Přijímací zkoušky z českého jazyka a literatury - 2. kolo
|
|
- Ivo Bílek
- před 9 lety
- Počet zobrazení:
Transkript
1 Přijímací zkoušky z českého jazyka a literatury - 2. kolo 1. ročník (duben 2009) 1. část - doplňte chybějící písmena a interpunkci: KUNĚTICKÁ HORA Zčásti zachovalé torzo hradu jehož založení je dosud opředeno rouškou tajemství leží na osam _ lé dominantní v _ vřelé kupě nedaleko _ ýchodočeských Pardubic. Dodnes nevíme přesně kdo prapůvodní hrad na _ unětické _ oře založil. Pověsti tvrdí že zakladatelem byl rytíř Kunata serióznější zdroje uvádějí krále. Kdo doopravdy stál u založení původního hradu není z pohledu dnešního návštěvníka důležité. Tento hrad totiž zanikl již začátkem 14 století. Osudy dnešního hradu se tak začal_ odv _ jet teprve v době _ usitské. Přesněji v roce 1421 kdy se _ unětické _ ory zmocnil _ usitský hejtman Diviš Bořek z Miletínka. Ten ji získal po dob _ tí nedalekého opatovického kláštera jemuž zdejší _ zemí patřilo již od dob 11 století. Husité zde poté v _ budoval _ pevný hrad. Od Divišových následníků získal _ unětickou _ oru král Jiří z Poděbrad který ji roku 1465 převedl na svého syna Jindřicha. Po necel _ ch třiceti letech koupil hrad znám _ a dosti mov _ tý Vilém z Perštejna. Jeho rod se význam _ zapsal do osudů _ unětické _ ory neboť za Perštejnů byl celý hrad pozdně goticky přestavěn a rozšířen. Avšak světská sláva polní tráva. Poté co se výrazně zv _ šil v _ znam pardubického hradu začal v _ znam _ unětické _ory upadat. V roce 1560 hrad koupil arcikníže Maxmilián který jej samozřejmě neob _ val. Kunětická _ ora se ocitla na samém dně zájmu. A to ji ještě čekala _ řicetiletá válka jejíž dramatický průběh se dosti znatelně zaryl do osudu hradu. Roku 1645 přišl védové a choval _ se zde stejně jako všude jinde _ pustošil _ a v_raboval _, co jen mohl_. Není proto divu že již začátkem 80 let zm _ něného století byl hrad uváděn jako pustý. Zdroj: 1
2 2. část - jazykový rozbor Stopka pro všechny 1) Stopka pro všechny - tak se dá přeložit značka, na kterou narazíte v Americe velmi 2) často. Znamená, že řidiči přijíždějící na danou křižovatku ze všech směrů musejí 3) zastavit, posoudit situaci a dát přednost tomu, kdo přijel první. Zní to jednoduše, ale 4) představte si, že přijíždíte současně s auty z jednoho, dvou nebo tří jiných směrů, 5) přičemž všechna mají na příjezdu stopku. O tom kdo přijel první by se dalo 6) polemizovat. Kdo pojede první? 7) Jako člověk bez velkých iluzí o lidské povaze bych čekal, že řidič s největší dávkou 8) sebevědomí (nebo prostě hroší kůže) vyrazí vpřed bez ohledu na ostatní. Zatím jsem 9) byl ale vždycky svědkem toho, že v takové situaci všichni spořádaně zastaví, někdy si 10) pokynou nebo na sebe bliknou a pak bezkonfliktně projedou křižovatkou jeden po 11) druhém. Zdroj: (Vít Pohanka) Úkoly vztahující se k textu: 1. Určete, jakými větnými členy jsou následující výrazy: velmi (ř. 1) posoudit (ř. 3) povaze (ř.7) svědkem (ř.9) 2. Spojení z jednoho, dvou nebo tří jiných směrů (ř.7) převeďte do 7.pádu. 3. Vytvořte větu, v níž užijete slovo vyrazí (ř.8) v jiném významu. Napište slovní spojení nebo větu. Sloveso lze použít i v jiných tvarech. 4. Vysvětlete význam frazému (ustáleného slovního spojení) hroší kůže (ř.8). 5. Z posledního souvětí vypište všechna příslovce. 6. Odůvodněte, proč se v posledním souvětí nepíše čárka před spojkou nebo. 2
3 7. Vypište z textu přídavná jména ve 3. stupni, uveďte tvar 1. stupně. 8. Určete slovní druh výrazu sebevědomí (ř.8). Užijte výrazu ve spojení s podstatným jménem tak, aby byl jiným slovním druhem. 9. Kolik vět obsahuje poslední souvětí? Naznačte graficky stavbu souvětí, určete druhy vět a případné poměry mezi větami. 10. Ke kterému přejatému slovu v textu byste přiřadili význam zkreslená, mylná představa něčeho skutečně vnímaného; klamná naděje, vidina, přelud? 11. V podtrženém souvětí a) doplňte chybějící interpunkci, b) přestylizujte souvětí tak, aby neobsahovalo vloženou větu. 12. U slovesného tvaru čekal bych (ř.7) a)určete: osobu, číslo, čas, způsob, rod a vid, b) převeďte daný tvar do 1. os. č.mn. zp. podmiňovací minulý, rod činný 3
