte si zdrojové kódy projektu v jazyce VHDL.
10. Techniky formální verifikace a validace
Fakulta informačních technologií MI-NFA, zimní semestr 2011/2012 Jan Schmidt EVROPSKÝ SOCIÁLNÍ FOND PRAHA & EU: INVESTUJENE DO VAŠÍ BUDOUCNOSTI 10. Techniky formální verifikace a validace 1 Simulace není
Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Stavové automaty enkódování Proces, který rozhoduje kolik paměťových prvků bude využito v paměťové části. Binární enkódování je nejpoužívanější. j počet stavů
Praktické úlohy- 2.oblast zaměření
Praktické úlohy- 2.oblast zaměření Realizace praktických úloh zaměřených na dovednosti v oblastech: Měření specializovanými přístroji, jejich obsluha a parametrizace; Diagnostika a specifikace závad, měření
HAZARDY V LOGICKÝCH SYSTÉMECH
HAZARDY V LOGICKÝCH SYSTÉMECH 1. FUNKČNÍ HAZARD : Při změně vstupního stavu vstupních proměnných, kdy se bude měnit více jak jedna proměnná - v reálné praxi však současná změna nenastává a ke změnám hodnot
2.7 Binární sčítačka. 2.7.1 Úkol měření:
2.7 Binární sčítačka 2.7.1 Úkol měření: 1. Navrhněte a realizujte 3-bitovou sčítačku. Pro řešení využijte dílčích kroků: pomocí pravdivostní tabulky navrhněte a realizujte polosčítačku pomocí pravdivostní
Digitální obvody. Doc. Ing. Lukáš Fujcik, Ph.D.
Digitální obvody Doc. Ing. Lukáš Fujcik, Ph.D. Klopné obvody jsou nejjednodušší sekvenční součástky Záleží na předcházejícím stavu Asynchronní klopné obvody reagují na změny vstupu okamžitě Synchronní
Logické řízení. Náplň výuky
Logické řízení Logické řízení Náplň výuky Historie Logické funkce Booleova algebra Vyjádření Booleových funkcí Minimalizace logických funkcí Logické řídicí obvody Blokové schéma Historie Číslicová technika
Sylabus kurzu Elektronika
Sylabus kurzu Elektronika 5. ledna 2004 1 Analogová část Tato část je zaměřena zejména na elektronické prvky a zapojení v analogových obvodech. 1.1 Pasivní elektronické prvky Rezistor, kondenzátor, cívka-
MODERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ
Projekt: MDERNIZACE VÝUKY PŘEDMĚTU ELEKTRICKÁ MĚŘENÍ Úloha: Měření kombinačních logických funkcí kombinační logický obvod - generátor parity bor: Elektrikář slaboproud Ročník: 3. Zpracoval: Ing. Jiří Šima
Operace ALU. INP 2008 FIT VUT v Brně
Operace ALU INP 2008 FIT VUT v Brně 1 Princip ALU (FX) Požadavky: Logické operace Sčítání (v doplňkovém kódu) Posuvy/rotace Násobení ělení B A not AN OR XOR + Y 1) Implementace logických operací je zřejmá
Úvod do informačních technologií
Úvod do informačních technologií Jan Outrata KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO V OLOMOUCI přednášky Binární logika Jan Outrata (Univerzita Palackého v Olomouci) Úvod do informačních technologií
LOGICKÉ OBVODY X36LOB
LOGICKÉ OBVODY X36LOB Doc. Ing. Hana Kubátová, CSc. Katedra počítačů FEL ČVUT v Praze 26.9.2008 Logické obvody - 1 - Úvod 1 Obsah a cíle předmětu Číslicový návrh (digital design) Číslicové obvody logické
Základy logického řízení
Základy logického řízení 11/2007 Ing. Jan Vaňuš, doc.ing.václav Vrána,CSc. Úvod Řízení = cílené působení řídicího systému na řízený objekt je členěno na automatické a ruční. Automatickéřízení je děleno
7. Popis konečného automatu
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Praktika návrhu číslicových obvodů Dr.-Ing. Martin Novotný Katedra číslicového návrhu Fakulta informačních technologií ČVUT v Praze Miloš
2. LOGICKÉ OBVODY. Kombinační logické obvody
Hardware počítačů Doc.Ing. Vlastimil Jáneš, CSc, K620, FD ČVUT E-mail: janes@fd.cvut.cz Informace a materiály ke stažení na WWW: http://www.fd.cvut.cz/personal/janes/hwpocitacu/hw.html 2. LOGICKÉ OBVODY
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita V.2 Inovace a zkvalitnění výuky směřující k rozvoji odborných kompetencí žáků středních škol Téma V.2.1 Logické obvody Kapitola 21 Čítače Ing.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb.