4 3. část literární úkoly K následujícím ukázkám přiřaďte odpovídající literární útvar. Vyberte z nabídky: přísloví, sonet, pohádka, bajka, epigram, epitaf, pověst, balada, epos, pranostika, dramatické dílo, milostná lyrika. 1. Zde leží Jiří Wolker, básník, jenž miloval svět a pro spravedlnost jeho šel se bít. Dříve než však moh srdce k boji vytasit zemřel, mlád dvacet čtyři let. 2. ( ) Jdi z cesty muži hloupému, neboť na jeho rtech poznání nenalezneš. Moudrost chytrého je v tom, že rozumí své cestě, kdežto pošetilost hlupáků je v záludnosti. 3. Ráno, raníčko panna vstala prádlo si v uzel zavázala: Půjdu matičko k jezeru, šátečky sobě vyperu. Ach nechoď, nechoď na jezero, zůstaň dnes doma, moje dcero! Já měla zlý té noci sen: nechoď, dceruško, k vodě ven. 4. Lev zestárl a nemohl si už opatřovat potravu silou, proto se rozhodl, že si k ní bude pomáhat chytrostí. Odešel do jedné jeskyně, lehl si tam a předstíral, že je nemocný. Zvířata ho přicházela navštívit,on se jich zmocňoval a požíral je. Už mnoho zvířat takto zahynulo, když přišla liška, která pochopila jeho lest, zastavila se kus od jeskyně a vyptávala se ho, jak se mu daří. Když lev řekl, že špatně, a ptal se jí, proč nejde dovnitř, řekla: Já bych šla dovnitř, kdybych neviděla stopy mnoha zvířat vcházejících, ale žádnou stopu někoho vycházejícího. Tak se rozumní lidé vyhnou nebezpečí, protože je podle různých známek předvídají. Poznáte autora alespoň jedné ukázky? Napište k příslušnému textu. 4
5 Příklady k přijímací zkoušce z matematiky do 1. ročníku čtyřletého studia, která se koná dne 23. dubna Vypočtěte: 2. Řešte rovnici a proveďte zkoušku: 3. V pravidelném pětiúhelníku, který je vepsán do kružnice k se středem S, vypočítejte součet velikostí všech vnitřních úhlů při jeho vrcholech. Načrtněte obrázek. 4. Poměr velikostí hran kvádru je 5 : 3 : 2. Jaký je objem kvádru, je-li plocha nejmenší stěny 54 cm 2? 5. Do bazénu může voda přitékat dvěma přítoky. Je-li přítok A puštěn 3 hodiny a přítokem B přitéká voda 4 hodiny, nateče do bazénu celkem hl vody. Přitéká-li přítokem A voda 4 hodiny a přítokem B 2 hodiny, nateče do bazénu celkem hl vody. a) Kolik vody by přiteklo za jednu hodinu pouze přítokem A? b) Kolik vody by přiteklo za jednu hodinu pouze přítokem B? 6. Krychle má hranu o délce 10 dm. Druhá krychle má hranu o 20% delší. O kolik % je více nebo méně vody v druhé krychli než v krychli první, je-li první krychle zaplněna ze tří čtvrtin a druhá ze tří osmin? 7. V 10 hodin startoval peloton cyklistů etapu o délce 227 km a jel průměrnou rychlostí 40. V 11 hodin 30 minut za ním vyjel kameraman s motocyklistou rychlostí 60. Kolik kilometrů chybělo cyklistům do cíle v okamžiku, kdy je motocyklista dohonil? 5
6 8. Jsou dány dvě navzájem kolmé přímky p a q. a) Sestrojte všechny kružnice k se středem S a poloměrem 2cm, které se dotýkají přímky p i přímky q. Proveďte rozbor, zapište postup konstrukce a narýsujte všechna řešení. b) Vypočtěte obsah jednoho kruhu ohraničeného kružnicí k. c) Body dotyku kružnic s přímkami označte T 1,... (dle počtu řešení) a vypočtěte obsah útvaru ohraničeného body dotyku a částmi kružnic (střed útvaru je v průsečíku přímek). 6
Přijímací zkoušky z českého jazyka a literatury - 1. kolo
Přijímací zkoušky z českého jazyka a literatury - 1. kolo 1. ročník -(duben 2009) 1. část - doplňte chybějící písmena a interpunkci: Jaderný reaktor na _ěsíci V příštích dvaceti letech by se přítomnost
II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.
Ukázky typových maturitních příkladů z matematiky..reálná čísla. 3} x R; I. Zobrazte množiny A = {x є 3} < + x R; B = {x є II. Zapište ve tvaru zlomku číslo, 486.Komplexní čísla. I. Určete a + b, a - b,
Metodický list. Název materiálu. Slovesné třídy a vzory. Autor. Darja Dvořáková. Klíčová slova. Slovesné třídy, vzory, K. J. Erben, Kytice, balada
Metodický list Název materiálu Autor Klíčová slova Šablona Slovesné třídy a vzory Slovesné třídy, vzory, K. J. Erben, Kytice, balada III/2 - Inovace a zkvalitnění výuky využíváním ICT Datum vytvoření 5.
Test Zkušební přijímací zkoušky
Test Zkušební přijímací zkoušky 1. Vypočtěte: ( 10 1.5) ( 4 ).( 15). ( 5 6). Doplňte číslo do rámečku, aby platila rovnost:.1. 4 11 10. 8 16 6.. 49 7 1.. + 1. Proveďte početní operace:.1. 6x 4x ( 4x x)
Vzorové příklady k přijímacím zkouškám. 1) Doplňte číselné řady o další dvě čísla. a) 3, 6, 12, 24, 48, 96,... b) 875, 764, 653, 542, 431,...
Vzorové příklady k přijímacím zkouškám ) Doplňte číselné řady o další dvě čísla. a), 6,, 4, 48, 96,... b) 87, 764, 6, 4, 4,... c), 6, 8,,, 0, 6,... d),,, 7,,, 7, 9,,... e) ; ; ; ; ; 8 ) Doplňte číslo místo.
Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď C C B B C
Matematické myšlení: Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď. Které číslo doplníte místo 6 8 0. Které číslo doplníte místo 5 7 7 5 3. Které číslo doplníte místo 70 7 76
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY
SOUBOR TESTOVÝCH ÚLOH Z MATEMATIKY V široce otevřených úlohách 2 7 zapisujte celý postup řešení. 1 Vypočtěte, kolikrát kratší je časový interval sekund oproti časovému intervalu minuty. úzce otevřená 6krát
Přípravný kurz. k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) pro
Příjímací zkoušky 01 Přípravný kurz k přijímacím zkouškám z matematiky pro uchazeče o studium na gymnáziu (čtyřletý obor) 1. Číselné obory 1.1. Doplňte číslo do rámečku tak, aby platila rovnost: 1.1.1.
PROJEKT: OP VK 1.5 ŠKOLA PRO ŽIVOT
PROJEKT: OP VK 1.5 ŠKOLA PRO ŽIVOT NÁZEV MATERIÁLU: PRACOVNÍ LIST - BALADA, ROMANCE VY_32_INOVACE_ST2_LD20_16 Anotace Autor Jazyk Pracovní listy slouží k procvičení, upevnění či ověření znalosti učiva
1. Ukázka je napsaná ve slohovém útvaru: (správnou odpověď zakroužkujte) a) referát b) úvaha c) vypravování
Přijímací zkoušky z českého jazyka Doplňte: Otův tatínek, s maminkou a bratry po válce vstoupil_ do komunistické strany. Jednoho dne se seznámil s _meričanem Johnym, který za války létal s letadlem proti
MATEMATIKA. vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAGVD10C0T01. Testový sešit neotvírejte, počkejte na pokyn!