Zpráva o průběhu přijímacího řízení na vysokých školách dle Vyhlášky MŠMT č. 343/2002 a její změně 276/2004 Sb. 1. Informace o přijímacích zkouškách Studijní program: Informatika navazující magisterský
Číslicové obvody základní pojmy
Číslicové obvody základní pojmy V číslicové technice se pracuje s fyzikálními veličinami, které lze popsat při určité míře zjednodušení dvěma stavy. Logické stavy binární proměnné nabývají dvou stavů:
2-LC: ČÍSLICOVÉ OBVODY
2-LC: ČÍSLICOVÉ OBVODY Cíl měření: Ověření základních vlastností číslicových integrovaných obvodů. 1) čítač (asynchronní, synchronní) 2) multiplexer a demultiplexer 3) mikroprocesor ( S 2441, str. 155)
1/1 ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018
ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE PROVOZNĚ EKONOMICKÁ FAKULTA PŘIJÍMACÍ ŘÍZENÍ 2017/2018 Informační technologie 1 - Doporučená doba zpracování: 40 minut 1) Termín DCL v relačně databázové technologii
Pohled do nitra mikroprocesoru Josef Horálek
Pohled do nitra mikroprocesoru Josef Horálek Z čeho vycházíme = Vycházíme z Von Neumannovy architektury = Celý počítač se tak skládá z pěti koncepčních bloků: = Operační paměť = Programový řadič = Aritmeticko-logická
Programování. řídících systémů v reálném čase. Střední odborná škola a Střední odborné učiliště - - Centrum Odborné přípravy Sezimovo Ústí
Střední odborná škola a Střední odborné učiliště - - Centrum Odborné přípravy Sezimovo Ústí Studijní text pro 3. a 4. ročníky technických oborů Programování řídících systémů v reálném čase Verze: 1.11
Struktura a architektura počítačů (BI-SAP) 10
Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Struktura a architektura počítačů (BI-SAP) 10 doc. Ing. Hana Kubátová, CSc. Katedra číslicového návrhu Fakulta informačních technologii
Algoritmus. Přesné znění definice algoritmu zní: Algoritmus je procedura proveditelná Turingovým strojem.
Algoritmus Algoritmus je schematický postup pro řešení určitého druhu problémů, který je prováděn pomocí konečného množství přesně definovaných kroků. nebo Algoritmus lze definovat jako jednoznačně určenou
Y36SAP Y36SAP-2. Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka Kubátová Y36SAP-Logické obvody 1.
Y36SAP 26.2.27 Y36SAP-2 Logické obvody kombinační Formy popisu Příklad návrhu Sčítačka 27-Kubátová Y36SAP-Logické obvody Logický obvod Vstupy a výstupy nabývají pouze hodnot nebo Kombinační obvod popsán
Struktura a architektura počítačů
Struktura a architktura počítačů Logické skvnční obvody (bloky) a budič používané v číslicovém počítači Čské vysoké uční tchnické Fakulta lktrotchnická Vr..3 J. Zděnk / M. Chomát 24 st d in d d d 2 d 3
Algoritmy I. Číselné soustavy přečíst!!! ALGI 2018/19
Algoritmy I Číselné soustavy přečíst!!! Číselné soustavy Každé číslo lze zapsat v poziční číselné soustavě ve tvaru: a n *z n +a n-1 *z n-1 +. +a 1 *z 1 +a 0 *z 0 +a -1 *z n-1 +a -2 *z -2 +.. V dekadické
Střední průmyslová škola, Ústí nad Labem, Resslova 5, příspěvková organizace
Číslo zadání: 1 Název zadání : Kombinační automat dvoubitová binární sčítačka Navrhněte LO pro dvoubitovou binární sčítačku z TTL obvodů Dílčí úkoly : a) Proveďte analýzu zadané úlohy. b) Navrhněte sčítačku
PODPORA ELEKTRONICKÝCH FOREM VÝUKY
INVE STICE DO ROZV O JE V ZDĚL ÁV Á NÍ PODPORA ELEKTRONICKÝCH FOREM VÝUKY CZ.1.07/1.1.06/01.0043 Tento projekt je financován z prostředků ESF a státního rozpočtu ČR. SOŠ informatiky a spojů a SOU, Jaselská
Struktura a architektura počítačů
Struktura a archtektura počítačů Logcké obvody - sekvenční Formy popsu, konečný automat Příklady návrhu České vysoké učení techncké Fakulta elektrotechncká Ver..2 J. Zděnek 24 Logcký sekvenční obvod Logcký
VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola a Střední odborné učiliště, Dubno
Číslo projektu Číslo materiálu Název školy Autor Tematická oblast Ročník CZ.1.07/1.5.00/34.0581 VY_32_INOVACE_OV_2.ME_CISLICOVA_TECHNIKA_19_SPOJENI KOMBINACNICH_A_SEKVENCNICH_OBVODU Střední odborná škola
ZÁKLADY PROGRAMOVÁNÍ. Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14
ZÁKLADY PROGRAMOVÁNÍ Mgr. Vladislav BEDNÁŘ 2013 1.3 2/14 Co je vhodné vědět, než si vybereme programovací jazyk a začneme programovat roboty. 1 / 14 0:40 1.3. Vliv hardware počítače na programování Vliv
Koncept pokročilého návrhu ve VHDL. INP - cvičení 2
Koncept pokročilého návrhu ve VHDL INP - cvičení 2 architecture behv of Cnt is process (CLK,RST,CE) variable value: std_logic_vector(3 downto 0 if (RST = '1') then value := (others => '0' elsif (CLK'event