MATEMATIKA vyšší úroveň obtížnosti MAGVD10C0T01 DIDAKTICKÝ TEST Didaktický test obsahuje 21 úloh. Časový limit pro řešení didaktického testu je uveden na záznamovém archu. Povolené pomůcky: psací a rýsovací
2) Přednáška trvala 80 minut a skončila v 17:35. Jirka na ni přišel v 16:20. Kolik úvodních minut přednášky Jirka
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické soutěže žáků středních odborných škol, středních odborných učilišť a integrovaných středních škol
Krajský úřad Pardubického kraje - odbor školství Jednota českých matematiků a fyziků, pobočka Pardubice Střední škola automobilní Ústí nad Orlicí 26.3.2019 SOUTĚŽNÍ ÚLOHY 37. ročník regionální matematické
2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
MATEMATIKA vyšší úroveň obtížnosti
MATEMATIKA vyšší úroveň obtížnosti DIDAKTICKÝ TEST MAMVD2C0T0 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit
Modelové úlohy přijímacího testu z matematiky
PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a
Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla.
Lineární funkce Lineární funkcí se nazývá každá funkce, která je daná rovnicí y = ax + b, kde a, b jsou reálná čísla. Číslo b je hodnota funkce f v bodě 0. Definičním oborem lineární funkce je množina
MATEMATIKA MAIZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAIZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
MATEMATIKA. 1 Základní informace k zadání zkoušky
MATEMATIKA PŘIJÍMAČKY LIK 2012 DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je
JAZYKOVÝ ROZBOR. 11. Vyznačte kořen ve slově obměnách a utvořte od něj dvě příbuzná slova.
JAZYKOVÝ ROZBOR Nikdy jsem tetě Kateřině nerozuměl a kdybych ji neznal domníval bych se že není možné aby se tentýž člověk jevil v tolika různých obměnách. 1. Doplňte interpunkci. 2. Určete počet vět v
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PDD19C0T04 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PID19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Funkce 1) Zakreslete body K, L a M do souřadného systému Oxy, jsou-li dány jejich souřadnice: K[-3;0]; L[0;-2]; M[4;3].
Téma 4: (převody jednotek, funkce, konstrukční úlohy, osová a středová souměrnost) Převody jednotek 1) Kolik gramů je pět třetin z 2,1 kilogramu? a) 1 260 g b) 3 500 g c) 17 000 g d) 700 g 2) Přednáška
CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 35 Mgr. Tomáš Kotler OBSAH I. Cvičný test II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST 1 Vypočtěte [( 3 3 ) ( 1 4 5 3 0,5 ) ] : 1 6 1. 1 bod VÝCHOZÍ TEXT K ÚLOZE
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Příklady na 13. týden
Příklady na 13. týden 13-1 Kruhový záhon o průměru 10 m se má osázet begóniemi. Na jednu sazenici je zapotřebí 2 dm 2. 1g semena má 5 000 zrn, jejichž klíčivost je 85 %. Pěstební odpad od výsevu do výsadby
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PAD19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PAD9C0T0 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 6 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Základní informace k zadání zkoušky Časový limit
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PID19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Rozpis výstupů zima 2008 Geometrie
Rozpis výstupů zima 2008 Geometrie 20. 10. porovnávání úseček grafický součet úseček grafický rozdíl úseček... porovnávání úhlů grafický součet úhlů grafický rozdíl úhlů... osa úhlu úhly vedlejší a vrcholové...
PŘIJÍMACÍ ZKOUŠKY II.termín 23.dubna 2014
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Příklady můžete řešit v libovolném pořadí.
1. Opakování učiva 6. ročníku
. Opakování učiva 6. ročníku.. Čísla, zlomek ) Z číslic, 6 a sestavte všechna trojciferná čísla tak, aby v každém z nich byly všechny tři číslice různé. ) Z číslic, 0, 3, sestavte všechna čtyřciferná čísla
KLÍČ SPRÁVNÝCH ŘEŠENÍ Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY DO 4LETÉHO SŠ STUDIA VE STŘEDNÍCH ŠKOLÁCH ZŘIZOVANÝCH MORAVSKOSLEZSKÝM KRAJEM
KSŘP-M9M0CINT JAK JSOU HODNOCENY OTEVŘENÉ ÚLOHY Z MATEMATIKY (TEST PRO PŘIJÍMAČKY DO 4LETÉHO SŠ STUDIA) ÚLOHA 1 1 O kolik více je 4 10 než 4 10? o 2 400 2 400 4 000 1 600 Numerická chyba ve výsledku, např.
PŘÍMÁ A NEPŘÍMÁ ÚMĚRNOST
PŘÍMÁ EPŘÍMÁ ÚMĚRNOST y kx, kde k je Pro kladné veličiny x, y, které jsou přímo úměrné, platí kladné číslo, které se nazývá koeficient přímé úměrnosti. Kolikrát se zvětší x, tolikrát se zvětší y. Kolikrát
Přijímací zkoušky do 1. ročníku 2010/2011. Písemná zkouška z českého jazyka
Písemná zkouška z českého jazyka A) Práce s textem České poselstvo, které se odebralo do Říma, aby před sborem kardinálů a před papežem Benediktem IX. svedlo velmi obtížnou slovní bitvu, obstálo až nečekaně
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:
Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 14. 10. 2013 Obtížnost 1 Úloha 1 Železná trubka o délce 3 metry
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.
5. Funkce 9. ročník 5. Funkce ZOPAKUJTE SI : 8. ROČNÍK KAPITOLA. Funkce. 5.. Kvadratická funkce Obecná rovnice kvadratické funkce : y = ax + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených
2. Zapište daná racionální čísla ve tvaru zlomku a zlomek uveďte v základním tvaru. 4. Upravte a stanovte podmínky, za kterých má daný výraz smysl:
KVINTA úlohy k opakování 1. Jsou dány množiny: = {xr; x - 9 5} B = {xr; 1 - x } a) zapište dané množiny pomocí intervalů b) stanovte A B, A B, A - B, B A. Zapište daná racionální čísla ve tvaru zlomku
VZOR PŘIJÍMACÍ ZKOUŠKY Z ČESKÉHO JAZYKA. 5. ročník. Časová dotace: 90 minut. Identifikační číslo uchazeče: Maximální počet bodů:
PŘIJÍMACÍ ZKOUŠKY Z ČESKÉHO JAZYKA VZOR 5. ročník Časová dotace: 90 minut Identifikační číslo uchazeče: Maximální počet bodů: Počet dosažených bodů: Celkové hodnocení: Opravil/a A. Interpretace textu:
STEREOMETRIE 9*. 10*. 11*. 12*. 13*
STEREOMETRIE Bod, přímka, rovina, polorovina, poloprostor, základní symboly označující přímku, bod, polorovinu, patří, nepatří, leží, neleží, vzájemná poloha dvou přímek v prostoru, vzájemná poloha dvou
Do výtvarné výchovy se nakupují čtvrtky za cenu 5 Kč za kus. Kolik čtvrtek se nakoupí za 95 korun?
MATEMATIKA Součet bodů: Obor: 79-41-K/81 Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.
Autobus urazí... větší vzdálenost než studenti.
MATEMATIKA Obor: 79-41-K/81 Součet bodů: Opravil: Kontroloval: Vítáme vás u přijímacích zkoušek z matematiky a přejeme hodně úspěchů při řešení zadaných úloh. Úlohy můžete řešit v libovolném pořadí. 1.
Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
Mgr. Tomáš Kotler I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Na bájný zikkurat tvaru komolého kolmého jehlanu s větší podstavou u země vede
(A) o 4,25 km (B) o 42,5 dm (C) o 42,5 m (D) o 425 m
. Když od neznámého čísla odečtete 54, výsledek vydělíte 3 a následně přičtete 6, získáte číslo 9. Jaká je hodnota tohoto neznámého čísla? (A) 0 (B) 03 (C) 93 (D) 89 2. Na úsečce SV, jejíž délka je 3 cm,
MATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 7. 3. 2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
Maturitní nácvik 2008/09
Maturitní nácvik 008/09 1. Parabola a) Načrtněte graf funkce y + 4 - ² a z grafu vypište všechny její vlastnosti. b) Určete čísla a,b,c tak, aby parabola s rovnicí y a + b + c procházela body K[1,-], L[0,-1],
P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,
P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor
PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY
PŘIJÍMACÍ ZKOUŠKY Z MATEMATIKY Čas na vypracování testu je 60 minut. Povolené pomůcky: tabulky, kalkulačk NE mobilní telefon. Výsledky a výpočty zaznamenávej do odpovědních archů. Hodnotí se také postup
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.
Exponenciální funkce Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí y = a x Číslo a je kladné číslo, různé od jedničky a xεr. Definičním oborem exponenciální funkce je tedy množina
MATEMATIKA MAHZD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA DIDAKTICKÝ TEST MAHZD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro řešení didaktického
Jméno a příjmení. 2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 7 M7PCD19C0T03 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE STUDIU 8LETÉHO GYMNÁZIA ROK 2014
MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE STUDIU 8LETÉHO GYMNÁZIA ROK 204 ILUSTRAČNÍ POČET TESTOVÝCH POLOŽEK: 7 MAXIMÁLNÍ POČET BODŮ: 50 (00%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE: psací
CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 41 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán magický čtverec, pro nějž platí,
MATEMATIKA 7 M7PID15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 7 M7PID15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA+ DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického testu
Příklady k opakování učiva ZŠ
Příklady k opakování učiva ZŠ 1. Číslo 78 je dělitelné: 8 7 3. Rozhodněte, které z následujících čísel je dělitelem čísla 94: 4 14 15 3. Určete všechny dělitele čísla 36:, 18, 4, 9, 6, 3, 1, 3, 6, 1 3,
Přijímací testy z českého jazyka (autorka Mgr. Kateřina Stündlová)
Přijímací testy z českého jazyka (autorka Mgr. Kateřina Stündlová) 1. Diktát Ráno mě vzbudily hrdličky a sluníčko, jak mi svítilo na hlavu. Babička už v posteli nebyla. Asi pekla závin, protože to vonělo
MATEMATIKA. v úpravě pro neslyšící MAMZD19C0T01 DIDAKTICKÝ TEST SP-3-T SP-3-T-A
MATEMATIKA v úpravě pro neslyšící MAMZD9C0T0 DIDAKTICKÝ TEST 2 SP-3-T SP-3-T-A Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 %. Základní informace k zadání zkoušky Didaktický test obsahuje
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA0Z9 MATEMATICKÉ DOVEDNOSTI A Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
MATEMATICKÉ DOVEDNOSTI
Hodnocení výsledků vzdělávání žáků 9. tříd 005 MA04Z9 MATEMATICKÉ DOVEDNOSTI B Testový sešit obsahuje 7 úloh. Na řešení úloh máte 40 minut. Při řešení konstrukční úlohy užívejte rýsovací potřeby. V průběhu
ČESKÁ MEZIVÁLEČNÁ POEZIE PROLETÁŘSKÁ POEZIE
ČESKÁ MEZIVÁLEČNÁ POEZIE PROLETÁŘSKÁ POEZIE AUTOR Mgr. Jana Tichá DATUM VYTVOŘENÍ 8. 9. 2012 ROČNÍK TEMATICKÁ OBLAST PŘEDMĚT KLÍČOVÁ SLOVA ANOTACE METODICKÉ POKYNY 4. ročník Český jazyk a literatura Literární
Příprava ke státním maturitám 2011, vyšší úroveň obtížnosti materiál stažen z www.e-matematika.cz
Příprava ke státním maturtám 0, všší úroveň obtížnost materál stažen z wwwe-matematkacz 80 60 Jsou dána čísla s 90, t 5 0 Ve stejném tvaru (součn co nejmenšího přrozeného čísla a mocnn deset) uveďte čísla
Zvyšování kvality výuky technických oborů
Zvyšování kvality výuky technických oborů Klíčová aktivita I/2 Inovace a zkvalitnění výuky směřující k rozvoji čtenářské a informační gramotnosti žáků středních škol Téma I.2.1 Rozbor uměleckého a neuměleckého
Čtyřleté studium - přijímací zkoušky do 1. ročníku
Čtyřleté studium - přijímací zkoušky do 1. ročníku 2004 Český jazyk I. Pravopisná část Přepište bez chyb a doplňte chybějící interpunkci A ještě musím pochválit tebe, tebe Česká řeči, jaziku s nejtěšších
MATEMATIKA 9 Přijímací zkoušky na nečisto
787 Střední průmyslová škola stavební, Hradec Králové, Pospíšilova tř. MATEMATIKA 9 Přijímací zkoušky na nečisto 12.1.2017 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50
Opakování na 2. trimestrální test z MATEMATIKY PRIMA. Dělitelnost. 3. Rozložte daná čísla na součin prvočísel: 128; 96; 78; 105; 150.
Opakování na 2. trimestrální test z MATEMATIKY PRIMA Dělitelnost 1. Z čísel 1800; 356; 168; 855; 380; 768; 2880; 435; 2000 vyberte čísla: a) dělitelná dvěma: b) dělitelná třemi: c) dělitelná čtyřmi: d)
PŘIJÍMACÍ ZKOUŠKY 2011
MATEMATIKA Součet bodů: Obor: 79-41-K/401 Opravil: 1. termín Kontroloval: Vítejte v Omské, v následujících 45 minutách budete řešit test z matematiky. Dobře si přečtěte zadání, výpočty uvádějte s celým
Test z celoplošné zkoušky I. MATEMATIKA. 9. ročník ZŠ (kvarta G8, sekunda G6)
Test žáka Zdroj testu: Domácí testování Školní rok 2014/2015 Test z celoplošné zkoušky I. MATEMATIKA 9. ročník ZŠ (kvarta G8, sekunda G6) Jméno: Třída: Škola: Termín testování: Datum tisku: 01. 02. 2015
Jak by mohl vypadat test z matematiky
Jak by mohl vypadat test z matematiky 1 Zapište zlomkem trojnásobek rozdílu, 2 Vypočtěte: 2.1 0,05: 0,001 0,7 0,3 = 2.2 : = 3 Vypočtěte a výsledek zapište zlomkem v základním tvaru: 36 3 3 16 + 1 6 = 4
Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PID19C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: psací a rýsovací potřeby Časový limit pro řešení didaktického testu je uveden
MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013
VERZE A - PONDĚLÍ MATEMATIKA PŘIJÍMACÍ ZKOUŠKA KE 4LETÉMU STUDIU NA SŠ ROK 2013 POČET TESTOVÝCH POLOŽEK: 16 MAXIMÁLNÍ POČET BODŮ: 50 (100%) ČASOVÝ LIMIT PRO ŘEŠENÍ TESTU: 60 minut POVOLENÉ POMŮCKY ŘEŠITELE:
Několik úloh z geometrie jednoduchých těles
Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,
MATEMATIKA. 1 Základní informace k zadání zkoušky
MATEMATIKA PŘIJÍMAČKY LIK 2012 DIDAKTICKÝ TEST Maximální bodové hodnocení: 60 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 15 úloh. Časový limit pro řešení didaktického testu je
Kategorie: U 1 pro žáky 1. ročníků učebních oborů
Kategorie: U 1 pro žáky 1. ročníků učebních oborů 1) Kolika způsoby lze zaplatit částku 50 Kč, smíme-li použít pouze mince v hodnotě 1 Kč, 5 Kč a 10 Kč? ) Umocněte: 1 7 p3 q 3 r + 7pq r 3 = 3) Přeložíme-li
MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce
MATEMATIKA 5. TŘÍDA 1 - Přirozená čísla a číslo nula a číselná osa, porovnávání b zaokrouhlování c zápis čísla v desítkové soustavě d součet, rozdíl e násobek, činitel, součin f dělení, dělení se zbytkem
MATEMATIKA 9 M9PZD15C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA 9 M9PZD15C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 17 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník 1. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: 1 7 1 a) 0, b) 0,01. 1000 + 10. c) 0,5. 0,06 0,09
CVIČNÝ TEST 48. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 48 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 Je dán konvexní čtyřúhelník, jehož vnitřní
CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17
CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově
Opakování k maturitě matematika 4. roč. TAD 2 <
8.. Otázka číslo Mocniny a odmocniny. b.) Zjednodušte: 6 b. b Opakování k maturitě matematika. roč. TAD : 6.) Zjednodušte: 6 6.) Vypočtěte: a. y : ( a. y ) =.) Usměrněte zlomek =.. Otázka číslo Lineární
2.1 Pokyny k otevřeným úlohám. 2.2 Pokyny k uzavřeným úlohám TESTOVÝ SEŠIT NEOTVÍREJTE, POČKEJTE NA POKYN!
MATEMATIKA 9 M9PID17C0T01 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 16 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby 1 Základní informace k zadání zkoušky Časový
Příprava na pololetní písemnou práci 9. ročník
Příprava na pololetní písemnou práci 9. ročník. Vypočtěte, pokud jde o zlomky, výsledek uveďte v základním tvaru, popřípadě ve tvaru smíšeného čísla: a) 7 0, b) 9 4 0,0 0000 0, k) 6 c) 0,0,06 0,09:0, d)
MATEMATIKA M9PID14C0T01. 1 Základní informace k zadání zkoušky
MATEMATIKA DIDAKTICKÝ TEST M9PID14C0T01 Maximální bodové hodnocení: 35 bodů 1 Základní informace k zadání zkoušky Didaktický test obsahuje 14 úloh. Časový limit pro řešení didaktického testu je 60 minut.
Přípravný kurz. z českého jazyka a literatury ke státní přijímací zkoušce na SŠ. SPGŠ Futurum. Mgr. Tomáš Veselý
Přípravný kurz z českého jazyka a literatury ke státní přijímací zkoušce na SŠ 2019 SPGŠ Futurum Mgr. Tomáš Veselý Termíny přípravných kurzů ČJ Skupina A 27. 2. (středa) 15:30 13. 3. (středa) 15:30 22.
Olympiáda v českém jazyce 45. ročník 2018/2019
Národní institut pro další vzdělávání MŠMT Senovážné náměstí 25, 110 00 Praha 1 Olympiáda v českém jazyce 45. ročník 2018/2019 Krajské kolo zadání I. kategorie přidělené soutěžní číslo body gramatika sloh
1. Přímka a její části
. Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v
Název školy: Základní škola a Mateřská škola Žalany
Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Český jazyk a literatura pro šestý a sedmý ročník Název DUM: VY_32_INOVACE_4C_3_Karel_Jaromír_Erben
MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA (TEST PRO PŘIJÍMAČKY DO 4LETÉHO SŠ STUDIA)
PH-L9M0CINT MANUÁL PRO HODNOCENÍ OTEVŘENÝCH TESTOVÝCH ÚLOH MATEMATIKA 1 JAK PROBÍHÁ HODNOCENÍ DIDAKTICKÉHO TESTU Didaktický test obsahuje uzavřené a otevřené testové úlohy. Uzavřené testové úlohy, tedy
GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti
GEOMETRIE pracovní sešit pro 6. ročník Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti Tato publikace byla vytvořena v souladu s RVP ZV v rámci projektu
MATEMATIKA+ MAIPD14C0T01 DIDAKTICKÝ TEST. 2.1 Pokyny k otevřeným úlohám. 1 Základní informace k zadání zkoušky. 2.2 Pokyny k uzavřeným úlohám
MATEMATIKA+ DIDAKTICKÝ TEST MAIPD14C0T01 Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 23 úloh. Časový limit pro řešení didaktického
Jméno a příjmení. Pokud budete chtít svou odpověď opravit, zabarvěte původně zakřížkovaný čtvereček a zakřížkujte nový čtvereček.
MATEMATIKA 5 M5PBD19C0T02 DIDAKTICKÝ TEST Jméno a příjmení Počet úloh: 14 Maximální bodové hodnocení: 50 bodů Povolené pomůcky: pouze psací a rýsovací potřeby Časový limit pro řešení didaktického testu
GONIOMETRIE A TRIGONOMETRIE
GONIOMETRIE A TRIGONOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu. století - využití ICT ve vyučování matematiky na gymnáziu
Pokyny k hodnocení MATEMATIKA
ILUSTRAČNÍ TEST MAIZD4C0T0 Pokyny k hodnocení MATEMATIKA Pokyny k hodnocení úlohy Vyznačte na číselné ose obraz čísla 0,6. 0,6 3 apod. NEDOSTATEČNÉ ŘEŠENÍ Chybně vyznačený obraz, resp. není zřejmé, kde
Posloupnosti a řady. a n+1 = a n + 4, a 1 = 5 a n+1 = a n + 5, a 1 = 5. a n+1 = a n+1 = n + 1 n a n, a 1 = 1 2
Vlastnosti posloupností 90000680 (level ): Je dána posloupnost (an + b), ve které platí, že a = a a 4 = 8. Potom: Posloupnosti a řady 900006807 (level ): Které z čísel 5, 5, 8, 47 není členem posloupnosti